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SOME CHARACTERIZATIONS FOR
BOX SPLINE WAVELETS AND

LINEAR DIOPHANTINE EQUATIONS

DING-XUAN ZHOU

ABSTRACT. Box splines are investigated from the point
of view of wavelets. Some characterizations concerning linear
independence of integer translates of Box splines are presented
in terms of the defining matrices. It is shown that a direct
extension of a criterion for linear independence of refinable
functions in the univariate case to the multivariate case holds
for the Box spline MΞ in Rs when rank Ξ = s while not any
more when rank Ξ < s.

1. Introduction and main results. Stability and linear indepen-
dence of integer translates of a refinable function or distribution play
basic roles in wavelet decompositions and multivariate splines. These
properties can be characterized by the Fourier-Laplace transform of
this distribution. It was shown by Ron [17] that, for a compactly
supported distribution φ in Rs, {φ(· − α) : α ∈ Zs} are linearly inde-
pendent if and only if, for any ω ∈ Cs, there exists some α ∈ Zs such
that φ∧(ω +2πα) �= 0, where φ∧ is the Fourier-Laplace transform of φ.

Suppose that φ is k-refinable, 2 ≤ k ∈ N, say

φ =
∑

α∈Zs

bαφ(k · −α),(1.1)

φ∧(0) = 1,(1.2)

where {bα}α∈Zs is a finitely supported sequence called the mask se-
quence of the refinement equation (1.1). Then φ can be determined by
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the mask sequence as follows:

φ∧(ω) =
∞∏

j=1

1
ks

b̃(e−i(ω/kj)), ω ∈ Cs,(1.3)

where

b̃(z) =
∑

α∈Zs

bαzα, z ∈ (C\{0})s(1.4)

is the symbol of the mask sequence. Thus it is natural to investigate
the linear independence of integer translates of φ in terms of the mask
sequence b. In the univariate case s = 1 with k = 2, such criteria
were given by Jia and Wang [13], Cohen [3], Cohen, Daubechies and
Feauveau [4], and also Daubechies [8, 9]. The author extended their
results to general k ∈ N in [19, 21] as follows.

Theorem A. Let s = 1, 2 ≤ k ∈ N, φ a compactly supported
distribution satisfying (1.1) and (1.2) with a finitely supported mask
sequence b. Then the integer translates of φ are linearly independent if
and only if the following two conditions hold:

(i) For any z ∈ C\{0},

(1.5)
k−1∑
l=0

|b̃(e−i2π(l/k)z)| > 0;

(ii) for any m ∈ N and z ∈ T := {z ∈ C : |z| = 1} satisfying
zkm

= z �= 1, there exists some integer d ≥ 0 such that

(1.6)
k−1∑
l=1

|b̃(e−i2π(l/k)zkd

)| > 0.

The purpose of this paper is to consider the corresponding multivari-
ate problem. We state first that the similar necessity still holds.
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Theorem 1. Let s ∈ N, 2 ≤ k ∈ N, Ek,s := {α = (α1, . . . , αs)T ∈
Zs : 0 ≤ αj ≤ k − 1 for any 1 ≤ j ≤ s}. Suppose that φ is a compact
supported distribution in Rs satisfying (1.1) and (1.2) with a finitely
supported mask sequence b. If the integer translates of φ are linearly
independent, then the following two conditions hold:

(i) For any z ∈ (C\{0})s,

(1.7)
∑

l∈Ek,s

|b̃(e−i2π(l/k)z)| > 0;

(ii) for any m ∈ N and z ∈ T s satisfying zkm

= z �= (1, . . . , 1)T ,
there exists some integer d ≥ 0 such that

(1.8)
∑

l∈Ek,s\{(0,... ,0)T }
|b̃(e−i2π(l/k)zkd

)| > 0.

From this result we may hope that the converse is also true as in
the univariate case. However, we present examples of Box splines
to show that this is not always the case. To this end, we shall give
some characterizations for Box splines, especially concerning the second
condition (1.8). Let us mention here that, as an important class of
multivariate wavelets, Box splines, especially the constructions of Box
spline wavelets and pre-wavelets, have been investigated by a series of
papers [1, 2, 12, 15, 16, 18, 20].

Let Ξ := (ξ1, . . . , ξn) be an s × n integer matrix. Denote Ξ also as
the set of nonzero integer vectors {ξ1, . . . , ξn}. The Box spline MΞ

associated with Ξ is the distribution, see [1], given by the rule

(1.9) 〈f, MΞ〉 :=
∫

[0,1)n

f(Ξu) du, f ∈ D(Rs),

or, equivalently, by the Fourier-Laplace transform,

(1.10) M∧
Ξ (ω) =

n∏
j=1

1 − e−iξT
j ω

iξT
j ω

, ω ∈ Cs.
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It is easily seen that MΞ is k-refinable, i.e.,

(1.11) M∧
Ξ (ω) =

1
ks

b̃Ξ(e−i(ω/k))M∧
Ξ

(
ω

k

)

with

(1.12) b̃Ξ(e−iω) = ks−n
n∏

j=1

1 − e−ikξT
j ω

1 − e−iξT
j

ω
, ω ∈ Cs.

For l ∈ Ek,s, we denote

(1.13) Ξl := {ξ ∈ Ξ : l · ξ ≡ lT ξ /∈ kZ}.
For an m × n integer matrix A, we denote by dA,p the greatest
common divisor of all p × p minors of A for 1 ≤ p ≤ min{m, n}.
For J ⊂ {1, 2, . . . , n}, we denote by A(J) the matrix made up of the
columns of A indicated by J .

Now we can give the characterization of the condition (1.8) for Box
splines as follows.

Theorem 2. Let s, n ∈ N, 2 ≤ k ∈ N, Ξ be an s × n integer matrix
with ξj �= 0, 1 ≤ j ≤ n, b̃Ξ be given by (1.12). Then the following
statements are equivalent:

(i) For any m ∈ N and z ∈ T s satisfying zkm

= z �= (1, . . . , 1)T ,
there exists some integer d ≥ 0 such that

(1.14)
∑

l∈Ek,s\{(0,... ,0)T }
|b̃Ξ(e−i2π(l/k)zkd

)| > 0.

(ii) One of the following two conditions holds:

(a) There is some l ∈ Ek,s\{(0, . . . , 0)T } such that

(1.15) Ξl = ∅, the empty set;

(b) for any s × (ks − 1) matrix X whose columns are xl ∈ Ξl,
l ∈ Ek,s\{(0, . . . , 0)T } and any prime p ∈ N,

(1.16) p
∣∣∣ dX,s

dX,s−1
implies p|k.
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(iii) For any m ∈ N and z ∈ T s satisfying zkm

= z �= (1, . . . , 1)T ,
the following holds

(1.17)
∑

l∈Ek,s\{(0,... ,0)T }
|b̃Ξ(e−i2π(l/k)z)| > 0.

Thus, for the Box spline distributions, the second condition (1.8) of
Theorem 1 can be reduced to two conditions on the defining matrix Ξ.
We can simplify condition (ii)(a) further to the following characteriza-
tion.

Theorem 3. Let k, s, Ξ be given as in Theorem 2. If rank (Ξ) = s,
then (ii)(a) of Theorem 2 holds if and only if

(1.18)
(

dΞ,s

dΞ,s−1
, k

)
> 1.

If rank (Ξ) < s, then (ii)(a) of Theorem 2 always holds.

Condition (ii)(b) of Theorem 2 can also be simplified by means of the
lemmas in Section 2, see Lemma 5.

The condition (1.7) for Box spline distributions is closely related
with linear independence of integer translates of discrete Box splines,
which has been completely characterized in [1, 7, 11]. Let us recall
the so-called discrete Box splines. For the scaling matrix H :=
diag {1/k, . . . , 1/k} and the integer matrix Ξ, the discrete Box spline
bH(·|Ξ) can be defined by its Fourier-Laplace transform as

(1.19)
bH(·|Ξ)∧(ω) =

n∏
j=1

1 − e−iξT
j ω

1 − e−iξT
j

ω/k

= kn−sb̃Ξ(e−iω/k).

From these formulas we can see that the condition (1.7) with b =
bΞ is equivalent to the linear independence of integer translates of
the discrete Box spline bH(·|Ξ), while the latter problem has been
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completely solved by Jia [11], Dahmen and Micchelli [7], de Boor,
Höllig and Riemenschneider [1]. Jia showed in [11] that, when rank Ξ =
s, the integer translates of bH(·|Ξ) are linearly independent if and only
if k is relatively prime to |detB| for any Rs-basis B ⊂ Ξ. De Boor,
Höllig and Riemenschneider [1] extended this result to the case when
rank Ξ < s and proved that the integer translates of bH(·|Ξ) are linearly
independent if and only if k is relatively prime to dZ,rank (Z) for any
linearly independent subset Z ⊂ Ξ.

Combining these results with Theorems 2 and 3, we state that,
for Box spline distributions, the converse of Theorem 1 holds when
rank Ξ = s while not any more when rank Ξ < s.

Theorem 4. Let Ξ and b̃Ξ be given as in Theorem 2. If rankΞ = s,
then the integer translates of MΞ are linearly independent if and only
if the conditions (1.7) and (1.8) of Theorem 1 hold for b = bΞ.

Theorem 5. Let Ξ be an s × n integer matrix with rank Ξ < s. If,
for any linearly independent subset Z ⊂ Ξ, (dZ,rank (Z), k) = 1, while
for some linearly independent subset Y ⊂ Ξ, dY,rank (Y ) > 1, then the
conditions (1.7) and (1.8) of Theorem 1 hold for b = bΞ, while the
integer translates of MΞ are linearly dependent.

Finally we mention a relation between stability and linear indepen-
dence of integer translates of refinable distributions. The integer trans-
lates of a compactly supported distribution φ in Rs are said to be
r-linearly independent, 0 ≤ r ≤ ∞, if for any ω := (ω1, . . . , ωs)T in
Cs with −r ≤ Im ωj ≤ r, 1 ≤ j ≤ s, there is some α ∈ Zs such
that φ∧(ω + 2πα) �= 0. We say that φ has stable integer translates if
the integer translates of φ are zero-linearly independent, see also the
definition of stability given by Jia and Wang in [13].

Theorem 6. Let φ and b satisfy the assumptions of Theorem 1 and
0 ≤ r ≤ ∞. Then the integer translates of φ are r-linearly independent
if and only if the following two conditions hold:
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(i) For any z := (z1, . . . , zs)T ∈ Cs with e−r/k ≤ |zj | ≤ er/k,

∑
l∈Ek,s

|b̃(e−i2π(l/k)z)| > 0;

(ii) the integer translates of φ are stable.

2. Lemmas. In the proofs of the main results, we need some lemmas
related to the following system of linear diophantine equations

(2.1) Ay = b,

where A is an m × n integer matrix and b is an integer m-vector.

The following preliminary result can be found in [11, Theorem 3.2].

Lemma 1. Let A be an integer matrix of full row rank. Then the
system (2.1) has an integer solution for y if and only if dA,m = d[A,b],m.

Using Lemma 1, we have

Lemma 2. Let A be an m×n integer matrix of full row rank, d ∈ N
a divisor of dA,m. Then the following system of linear diophantine
equations

(2.2) Ay = db

has an integer solution y ∈ Zn for any b ∈ Zm if and only if

(2.3)
dA,m

dA,m−1

∣∣∣d.

Proof of Lemma 2. We use the method of Jia [11].

By Lemma 1, the sufficiency is trivial since dA,m = d[A,db],m.

To prove the necessity, we note that

(2.4) dA,m−1 = g.c.d.{dX,m−1 : X is an m×(m−1) submatrix of A}.
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By Lemma 1, for any b ∈ Zm, the following holds

dA,m = d[A,db],m,

which is equivalent to that for any m × (m − 1) submatrix X of A,

dA,m|det (X, db),

i.e.,
dA,m

d

∣∣∣∣det (X, b).

For any fixed X, we choose b ∈ Zm such that

det (X, b) = dX,m−1,

hence
dA,m

d

∣∣∣dX,m−1,

and, by (2.4),
dA,m

d

∣∣∣dA,m−1.

Therefore, we have
dA,m

dA,m−1

∣∣∣d.

The proof of Lemma 2 is complete.

Lemma 3. Let q ∈ Zs be such that dq,1 = 1. Then, for any r ∈ C,
rq ∈ Zs if and only if r ∈ Z.

Proof of Lemma 3. The sufficiency is trivial.

Suppose that r ∈ C is such that rq ∈ Zs. By [1, Lemma 6.23], there
exists an s × (s − 1) integer matrix X such that det [X, q] = 1. Hence,

[X, q]−1 = [Y1, Y2]T ∈ Zs×s,

where Y1 ∈ Zs×(s−1), Y2 ∈ Zs×1. Therefore, r = Y T
2 rq ∈ Z.

The proof of Lemma 3 is complete.



BOX SPLINE WAVELETS 1547

Lemma 4. Let Ξ ∈ Zs×n, X be an s×(ks−1) matrix whose columns
are xl ∈ Ξl, l ∈ Ek,s\{(0, . . . , 0)T }. Then rank (X) = s.

Proof of Lemma 4. Suppose to the contrary that rank (X) :=
p < s. We choose J ⊂ Ek,s\{(0, . . . , 0)T } such that rank (X) =
rank (X(J)) = p = #J , let X̃ be an s × (s − p) integer matrix such
that rank [X(J), X̃] = s. Denote [X(J), X̃]−1 = [Y1, Y2]T with Y1 ∈
Rs×(s−1) and Y2 ∈ Rs×1. We know that det [X(J), X̃][Y1, Y2] ∈ Zs×s,
Y2 �= (0, . . . , 0)T and Y T

2 X(J) = 0. Therefore, we can choose r ∈ Zs×1

such that dr,1 = 1 and
rT

k
X(J) = 0,

which implies
rT

k
X = 0.

Choose l ∈ Ek,s\{(0, . . . , 0)T } and α ∈ Zs such that

r = l + kα.

Then, for any x ∈ X,

l

k
· x =

(
r

k
− α

)
· x ∈ Z.

In particular,
l · xl ∈ kZ,

which is a contradiction.

The proof of Lemma 4 is complete.

Lemma 5. Let B be an s×s submatrix of Ξ ∈ Zs×n with |detB| > 1
and (|detB|, k) = 1. Then, for any l ∈ Ek,s\{(0, . . . , 0)T }, there exists
some ξ ∈ B ⊂ Ξ such that l · ξ /∈ kZ, i.e., ξ ∈ Ξl.

Proof of Lemma 5. Suppose to the contrary that, for some l ∈
Ek,s\{(0, . . . , 0)T },

BT l ∈ kZs.
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Then
l

k
∈ (BT )−1Zs ⊂ 1

|detB|Z
s.

Hence,
|det B|dl,1

k

l

dl,1
∈ Zs.

By Lemma 3, the following holds

|det B|dl,1

k
∈ Z,

which implies dl,1/k ∈ Z since (|detB|, k) = 1. Therefore, we have

l

k
=

dl,1

k

l

dl,1
∈ Zs,

which is a contradiction. The proof of Lemma 5 is complete.

3. Proofs of the main results. The proof of Theorem 1 is similar
to that given in [19].

Proof of Theorem 1. Suppose that the integer translates of φ are
linearly independent. Then the first condition (1.7) must be satisfied
since otherwise there is some z0 = e−iω0 with ω0 ∈ Cs such that∑

l∈Ek,s
|b̃(e−i2π(l/k)e−iω0)| = 0, which implies, by (1.1), for any α ∈ Zs,

i.e., any β ∈ Zs and l ∈ Ek,s,

φ∧(kω0 + 2πα) = φ∧(kω0 + 2πl + 2πkβ)

=
1
ks

b̃(e−i2π(l/k)e−iω0)φ∧
(

2π
l

k
+ ω0 + 2πβ

)

= 0.

Now we prove the second condition (1.8). Suppose to the contrary
that, for some m ∈ N and z ∈ T s satisfying zkm

= z �= (1, . . . , 1)T ,
and any integer d ≥ 0, the following holds

∑
l∈Ek,s\{(0,... ,0)T }

|b̃(e−i2π(l/k)zkd

)| = 0.
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Then, for some n ∈ Zs with n/(km − 1) /∈ Zs, z = e−i2π(n/(km−1)). We
show that, for α ∈ Zs,

(3.1) φ∧
(

2π
n

km − 1
+ 2πα

)
= 0.

To this end, set n+(km −1)α = kpq where 0 ≤ p ∈ Z and q ∈ Zs\kZs.
Hence

φ∧
(

2π
n

km − 1
+ 2πα

)
= φ∧

(
2π

kpq

km − 1

)

=
p+1∏
j=1

{
1
ks

b̃(e−i2π(kp−jq/(km−1)))}

· φ∧
(

2π
q

k(km − 1)

)
.

We state that

(3.2) b̃(e−i2π(q/(k(km−1)))) = 0.

To prove (3.2), choose r = (km(p+1) − 1)/(km − 1) ∈ N. It is easily
seen that (r, k) = 1. Let

(3.3) −rq = ku + v,

where u ∈ Zs, v ∈ Ek,s. We must have v �= (0, . . . , 0)T , since otherwise
−rq ∈ kZs which implies q ∈ kZs, a contradiction. Therefore,

b̃(e−i2π(q/(k(km−1)))) = b̃(e−i2πq(km(p+1)−r(km−1))/(k(km−1)))

= b̃(e−i2π(−rq/k)(e−i2π(kpq/(km−1)))k(m−1)(p+1)
)

= b̃(e−i2π(v/k)(e−i2π(n/(km−1)))k(m−1)(p+1))

= b̃(e−i2π(v/k)zk(m−1)(p+1)
)

= 0.

Thus (3.2) is valid, hence (3.1) holds, which is a contradiction. The
proof of Theorem 1 is complete.
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The proof of Theorem 2 is much more involved. Here we must use
the lemmas given in Section 2.

Proof of Theorem 2. (i) ⇒ (ii). If (ii)(a) holds, there is nothing
to prove. If (ii)(a) does not hold, i.e., Ξl is not empty for any
l ∈ Ek,s\{(0, . . . , 0)T }, we prove (ii)(b). Suppose to the contrary
that, for some s × (ks − 1) matrix X whose columns are xl ∈ Ξl,
l ∈ Ek,s\{(0, . . . , 0)T }, and some prime p ∈ N, the following holds

(3.4) p
∣∣∣ dX,s

dX,s−1
,

while

(3.5) (p, k) = 1.

By Lemma 4, let

(3.6) dX,s = pr1d1

and

(3.7) dX,s−1 = pr2d2,

where r1, d1, d2 ∈ N, (d1, d2, p) = 1, r2 ∈ N ∪ {0}, r1 ≥ r2 + 1.

By (2.4) and Lemma 4, we can find an s× (s− 1) submatrix B̃ of X
such that

(3.8) dB̃,s−1 = pr2d3

while d3 ∈ N, (d3, p) = 1.

By Lemma 4, choose an s × s submatrix B of X containing B̃ as its
submatrix and detB �= 0. Then

(3.9) |det B| = dB,s = pr3d4,

where r3, d4 ∈ N, r3 ≥ r1, (d4, p) = 1, d1|d4.

Let us mention that, by (3.7), (3.8) and (3.9),

(3.10) dBT ,s−1 = dB,s−1 = pr2d5
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with d5 ∈ N, (d5, p) = 1, d5|d4.

Using Lemma 2, we choose some b ∈ Zs such that

(3.11) BT y = pr3−r2−1d4b

has no integer solutions y ∈ Zs. Define y0 ∈ Zs to be the unique
solution to the following system of linear diophantine equations

(3.12) BT y = pr3−r2d4b,

i.e.,

(3.13) y0 = pr3−r2d4(BT )−1b.

We know that (1/p)y0 /∈ Zs.

We state that

(3.14)
1
p
XT y0 ∈ Zks−1,

i.e., for any x ∈ X,

(3.15) xT y0

p
∈ Z.

To prove this statement, it is sufficient to show that, for x ∈ X,

(3.16) Px := pr3−r2−1d4B
−1x ∈ Zs.

To this end, we note that Px is the unique solution to the system of
equations

(3.17) By = pr3−r2−1d4x.

Thus, by Lemma 1 we only need to prove

dB,s = d[B,pr3−r2−1d4x],s,

i.e., for any s × (s − 1) submatrix B1 of B,

(3.18) dB,s|pr3−r2−1d4det [B1, x].
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From the definition of dX,s and (3.6), we have

pr3−r2−1d4det [B1, x] = pr3−r2−1+r1d4d1d6

with d6 ∈ Z. Hence

pr3−r2−1d4det [B1, x] = pr1−r2−1d1d6dB,s.

Therefore, (3.18) holds, which implies (3.15) and (3.14).

By (3.5) and Euler’s theorem, there exists an m ∈ N such that
p|(km − 1). Hence,

y0

p
=

q

km − 1
,

where q ∈ Zs, q/(km − 1) /∈ Zs.

Thus, for z = e−i2π(q/(km−1)) ∈ T s satisfying zkm

= z �= (1, . . . , 1)T ,
any integer d ≥ 0, and any l ∈ Ek,s\{(0, . . . , 0)T }, we have

(3.19)
b̃Ξ(e−i2π(l/k)zkd

) = b̃Ξ(e−i2π(l/k+kdq/(km−1)))
= 0,

since b̃Ξ(e−iω) = 0 if and only if, for some ξ ∈ Ξ, kξT ω ∈ 2πZ\2πkZ
while, by (3.14), for xl ∈ X,

kxT
l 2π

(
l

k
+

kdq

km − 1

)
= 2πxT

l l + 2πkd+1 xT
l q

km − 1

= 2πxT
l l + 2πkd+1xT

l

y0

p
∈ 2πZ\2πkZ.

The conclusion (3.19) is a contradiction to (1.14).

The proof of the first implication is complete.

(ii) ⇒ (iii). If (ii)(a) is satisfied, say for some l ∈ Ek,s\{(0, . . . , 0)T },
Ξl is empty, i.e.,

ΞT l ∈ kZn.

Then, for any z = e−i2π(q/(km−1)) ∈ T s satisfying zkm

= z �=
(1, . . . , 1)T , and ξ ∈ Ξ, we have

2πkξT

(
l

k
+

q

km − 1

)
= 2πξT l + 2πk

ξT q

km − 1
/∈ 2πZ\2πkZ,
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which implies
b̃Ξ(e−i2π(l/k)z) �= 0.

Hence, (1.17) holds.

If (ii)(a) is not satisfied while (ii)(b) holds, we prove that (iii) is
valid. Suppose to the contrary that, for some m ∈ N and some z ∈ T s

satisfying zkm

= z �= (1, . . . , 1)T , the following holds

∑
l∈Ek,s\{(0,... ,0)T }

|b̃Ξ(e−i2π(l/k)z)| = 0.

Let z = e−i2π(η/(km−1)) with η ∈ Zs and η/(km − 1) /∈ Zs. Then, for
any l ∈ Ek,s\{(0, . . . , 0)T }, we have some xl ∈ Ξ such that

(3.20) kxT
l

(
l

k
+

η

km − 1

)
∈ Z\kZ.

Since (km − 1, k) = 1, (3.20) implies

(3.21)
xT

l η

km − 1
∈ Z

and
xT

l l ∈ Z\kZ,

i.e.,
xl ∈ Ξl.

Let X be the s× (ks − 1) integer matrix whose columns are these xl,
l ∈ Ek,s\{(0, . . . , 0)T }. Define p ∈ N to be prime and q ∈ Zs such that
(p, dq,1) = 1 and q/p = r(η/(km −1)) for some r ∈ Z, (p, k) = 1. Then,
from (3.21),

(3.22) XT q

p
= b ∈ Zks−1.

We state that

(3.23) p
∣∣∣ dX,s

dX,s−1
.
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To prove (3.23) by Lemma 4, let

dX,s = pr1d1,(3.24)
dX,s−1 = pr2d2,(3.25)

where r1, r2 ≥ 0, d1, d2 ∈ N, (d1d2, p) = 1, d2|d1.

Let B be an arbitrary s × s submatrix of X such that detB �= 0.
Since dB,s−1|dB,s, let

dBT ,s = dB,s = pr3d3,

dBT ,s−1 = dB,s−1 = pr4d4,

where r3, r4 ∈ Z, r3 ≥ r4 ≥ 0, d3, d4 ∈ N, (d3d4, p) = 1, d4|d3.

If r3 = r4, by (3.22), we know that

BT d3

d4

q

p
=

d3

d4
b.

By Lemma 2, the unique solution y = (d3/d4)(q/p) to the system of
linear diophantine equations

BT y =
d3

d4
b

must be in Zs, hence by Lemma 3, dq,1d3/p ∈ Z, which is a contradic-
tion.

Thus, r3 > r4. By (3.25), we then have r3 ≥ r4 + 1 ≥ r2 + 1. Since
B is arbitrary, from (3.24) we get

r1 ≥ r2 + 1,

which implies (3.23).

By condition (ii)(b), (3.23) implies p|k, which is a contradiction since
by our assumption (p, k) = 1. Therefore, (1.17) must be true.

The proof of the second implication is complete.

(iii) ⇒ (i). This implication is trivial by choosing d = 0.
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The proof of Theorem 2 is complete.

The proof of Theorem 3 depends mainly upon linear diophantine
equations, especially Lemma 2.

Proof of Theorem 3. Assume first that rankΞ = s. Suppose that
(ii)(a) of Theorem 2 holds, say for some l ∈ Ek,s\{(0, . . . , 0)T }, Ξl is
empty. Then

ΞT l

k
∈ Zn.

Let p ∈ N be prime and p|k/(k, dl,1). We show that

(3.26) p
∣∣∣ dΞ,s

dΞ,s−1
.

For any s × s submatrix B of Ξ with det B �= 0, we have

dΞ,s−1|detB.

Let b = BT (l/k) ∈ Zs. Then we know that (|detB|/(kdΞ,s−1))l is the
unique solution to the following system of equations

BT y =
|detB|
dΞ,s−1

b.

By the definition of dΞ,s−1, dΞ,s−1|dBT ,s−1. Therefore, Lemma 2
implies

|detB|
kdΞ,s−1

l ∈ Zs,

and, by Lemma 3,

|detB|
dΞ,s−1

dl,1

k
=

(|detB|/dΞ,s−1)(dl,1/(k, dl,1))
p(k/((k, dl,1)p))

∈ Z.

Notice that p|(k/(k, dl,1)) implies (p, dl,1/(k, dl,1)) = 1 and then
(p(k/((k, dl,1)p)), dl,1/(k, dl,1)) = 1. Hence,

|detB|
dΞ,s−1

∈ p
k

(k, dl,1)p
Z ⊂ pZ.
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Therefore, (3.26) holds, which implies p|(k, dΞ,s/dΞ,s−1), i.e., (1.18) is
valid.

Suppose conversely that (1.18) holds, say 1 < p is prime and

(3.27) p

∣∣∣∣
(

k,
dΞ,s

dΞ,s−1

)
.

We show that (ii)(a) of Theorem 2 is valid. The method of proof
is almost the same as that of the proof of the first implication of
Theorem 2.

Let
dΞ,s−1 = pr1d1

with r1 ≥ 0, d1 ∈ N, (d1, p) = 1. Choose an s× (s− 1) submatrix B̃ of
Ξ such that

dB̃T ,s−1 = pr1d2

with d2 ∈ N, (d2, p) = 1. Take an s × s submatrix B of Ξ containing
B̃, and detB �= 0, then

pr1+1 � dBT ,s−1

and
dBT ,s = |det B| = pr2d3,

where r2, d3 ∈ N, r2 ≥ r1 + 1, (d3, p) = 1.

By Lemma 2, there exists some b ∈ Zs such that

BT y = pr2−r1−1d3b

has no integer solutions, i.e.,

y0 := pr2−r1−1d3(BT )−1b /∈ Zs.

Now we prove that

(3.28) ΞT y0 ∈ Zn.

To this end, it is sufficient to show that, for any ξ ∈ Ξ,

Pξ := pr2−r1−1d3B
−1ξ ∈ Zs.
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Since Pξ is the unique solution to the system of equations

By = pr2−r1−1d3ξ,

we only need to verify that

(3.29) dB,s = d[B,pr2−r1−1d3ξ],s.

For any s × (s − 1) submatrix B1 of B, we have by (3.27) and the
definition of dΞ,s,

det [B1, p
r2−r1−1d3ξ] = pr2−r1−1d3det [B1, ξ],

∈ pr2−r1−1d3p dΞ,s−1Z,

i.e.,
dB,s|det [B1, p

r2−r1−1d3ξ].

Thus, (3.29), and hence (3.28), holds.

We observe that (BT )−1 ∈ (dΞ,s−1/|detB|)Zs×s. Hence, by (3.27),

ky0 ∈ Zs.

Therefore, we have some l ∈ Ek,s\{(0, . . . , 0)T } such that

y0 ∈ l

k
+ Zs.

Then, by (3.28),

ΞT l

k
∈ Zn,

i.e., Ξl is empty.

We have completed the proof for the case rank Ξ = s.

If rankΞ < s, the proof of Lemma 4 implies that, for some l ∈
Ek,s\{(0, . . . , 0)T }, Ξl is empty. Hence (ii)(a) of Theorem 2 holds.

The proof of Theorem 3 is complete.

Finally let us turn to prove the main results on Box spline wavelets.
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Proof of Theorem 4. By Theorem 1 we only need to prove the suffi-
ciency. Assume that the two conditions (1.7) and (1.8) of Theorem 1
hold for b = bΞ. By the well-known characterization on linear indepen-
dence of integer translates of Box splines given by Jia [10], Dahmen
and Micchelli [6], it is sufficient to show that, for any Rs-basis B ⊂ Ξ,
|detB| = 1.

Suppose to the contrary that, for some Rs-basis B ⊂ Ξ,

|det B| > 1.

Then, by [11, Corollary 4.3], (1.7) implies (|detB|, k) = 1. By Lemma 5
and Theorems 2, 3, we conclude that (ii)(b) of Theorem 2 must hold.
Then, using Lemma 5 again, we know that, for any prime p ∈ N,
p|(dB,s/dB,s−1) implies p|k. Since (|detB|, k) = 1, we must have

dB,s = dB,s−1,

from which it follows

B−1 ∈ dB,s−1

|det B|Z
s×s ⊂ Zs×s,

and, for any b ∈ Zs the following system of linear diophantine equations

By = b

always has an integer solution. By [11, Corollary 3.3], we have
dB,s = |det B| = 1, which is a contradiction.

The proof of Theorem 4 is complete.

Proof of Theorem 5. By Theorem 3, the second condition (1.8) of
Theorem 1 always holds for b = bΞ in case rankΞ < s. By our
assumptions on Ξ and [1, Theorem 6.30], the first condition (1.7) is
also satisfied. Hence the two conditions of Theorem 1 hold for b = bΞ.

On the other hand, by the result of Dahmen, Jia and Micchelli [5,
Corollary 3.1], the integer translates of MΞ are linearly dependent.

The proof of Theorem 5 is complete.

To end our discussion, we prove Theorem 6.



BOX SPLINE WAVELETS 1559

Proof of Theorem 6. The necessity can be proved in the same way as
in Theorem 1 by noticing that |z0| = |e−iω0 | ∈ [e−r/k, er/k] if and only
if Im (kω0) ∈ [−r, r].

Sufficiency. Let

N(φ) := {ω := (ω1, . . . , ωs)T ∈ Cs :
0 ≤ Re ωj < 2π, φ∧(ω + 2πα) = 0, ∀α ∈ Zs}.

Denote Imω := (Im ω1, . . . , Im ωs)T . Suppose to the contrary that, for
some ω0 := (ω0,1, . . . , ω0,s)T ∈ N(φ), it holds that Imω0 ∈ [−r, r]s.
Then, for any β ∈ Zs and l ∈ Ek,s,

φ∧(ω0 + 2πl + 2πkβ) =
1
ks

b̃(e−i2π(l/k)e−i(ω0/k))

· φ∧
(

ω0

k
+ 2π

l

k
+ 2πβ

)
= 0.

Note that |e−i(ω0,j/k)| = e(1/k)Im ω0,j ∈ [e−r/k, er/k]. By condition
(i), there exists some l0 ∈ Ek,s such that b̃(e−i2π(l0/k)e−i(ω0/k)) �= 0.
Then, for any β ∈ Zs, φ∧(ω0/k + 2π(l0/k) + 2πβ) = 0, i.e., ω1 :=
ω0/k+2π(l0/k) ∈ N(φ). Observe that Imω1 ∈ [−r/k, r/k]s. Repeating
the same process, we find a sequence {ωn}∞n=0 ⊂ Cs such that ωn+1 ∈
ωn/k + 2π(Ek,s/k), ωn ∈ N(φ). Hence, Im ωn = k−nIm ω0 ∈ [−r, r]s.

Since, for any n ≥ 0, ωn ∈ ([0, 2π)+ i[−r, r])s which is a compact set,
there is a subsequence {ωnl

}∞l=0 of {ωn}∞n=0 such that ωnl
→ ξ ∈ Cs

as l → ∞. Then Re ξ ∈ [0, 2π)s and Im ξ = (0, . . . , 0)T . Also, for
any α ∈ Zs, φ∧(ξ + 2πα) = liml→∞ φ∧(ωnl

+ 2πα) = 0. Therefore,
ξ ∈ N(φ) and ξ ∈ Rs. This is a contradiction to the condition (ii).
The proof of Theorem 6 is complete.
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