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THE EXISTENCE OF SHAPE-PRESERVING
OPERATORS WITH A GIVEN ACTION

B.L. CHALMERS AND M.P. PROPHET

ABSTRACT. We study the existence of shape-preserving
projections and, more generally, the existence of shape-
preserving operators with a given (fixed) action.

Introduction and preliminaries. Let X denote a Banach space
and V an n-dimensional subspace of X. We will use the following
notation. An n-tuple from X is to be considered a column vector while
an n-tuple from X* will be a row vector. Elements of R™ will be column
vectors.

Let S C X denote the set of all elements that possess a specified
“shape.” For example, S might denote the set of convex functions or
the set of monotone functions in C[0,1]. The problems involved with
preserving the “shape,” i.e., leaving S invariant, while approximating
elements of X by elements of V have been the object of much study,
especially in the case of best approximation (see, for example, [2, 4, 9,
10, 11, 12, 13, 14, 15, 16, 18, 19]). Best approximation operators
that are invariant on S are, in general, nonlinear and their existence is
usually not an issue. It is in the attempt to preserve a “shape” using
linear operators that existence becomes problematic. As illustrated
in the following example, small variations in the “action” of a linear
operator on V may greatly influence the ability of that operator to
leave S invariant.

Example 1.1. Let II; denote the space of second-degree algebraic
polynomials, considered as a subspace of C[0,1]. The second-degree
Bernstein operator Bs : C[0, 1] — I, is a linear operator that preserves
monotonicity. This is accomplished while nearly fizing Iy (B, fixes the
lines and Bgt? = (t + t?)/2). However, no linear operator fizing Il
can preserve monotonicity. Indeed, if such an operator P : C[0,1] —

Iy did exist, we could rewrite it as P = Z?Zl u; @ t*~1 where

Received by the editors on February 24, 1997, and in revised form on March 11,
1998.

Copyright ©1998 Rocky Mountain Mathematics Consortium

813



814 B.L. CHALMERS AND M.P. PROPHET

each u; is a, real-valued, regular Borel measure. Then P would also
preserve monotonicity from (C[0,1],] - ||) onto II;, where ||f|| =
max;—o,11{|/f"||c}. But this is in contradiction to [6, Lemma 2.2],
which shows that such an operator, P = Z?:1 u; @ L O = T,
must have us = §j), where &, denotes derivative-evaluation at t = 0.

In the case S is a cone induced by a vector lattice, one usually refers
to S as the positive cone and to an operator invariant on S as a positive
operator, see, e.g., [17]. In the following, we will be interested in cones,
and thus “shapes,” derived in a different manner, using subsets of X*
to define S. We call linear operators invariant on S shape-preserving
operators, and we will discuss the existence and characterization of
these operators.

Denote by B = B(X,V) the space of bounded linear operators from
X to V. Given P € B, there exists u = (u1,...,u,) € (X*)"
and basis v = (vi,...,v,)T € (V)" such that the representation
P=u®v=> " u Qu;is valid, where Pf = >""  (f, ui)v;.

Definition 1.1. For a given n X n nonsingular matrix A, P € B is
said to be an A-action operator if P can be written as P = Z?zl u; QU;
such that ((v;,u;)) = A, i.e., Pv = Av.

Note that there is an entire equivalence class of matrices associated
with a particular A-action operator. That is to say, if P = u® v
is an A-action operator, then P is also an MAM ~l-action opera-
tor, for any nonsingular matrix M, since P = uM ® M ~'v and
(((M~v);, (uM);)) = MAM ™. In the following, it will frequently be
advantageous for us to rewrite an operator’s representation, as above.
To this end we will resist fixzing a particular nonsingular matrix A and
instead simply refer to a given ‘action’ and use A to denote a represen-
tative from the equivalence class.

We will now consider the existence of A-action operators that preserve
the “shape” of elements of X in the following sense, see [1] and [10] for
related considerations. We will take the term cone to mean a convex
set, closed under nonnegative scalar multiplication. A pointed cone is
a cone that contains no lines.
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Definition 1.2. Let §* be a weak*-closed pointed cone in X*. Then
f € X is said to have shape, in the sense of S*, if (f,u) > 0 for all
u € S*. Let S be the set of all elements of X with shape. Note that
S is also a cone. Let S} = S* N B(X*), and let S} denote the set
of extreme points of ST less zero. Note that Sy is the closed convex
hull of S§ U {0} by the Krein-Milman theorem. In order to emphasize
the geometric flavor of our discussion, we will sometimes refer to S as
“corners” of S§ and to E(S*) := 7 1(S;) as the “edges” of the cone
S*, where m(z) := z/||z||. We will also say that S* is generated by Sj
or by E(S*) and write S* = cone (S§) or S* = cone (E(S*). Finally,
we will sometimes refer to the edge of a cone as the ray generated by
all positive scalar multiples of a particular nonzero element of the edge
and sometimes identify such an element with the edge itself.

Note 1. f € X has shape, in the sense of S*, if and only if (f,u) >0
for all u € S if and only if (f,u) > 0 for all uw € ST.

Assumptions. Unless otherwise noted, we assume that S* is total
over V, that is, we assume that S‘*V contains n independent elements
(in Example 3.5 we examine a situation in which S* is not total over V).
Furthermore, we assume that SN ~ (S*)1 # @ and that S contains at
least n independent elements.

Lemma 1.1. S and S* are “dual” cones in the sense that, if
(fyu) >0 for all f €S, then u € S*.

Proof. Suppose that (f,u) >0 for all f € S but u ¢ S*.

In the case where X is reflexive, we have an immediate contradiction
since S* being weakly closed and convex can be “separated” from u
by a functional f € X** = X such that (w, f) = (f,w) > 0 for all
w € S* and yet (u, f) = (f,u) = —1, i.e.,, f provides a “supporting
hyperplane” for S* separating S* from u; but such an f isin S.

In the general case the “separating functional” f, in X** above is
not necessarily in X and therefore not necessarily in S, and so the
construction of a “separating” hyperplane must be modified as follows.
Let C = ©o(S§), where the closure is with respect to the weak*
topology. Note that C is a convex, compact set, not containing the
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origin. Consider first the case that u ¢ —S* (of course we still suppose
that w ¢ S*). Then the entire subspace [u] does not intersect C' and
thus, from the convexity and compactness of C, it follows that there
exists an entire closed hyperplane H containing [u] such that HNC = &,
see [8]. Considering X* with its weak*-topology, let ¢t € (X*/H)* (¢
not identically zero), and let ¢ : X* — X*/H be the natural map.
Then h = toq is a (weak*™) continuous linear functional (with kernel
H) on X* and thus h € X (a continuous linear functional on X*
with its weak*-topology must be in X); via scaling we may assume
that mingcco(z, h) = 1. Finally we ‘shift slightly’ the hyperplane so
that it strictly separates C' from [u]. Indeed, let ¢ € X be such
that (u,g) = 1. If g € O+, then h — g strictly separates C and u;
otherwise, let 1/¢ = max,cc(z,g) whence, for every z € C, we have
(x,h —cg) > 1 —(z,cg) > 0 and (u,h — cg) = (u,—cg) = —c < 0.
In particular, we have shown that, if u ¢ S* U —S*, then u cannot be
nonnegative against S. Finally we consider the case u € —S™*. Since
(fyu) > 0 for all f € S, we see that u must vanish against S. Let
uy € S* be such that (f,u;) > 0 for some f € S, see assumptions. Then
the line segment Au 4+ (1 — A)ug, X € [0, 1], does not pass through the
origin. But every element on this line segment is nonnegative against
S. Then, since both S* and —S* are closed, there exists a (nonzero)
element of the line segment that belongs to neither S* nor —S*. That
is, there exists an element ¢ S* U —S™* that is nonnegative against .S,
a contradiction to the above. We conclude that, in all cases, if u ¢ S*,
then u cannot be nonnegative against S. ]

Example 1.2. Let X = C[0,1], and let S§ = {0; : ¢t € [0,1]}. Then
S is the cone consisting of all nonnegative functions in C]0, 1].

Definition 1.3. P € B is said to be shape-preserving (in the sense
of S*) if, whenever f has shape, Pf has shape, i.e.,, f € S implies
Pf € S. Denote the set of all shape-preserving A-action operators (of
B) by As*.

From the above assumptions, the following lemma is immediate. We
will say that a basis v1,... ,v, for V has shape if every basis element
has shape.
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Lemma 1.2. If there does not exist a basis for V with shape, then
Ag« = & for all A.

Proof. We prove the contrapositive. Let P = Z?:l u; @ v; € Ag+ for
some A and let f = (f1,...,f,)T € S™ be an n-tuple of independent
elements. Then Pf = (f,u)v is a basis that has shape. O

In the following we will therefore assume that V' contains a basis with
shape. As seen in [6], Ag~ may be empty for certain (standard) S*,
where A = I,. In the following section we attempt to characterize
when Ag- # .

2. Characterization.
Lemma 2.1. Let P € B. Then PS C S & P*S* C S*.

Proof. The proof is an immediate consequence of the duality equation
(Pf,u) = (f, P*u) and Lemma 1.1. O

Note 2. If P=u®v =", u; ® v; preserves shape and has range
V, then from Lemma 2.1 we see that, without loss (after a possible
change of basis), we may assume that u; € S*, i =1,...,n. This fact
already gives us much insight into the make-up of shape-preserving
operators, i.e., the functionals of an operator preserving shape $* must
be, without loss, in S* themselves.

Theorem 2.1 (Characterization). Ag« # @ if and only if there exists
u = (ug,...,u,) € (S*)" such that uAX, € S* for all u € S*, where
A denotes an action matriz and ujy =y Ay, where A, is a (column)
vector of scalars.

Proof. =. Suppose P =u'®Vv’' =", u,®v} € Ag~, and note that,
for each u € S*, (f, P*u) > 0 for all f € S. Then, by Lemma 1.1, we
have that P*u € S* for all u € S*. Now, since P*u = u'(v/,u) € S*
for u € §*, it follows that, via a change of basis, we may rewrite P as
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P=3%" u®v; whereu; € S*,i=1,... ,n. Thus, for u € S*,

udX, = u(v,u)A\, = u(v,u) = P'u e S™.

<. Let v € V" such that (v,u) = A. Then P = }"" u; ® v; is
shape-preserving, since, for f € S and u € S*, we have

(Pf,u) = (f, P*u) = (f,udr,) >0. 0O

Note 3. The preceding characterization theorem has an interesting
geometric interpretation. For a fixed cone, §*, the question of whether
or not a particular action A preserves this shape is actually a question
concerning the existence of subcones of S* that have a particular set
of n generators. Specifically, Ag« # @ if and only if there exists
a subcone S% of S*, possessing n “A-cone” edges, i.e., n elements
(U1,...,up) = u € (S*)” such that S = {udX, | v € S*}. The
following corollaries further the geometric insights into the shape-
preserving problem. For example, in certain settings (as we shall see)
the notion of “A-cone” edges simplifies to actual edges, in the sense
that nonnegative linear combinations of {uq, ... ,u,} will recover AS™*.
This is a sufficient condition for existence.

Corollary 2.1. If there exists u € (S*)" such that AN, has
nonnegative entries for all u € S*, then Ag+ # &.

Proof. Let v = (v1,...,v,)T € V" such that ((v;,u;)) = A, and let
P =" u;®u;. Then, for z € X such that (z,u) >0, for all u € S*,
we have (Pz,u) = (z,u)(v,u) = (z,u){v,ul,) = (z,u)AN, > 0 since
u; € S*,1=1,... ,n. Thus P is shape-preserving. a

Example 2.1. Consider the “quadratics” V = [1,t,¢?] in C0,1],
and let S* = {d;,t € [0,1]}. Setting u = d;, we have ujy = wyA,,
where

u = (do,01/2,01)

and
Ay = (1 =3t 4262, 4(t — 1), 26> — t)T.
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Thus, if A = I, the (interpolating at ¢;, i = 1,2, 3) projection operator
P =352 6, @v (0lt) = Tt — )/ TLualti — ;) : C0,1] » V
does not preserve positivity if (t1,t2,t3) = ZE], 1/2,1), since both the
first and third elements of A, are sometimes negative on [0,1]. In
fact, the argument works for any choice of t; to show that there is no
interpolating projection onto the quadratics which preserves positivity.
(It is well known that there is no projection onto the quadratics which
preserves positivity, see, e.g., Example 3.6.)

On the other hand, if

1 1/4 0
A=|0 1/2 0],
0 1/4 1

then

ANy = (1 =2t +2,2(t — t?), %)%,
and all three (AX,); are always nonnegative on [0,1]. Thus, by
Corollary 2.1, the operator P = 2?21 u; ® v; where ((v;,u;)) = A
(where v = ((1 —t)%,2t(1 — t),t?)T), preserves positivity. Note that P
is the classical Bernstein operator onto the quadratics.

Note 4. The example above illustrates the observation that, in
order to determine a set of action operators preserving a certain given
shape, one may proceed as follows: for each u € (S§)" consider
Ay :={Ay : v € S}} and suppose Ry, :={a:a-A, >0 for all A, € Ay}
is nonempty. Then Ag+ is not empty for any “action” matrix A whose
rows are members of R,.

The following corollary, Corollary 2.2, is also quite useful in practice
since it gives conditions in R™ relating to existence. In addition, we
will see that, in the projection case (the identity action), the corollary
extends to a characterizing theorem, Theorem 2.2, below.

Definition 2.1. We will say that the cone S* is simplicial if Sg
consists of independent elements. Thus, if S* has finite dimension m,
then S* is simplicial is equivalent to |E(S*)| = m.

Example 2.2. §* of Example 1.2 is simplicial. For an example of a
nonsimplicial shape, consider X = L'[0,1] and S§ = {¢:} U {¢;} with
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(f,6¢) = ([ f(s)ds) with t € (0,1] and (f,%:) = (J;' f(s)ds) with
t € [0,1). Note that, for t1 < to, ¢, = dr, + V1, — Uy, .

Definition 2.2. Let (v1,...,v,)T = v be a basis for V, and
let S, denote the subset of R" given by {(v,u) [ u € S*}. Since

ASl"V1 C S‘;l & AS* . ,Sf’f‘v2 where v; and vg are two arbitrary bases,

[v2
we will let S ‘*V also stand for S "‘v where v is an arbitrary basis.

Corollary 2.2. In order for As- # @, it is necessary that ASl*V C
Sl*V. If, in addition, AS},, is contained in a simplicial subcone of Sl*V,
then this is sufficient for Ag« # @.

Proof. If P = >, u; ® v; € Ag~, then by Lemma 1.1 we have
P*u € §* for all w € §*. Thus (P*u),, € S[,. But

(P*u)\v = <v,P*u> = <vau> = <<v,u>v,u> = A(v,u),

and hence ASl‘; C Sl‘;. Now suppose that there exists {uq), ;... ,Up|, } C
Sl‘; such that ASl*v C cone (Uy|y ;.- U, ). Set u = (ur,... ,up) €
(S*)™. Note that

Alv,u) = (v,u)cy
where ¢, is the vector of nonnegative coefficients guaranteed by the

simplicial condition. Since S ‘*v has n independent elements, the matrix
M = (v;, u;) is nonsingular. Thus, solving for c,, we have

o =M 1A(v,u) = M P A(v, )\, = M LAMM,.

The positive entries of M~*AMM, imply that uM ~*AMMA, € S* for
all w € §*. Thus Ag« # @ by Theorem 2.1. O

Example 2.3. An illustrative example of Corollary 2.2 is obtained
by considering again the Bernstein action onto the quadratics discussed
in Example 2.1 above. This example is discussed in detail in the first
part of Example 3.8 below.

2.1. The projection action. Let Pg~ denote the set of shape-
preserving projections from X onto V. We will show that Corollary 2.2,



SHAPE-PRESERVING OPERATORS 821

in the case of projections, results in a simple geometric characterization
of Ps« (recall that the action matrix for a projection is the identity).
This characterization will then lead us to a result concerning unique-
ness.

Definition 2.3. The shape S*, generated by the set 53, is said to be
proper, with respect to V, if Sl*V is closed (in X *V). In addition, we say
that a proper shape S* is strictly proper, with respect to V, if distinct
elements of S§ do not agree on V.

Note 5. To determine whether S* is proper, with respect to V, it is
of course sufficient to determine whether the set of nonzero elements of
(Sg)), is closed.

We give an example where S§ is not proper in the following.

Example 2.4. Let X = L'[0,1]. Let V = [vy,v3] where v; = 1 and
ve = t. Define the following ‘average-value’ shape by S* = cone (S¢)
where S§ = {¢:} and (f, ¢:) = (fot f(s)ds) with ¢ € (0,1]. Then S}, is
not closed. Specifically, note that the sequence {(¢1/5)|, /n} converges
to do|,,. There does not exist, however, an element of S* that restricts
to dp on V. Indeed, for such a functional to exist, it would have to be
nonnegative against every function of the form f(t) = mt — g(t) where
m > 0 and g(t) is a nonnegative function pointwise bounded by mt,
since such a function f(t) has shape. However, such a functional must
vanish on vs(t) = ¢, since it restricts to d in V', and thus it must vanish
against all such g(t). We know that such a functional is not identically
zero, since it is one against the identically one function. But then it
follows immediately that such a functional would not be bounded.

The following example is one where S is strictly proper, with respect
to V.

Example 2.5. Let X = C[-1,1] D V = [1,t], and consider the
‘positive’ shape given by S§ = {d;} where §; denotes point evaluation
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at t € [-1,1]. Since

141 1-—1¢
(6e)), = T((sl)\v + T(é’l)“”

we see that S is strictly proper, with respect to V.

Theorem 2.2. Let S* be simplicial and proper, with respect to V.
Then Ps« # & if and only if the cone S‘*V is simplicial.

Proof. <. This direction follows immediately from Corollary 2.2.

=. We will show that |E(S"*V)\ =n. Let P=u®v € Pg- and,
from Lemma 2.1, we have P*S* C S*. Note that (P*u)|, = u,, since
P is a projection, and, since P*X™* is n-dimensional, it follows that
(P*uw)), = (P*w)), if and only if P*u = P*w in X*. Thus, there is
a bijection between the n-dimensional cones P*S* and S‘*V given by
P*u < wy,,. This implies that |E(S}, )| = [E(P*S”)| and we now show
|E(P*S*)| = n. Since S* proper, it follows again by the Krein-Milman
theorem that the compact convex set S} NB(X|" ) is the closed convex
hull of its extreme points, and hence, via the identification of P*S* and
S}, there exists an independent subset {P*ws,...,P*w,} such that
each P*w; € E(P*S*). Note that we make the usual identification
of a point on the edge with the edge itself. We will now show that
it is impossible for there to be any other edges. Note that, for each
i, P*w; € S* and, as such, may be written as a (possibly infinite)
nonnegative combination of elements of S, i.e., with N* = V1N S,
we have

(1) P*wi:/ ud,uﬁ—/ wdp;
s* *

where p; is a positive measure with supp (1;)N ~ (N*) = Sf. Now,
taking P* of both sides of (1), we find that P*w; = [4. P*udp;, since
P* is a projection. However, since P*w; € E(P*S;‘), this is only
possible if P*u = P*w; for all u € S7. Whence it follows that u € S}
only if u, = (w;)|,, and thus S NSF = &, i # j. Now, suppose there
exists P*w,11 € E(P*S*) such that P*w,41 # P*w;, i = 1,... ,n.
Then P*w,,; has a representation as in (1), while the n-dimensionality
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of P*X™* implies the existence of constants ¢;, ¢ = 1,... ,n, such that

/ U dfnt1 +/ Udpini1 = P wpit
* N*

n+tl
(2) =cP*uy + - +c,P*u,
= / udu —l—/ udu,
SFU--USE -
where the (signed) measure p = Y., cju;. However, Sy, and

ST U---US; are disjoint and so (2) contradicts the independence of
the set S§. Thus |E(P*S*)| = n. o

Note 6. If P = u®v = Y_' | u;®v; preserves shape and has range V/,
then from Lemma 2.1 we see that, without loss (after a possible change
of basis), we may assume that u; € S*, ¢ =1,... ,n. As noted before,
this fact gives us much insight into the make-up of shape-preserving
operators, i.e., the functionals of an operator preserving shape S* must
be, without loss, in S* themselves. But now we see, in addition, that
if S* is simplicial and proper and a shape-preserving projection exists,
then, in fact, the u; can be chosen from E(S*), i.e., are just (positive)
scalar multiples of elements in S§.

For a strictly proper shape S* = cone (Sg), distinct elements of S
do not agree on V. This gives an immediate uniqueness result.

Theorem 2.3. Let S* be simplicial and strictly proper. If Ps« # @,
then Ps- = {P}.

Proof. Let E = E(S},). From Theorem 2.2, we have |E| = n
and £ = {uy|,,... ,Uy|, }, where each u,, is an edge of S}, Since
S}, = cone ((53)),), E C (7)), and thus each u;),, € (S} )o extends
uniquely to a u; € S§. Then for P € Pg~, we see from the above proof
that P*u; = u; for ¢ = 1,... ,n. From here it follows that P is unique.
O

Remark. Although the focus of this paper is the case where V is finite-
dimensional, the preceding theorem, Theorem 2.2, extends to the case
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where V is infinite-dimensional. In this case the definition of ‘proper’

is amended to ‘Sl*v is weak*-closed, in X‘*V.’

We will see many applications and examples of the preceding the-
ory. It will also be demonstrated that, even in the setting of proper
shapes, there exist actions that give rise to nonunique operators and
‘nonsimplicial’ cones.

3. Applications and examples. As a first application, we
give a condition for which the necessary inclusion condition given in
Corollary 2.2 extends to a characterizing condition.

Theorem 3.1. Let S* be proper and Ps« # &. Then Ag« # & if
and only if AS! C S} .

Proof. This follows immediately from Theorem 2.2 and Lemma 2.2.
O

Next we extend the previous uniqueness result concerning projections.
Here the nullspace of S*, (S*)*, will play a role; indeed, the linear
subspace (S*)* often results in Ps- being a linear manifold, as in [3,
6] and [7]. In this setting, the question of minimal (norm) shape-
preserving projections can be addressed using classical techniques from
approximation theory, also see [5]. This theorem is also appropriate
for settings where a given shape is not total over V.

Theorem 3.2. Let V be an n-dimensional subspace of X, with basis
Vi,...,Un. Let S* be a simplicial shape, strictly proper with respect to
[v1,... 0], k < n, and such that {viy1,... , 00} C (S*)*. If Ps- # 2,
then Pg+ is a linear manifold, i.e., Ps+ = Py +D, where Py is a shape-
preserving projection onto V and D is a subspace of B(X,V).

Proof. By Theorem 2.3, let Py = Zle u; ® v; be the unique
shape-preserving projection onto the subspace [vy,... ,vg]. Now, with
{Vksts---»0n} C (S*)*, let P, = Py + Z?:,Hl u; ® v; for any
{uks1y-+- yun} C [v1,... 0]t N X* such that ((v;,u;)) = I,y for
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i,7 = k+1,...,n. By Lemma 2.1, and Note 2, P; is a projec-
tion. Then define the manifold P = {P | P = P, + A}, where
AeD=sp{d®v|§ecVtandv € [vgs1,-.-,vn]}. Thus P is a
manifold of shape-preserving projections with respect to V. The fact
that Py is unique implies Pg« = P. a

Example 3.1. We begin with projections in a very simple setting
and then apply Theorem 3.2 to obtain an interesting result. For n
a positive integer, let X = C™[0,1] and V = [v1] = [t"]. Our
shape will (initially) be ‘one-dimensional’ as well. Let (5t(:) denote the
evaluation of the nth-derivative at to, and define S§ = {65:)} for fixed
to € [0,1]; generating S* via S, we (trivially) define a proper shape. By
Theorem 2.2, the shape-preserving projection is given by Py = u1 Q@ vy
where u; = (5t(:)/(n!). Of course, [[,, ;, = [L,t,...,t""1 C (S*)*,
and so Pg-, the set of all shape-preserving projections onto [], =
[L,,_; ®[t"], is a manifold with the following representation:

Pse = (0 /() @t" + 6 V/(n -1 @t" 4 6 ®1) + D

where

D={pQuv]|¢E¢c (Hn)J‘ andv € [[,_,}

This argument holds for any ¢y € [0,1] and thus the shape defined by
Sg = {Jt("),t € [0,1]} (while not proper with respect to [] ) can be
preserved by a projection in any of the above described manifolds. In
summary, then, we say there exist n-convex-preserving projections onto

IL.

The next application involves the consideration of shape-preserving
operators onto two-dimensional subspaces.

Corollary 3.1. Let V be a two-dimensional subspace, and let S* be a
proper shape. Then Ag+ # @ if and only if AS‘*V C S‘*V. In particular,
Pg+ # 2.

Proof. Note in this case that we do not require S* to be simplicial.
Indeed, since there is a basis with shape by Lemma 1.2, Sl*v is a
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closed cone with exactly two edges, which is unique to subspaces of
dimension two, and Pg+ # @ by Theorem 2.2. The remaining follows
from Theorem 3.1. u]

Example 3.2. Let X = C[—1,1]. Let V = [v1, v2] where v1 = 1 and
ve = t + 1. Define the ‘positive’ shape given by S} = {d:} where d;
denotes point evaluation at ¢t € [—1,1]. One will note that this shape
is proper, with respect to V. Indeed, S‘*V is simplicial since

By = o B0y + T (o)

2
By Corollary 3.1, Pg« # &. One can actually construct the (unique)
shape-preserving projection by following the ‘recipe’ from Corollary 2.2.
Setting
u=yM !

where ’l/J = (61,(5_1) and M = (<Uia5—2j+3>); we find u; = (5_1 and
= (6 — 6_1)/2. Note that this projection is, of course, the well-
known (minimal) norm-1 interpolating projection onto the lines.

It is possible, of course, to define a reasonable shape that cannot
be preserved by a projection onto a two-dimensional subspace. The
following example demonstrates one such situation and shows that the
assumption of “proper” in Theorem 2.2 cannot be dropped.

Example 3.3. Let X = L'[0,1]. Let V = [v;,vs], where v; = 1 and
vy = t. Define the following average value’ shape by S* = cone (Sg)
where S = {¢:} and (f, ¢¢) fo s)ds)/t with t € (0,1]. In
Example 2.4 we showed that S is not proper with respect to V. Now
suppose that there did exist P = u1 @ 1 + ua ® t € Pg«. If uy ¢ S*,
then, by Lemma 1.1, there exists fo € S such that (fy, u;) < 0 and this
implies that Pfy & S*, Pfo = (fo,u1) + (fo, u2)t, whence (P fo, ¢;) <0
for t sufficiently close to 0. Thus we must have u; € S*. However,
the orthogonality condition, (t*~!,u;) = &;;, i,j = 1,2, implies that
(u1)},, = (do)}, , and it was shown in Example 2.4 that there does not
exist an element of S* that restricts as such. Hence, Pg- = &.

Example 3.4. Let V = [vy,...,v,] be an n-dimensional subspace
and S* = cone ({¢1,...,Pn}) so that S* is proper over V. Then Corol-
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lary 2.2 tells us that any action A such that ASl*V C S‘*V guarantees

Ag+ # @. In particular, of course, there will always exist a shape-
preserving projection.

In the remaining examples, we work with preserving some standard
shapes.

Example 3.5. Let A = I,,. For integer n > 2, let X = C"~1[0, 1] and
V =11, =I[1,t,... ,t"]. Define the shape S; = {(5t(n71)} where 515"71)
denotes evaluation of the (n — 1)st derivative at t with ¢ € [0, 1]. Note,
for example, that for n = 2 we are preserving monotonicity onto the
quadratics; n = 3 corresponds to preserving convexity onto the cubics,
etc. We will show quite easily that Pg+ # &. To begin, we observe that
our shape is not total, with respect to V. Indeed, note (¢", 55”71)> =0
for < n — 2. However, with respect to V' = [t"~!,¢"], the shape is
total, as well as strictly proper. Furthermore, Sl*v' is simplicial since

G ), =t ), =068,

and thus, using Theorem 2.2 and Theorem 2.3, we have the existence
of a unique shape-preserving projection onto V'. We can construct the
projection, onto V', by setting

o= (3 55

where (1)
o (n—1)

and writing Py = u; @ t" ! + us ® t™. Because || Y- (S*)*, shape-
preserving projections onto ] are plentiful; for example,

P =P+ SV @24 4501

(n—2)!

is one such operator.

Example 3.6. (See also [6].) Let A

= I, X = C[0,1, V =
O, = [1,¢,t%] and S§ = {6} where t € [0,1].

We will show,
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using Theorem 2.2, that there does not exist any ‘positive-preserving’
projections onto the quadratics by demonstrating that the cone S}
is not simplicial. It is easy to see that the shape generated by S is
simplicial and proper. As we have seen from the proof of Theorem 2.2,
the edges of S are contained in the rays generated by (Sg), - Fix
(01, ,0t,,0t5) C Sg with distinct t1,to,t3. Fix §; € S§ with ¢ different
than any t;, i = 1,2,3. Set v = (v, ve,v3)T = (1,¢,¢>)T C V3, and let

1 1 1
M = (<6t,-,'Uj>) = tl t2 t3
ti 3 13

Then (6;)], = (8¢, ,0¢,,0¢5) A5, Where

A& = M71<5t,v)

(12 — t(ta + t3) + tat3)/(tats — tat) + t2 — taty)
= | (2 —t(t1 + t3) + tts)/(tats — taty + t3 — t3ta)
(t2 — t(ta + t1) + tat1)/(—tits + taty + t3 — t3ta)

Now we can simply observe that As, does not have positive entries for
all . Indeed, note that the numerator of the first entry is positive at
t = 0 and negative at ¢t = (ty + t3)/2. Therefore,the cone (S), is not
simplicial and this implies by Theorem 2.2 that Pg- = & (it can be
shown that, in fact, the cone S ‘*V has infinitely many edges). Note that,
in the above, we of course have S; C X*; indeed, the above argument
holds for any X such that this is true. For example, there cannot exist
a positivity-preserving projection onto Il from X = C™[0,1], m > 0,
where || f||x = max;—o, .. m SUPsco,1] |£ @ (¢)]], see Example 3.3.

Example 3.7. In the previous example we demonstrated that pos-
itivity could not be preserved from X = C™[0,1] onto II, for any
m = 0,1,2,... . However, by making the shape slightly more restric-
tive, the theory reveals a projection preserving the new shape. Fix
v = (1,t,t*)T and again consider the cone St C R3 from Example 3.6.
Clearly, every (v,d;) belongs to an edge of this cone. However, let
¢ € X* be any functional such that (v,¢)” = (1,1,0)”. Then every
ray generated by (v, d;) is in the convex hull of {(v, do), (v, 1), (v, ¢)}.
Defining T* = cone (S* U {¢}), we have that (T™),, is simplicial. For

lv
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another example, let m > 1 and define ¢ = 6y + (. The shape given
by {0:}ef0,1] U {¢} can be preserved onto II, by a projection.

In the next few examples, we will be using actions other than the
identity. One will note, however, that, though the actions used are
still in some sense ‘close’ to the identity, the existence results are quite
different from the similar projection cases.

One such action in which we will be interested is given by the second-
degree Bernstein operator considered above in Example 2.1. With
respect to the basis 1,t,t2, we find the action matrix to be

1 0 0
B,=[0 1 0
0 1/2 1/2

Thus, this is the action given by the restriction of the second-degree
Bernstein operator to the quadratics.

Example 3.8. Let A = By, X = C[0,1], V =TI, = [1,¢,t?] and
Sg = {6:} where t € [0,1]. We will show that Ag« # @ by appealing
to Corollary 2.2. Let v = (1,¢,t?)T and note

1 0 0 1 1
ASg), =10 1 0 t | = t
0 1/2 1/2 t2 (1/2)(t + t%)

We attempt to find {uy,,us),,u3, } C S, so that A(S7), C
cone (uy,,Us|y,Usly,) (by examining the parametric curve A(Sg),,
this choice of w;,’s is clear). Let u = (60“,,(51/2“/,61“,) and write
A(S5)), = A(v,d;) = ucs, = (v,u)cs, and, solving for cs,, we have

cs, = ((v,u)) tA(v,d;)

t

1 -3 1 0 0 1

=0 4 -4 0 1 0 t
0 -1 2 0 1/2 1/2 t2
t2—2t+1

=| 20¢t-¢t)
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This vector has positive entries for all ¢t and thus Corollary 2.2 implies
Ag+ # @. To actually construct a shape-preserving A-action operator,
simply set u = (do, d1/2,01), that is, extend the u above to all of X,
and set P = u® ((v,u)) tAv, where A = By above. It is easy to check
that this is shape-preserving as well as A-action. This operator comes
about naturally from the above proof and, as one can easily verify, this
operator is precisely the second-degree Bernstein operator. Thus, it
should preserve monotonicity as well. To check this via our theory,
and to make a point about uniqueness, we first recast the monotonicity
problem slightly. Let X = C', V = [t,?], S§ = {0,} and action A’ be

given by
A 0
A= <1/2 1/2)'

Note that u; = 2(d1/2 — do) and up = 2(dy — d1/2) are both elements of
S* = cone (Sg). Thus, with u = (uq|,,ug), ) and v = (¢,t*)", we again
write A’(v,d;) = ucy, and find

() (o ) ()~ (5)

By Corollary 2.2, Ag« # @. Extending u to all of X, we find that
the operator P’ = u® ((v,u)) 'A’v is a shape-preserving A’-action
operator. Now simply choosing u € X* so that P = P + v ® 1 has
the By action, we find that P is a monotonicity-preserving A-action,
Bernstein action, operator from C1[0, 1] to Ip. In fact, P = P+ ®1
is the Bernstein operator.

The next example demonstrates that Theorem 2.3 is specific to
projections.

Example 3.9. Recall from the last example that S§ = {0;} on
V = [t,t?] in X = (! defines a strictly proper shape. We then
defined a shape-preserving A’-action operator, P’. Now, in a similar
manner, we will construct a second A’-action operator that is also
shape-preserving. Let u = (6§,d7) and v = (¢,t?)7. Set N = (v,u)
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and define Q = u® N~ A’v. To show ( is shape-preserving, note that
Q*5, = u(N~'A'v,6))

(Y 2\ (1o 1

%o 12 )12 172) 2t

_ ul 3—2t

T g \1+2t )
which, for every ¢ € [0,1], is a nonnegative combination of §) and 4]
and, as such, is an element of S*. This implies @) is shape-preserving.

Clearly @Q # P’ and we have demonstrated that, even with a strictly
proper shape, nonuniqueness exists for actions other than the identity.

The next example further illustrates the geometric nature of shape
preservation. We consider a family of actions that are ‘close’ to the
identity action and look for those actions which can preserve positivity
onto the first degree trigonometric polynomials.

Example 3.10. Let X = C[0,n], V = [1,sint,cost] and S§ = {&:},
t € [0, 7]. Thus, the shape which we wish to preserve is positivity. The
cone S| ‘*V is not a simplicial cone of V*; in fact, each (d;)|,, belongs to an
edge. Thus, no projection can preserve positivity onto V. However, we
might ask if there exist actions ‘close’ to the identity that can preserve
the shape S*. For ¢ > 0, let

1 0 0
A.=10 ¢ O
0 0 ¢

We want to apply Corollary 2.2 and thus we let v = (1,sint,cost)”
and define 57 = {(v,u)|u € 5} C R3. Each edge of this cone is a ray
through a point (1,sint,cost), t € [0, 7], i.e., each edge is formed by
taking all nonnegative scalar multiples of each (column) vector (v, d;).
Indeed, this ‘half-circle’ set of vectors E = (S5)|, = {(1,sint,cost)’},
t € [0,m] generates the cone S . Note that £ and A.E, matrix
multiplication of each (1,sint,cost)” € E by A., form ‘concentric half-
circles.” Hence, by Corollary 2.2, we must have ¢ < 1 if we want to
preserve shape. With the sufficiency of Corollary 2.2 in mind, we seek
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the largest concentric half-circle that can be inscribed in the unit half-
circle so that the inscribed half-circle is contained in the convex hull
of three elements of the unit half-circle. The answer is, obviously, a
half-circle of radius r = 1/v/2. Thus, if ¢ < 1/4/2, Corollary 2.2 implies
AcS * # .

We would like to conclude with an example that gives a shape-
preserving A-action such that AS |*V cannot be contained in a simplicial
subcone of S‘*V.

Example 3.11. Let X be a Banach space with three-dimensional
subspace V' = [v1,vq,v3] and dual space X*. We define the shape
using four dual elements. Choose @1, ¢2, p3 € X* so that (v;, ¢;) = 0;5.
Choose a fourth element ¢4 so that

<U17 ¢4> =-1 and <’U2, ¢4> = <’U37¢4> = 17
thus S§ = {¢;}1_,- Let the action be given by

11 -1
A=11 0 2
01 1

To show Ag+ # @&, we appeal to Theorem 2.1; thus we must find
u = (u1,ug,u3) € (X*)® such that uddy, € S* fori =1,...,4. Let

up = ¢1 + @2, u2 = ¢1+ @3 and uz = 2 + Pa.
Note that A = (v, u). From here it follows that AXy, = (v, $;). Thus
uddy, = g1+ ¢,

UAA¢'2 = ¢1 + ¢37
uAA(ﬁg = ¢2 + ¢47

and
uA)‘¢4 = ¢3 + ¢4-

Thus Ag~ # @. The reason this example is of interest is that AAy, has
negative entries, i.e., geometrically, the subcone AS‘*V, of S‘*V, has four
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edges and it cannot be contained in a simplicial (three-edged) subcone
of S .
lv
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