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1. Introduction and problem description. In the present paper
we give general inequalities for simultaneous approximation by Birkhoff
interpolators (provided the underlying problem is regular).

Let
∆n : −1 ≤ xn < xn−1 < · · · < x1 ≤ 1

be a sequence of arbitrary points. With this sequence of points we
associate an incidence matrix

E = (ei,j)i=1,... ,n;j=0,... ,R

where R is a positive integer. Such matrices have as entries |E| ≥ n
ones and n(R + 1) − |E| zeros and are such that in each row there is
at least one entry equal to one. We also assume that the last column
contains at least one entry equal to one. The Birkhoff interpolation
problem consists of finding a polynomial P of degree |E| − 1 such that
the following |E| interpolation conditions are fulfilled:

P (j)(xi) = a
(j)
i if ei,j = 1.

Here the a
(j)
i are arbitrary real numbers.

The pair (E, ∆n) is called regular if, for each choice of the a
(j)
i , such

a polynomial exists and is uniquely determined. In this case there exist
uniquely determined fundamental functions Ai,j ∈ ∏

|E|−1 such that
the interpolating polynomial can be written as

P (x) =
∑

ei,j=1

a
(j)
i · Ai,j(x).
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Moreover, the scheme

a
(j)
i −→

∑
ei,j=1

a
(j)
i · Ai,j(x)

describes a linear mapping from R|E| into
∏

|E|−1.

In the sequel we will assume that the pairs (E, ∆n) we are considering
are regular. Now let R′, 0 ≤ R′ ≤ R be fixed, and let f ∈ CR′

[−1, 1].
Then we may choose a

(j)
i of the following form

a
(j)
i =

{
f (j)(xi) if 0 ≤ j ≤ R′ and ei,j = 1,

0 if R′ + 1 ≤ j ≤ R and ei,j = 1.

Note that the number R′ indicates that all derivatives of order R′ +
1, . . . , R of the interpolating polynomial P are forced to be equal to
zero, i.e.,

P (j)(xi) = 0 if R′ + 1 ≤ j ≤ R and ei,j = 1.

In this case the polynomial P from above is the result of applying a
linear operator

LR′ := LR′,E,∆n
: CR′

[−1, 1] −→
∏

|E|−1

to the given function f and can thus be written as

P (x) = LR′(f ; x) =
∑

0≤j≤R′;ei,j=1

f (j)(xi) · Ai,j(x).

Note that this description includes classical Hermite-Fejér interpola-
tion, in particular.

In the present note we will consider such interpolation processes from
a quantitative point of view. Our work is motivated by a number of
recent papers in which special Birkhoff interpolation problems were
investigated, namely, the nonmodified (“pure”) and modified lacunary
type; see, for example, [1, 2, 4, 5] and [7]. For more comprehensive
information concerning Birkhoff interpolation, see [3].
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The structure of an incidence matrix E describing a pure lacunary
problem is, roughly speaking, such that going through the matrix
from the left to the right a rectangular block of ones is followed
by a rectangular block of zeros, which is then followed by another
rectangular block of ones. The adjective “modified” refers to the fact
that in the incidence matrix E describing the pure case, certain ones
are either replaced by zeros or moved to positions that were equal to
zero before. Details will become clear from the special cases considered
below.

In this note we will give a general inequality for the degree of simul-
taneous approximation by Birkhoff interpolators of the type described
above, provided they exist, and apply our general result to several
problems of the (0, 1, . . . , R− 2, R), the (0, 1, . . . , R− 3, R) and of the
(0, 1, . . . , R−3, R−1, R) type. These applications generalize and either
reproduce or improve all the convergence results that were obtained in
the papers mentioned above.

2. A general inequality on simultaneous approximation
by Birkhoff interpolators. In the sequel all the norms will be
Chebyshev. Furthermore, we will use the convention that all empty
sums are equal to zero. In order to derive the general estimate, the
following two results will be crucial.

Lemma 2.1 (see [1, Lemma 3.1]). Let f ∈ CR′
[−1, 1], R′ ∈ N0.

Then, for 0 < h ≤ 2 and s ∈ N, there exists a function fh,R′+s ∈
C2R′+s[−1, 1] such that

(i) ‖f (j) − f
(j)
h,R′+s‖ ≤ c · ωR′+s(f (j); h) for 0 ≤ j ≤ R′,

(ii) ‖f (j)
h,R′+s‖ ≤ c · h−j · ωj(f, h) for 0 ≤ j ≤ R′ + s,

(iii) ‖f (j)
h,R′+s‖ ≤ c · h−R′−s · ωR′+s(f (j−R′−s), h) for R′ + s ≤ j ≤

2R′ + s.

Here the constant c depends only on R′ and s.

Theorem 2.2 (see [6, Lemma 1]). Let r ≥ 0 and n ≥ r. Then there
exists a linear operator Qn = Qn,r : Cr[−1, 1] → ∏

n such that, for all
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f ∈ Cr[−1, 1], all |x| ≤ 1 and 0 ≤ k ≤ r, one has

|(Qnf − f)(k)(x)| ≤ cr · ∆n(x)r−k · ‖f (r)‖.
Here ∆n(x) =

√
1 − x2 · n−1 + n−2, and the constant cr depends only

on r.

The main result now reads as follows.

Theorem 2.3. Let f ∈ CR′
[−1, 1] and LR′ be given as above. Then

we have, for x ∈ [−1, 1], 0 < h ≤ 2, s ≥ max{R−R′, 1} and n ≥ R′+s,
and 0 ≤ k ≤ R′, that

‖(LR′f − f)(k)‖ ≤ c · ωs(f (R′); h)

·
{

hR′−k + n−(R′+s−k) · h−s

+
∑

0≤j≤R′
[hR′−j + n−(R′+s−j) · h−s]

·
∥∥∥∥ ∑

ei,j=1

|A(k)
i,j |

∥∥∥∥
}

+ c ·
∑

R′+1≤j≤R

hR′−j · ωj−R′(f (R′); h) ·
∥∥∥∥ ∑

ei,j

|A(k)
i,j |

∥∥∥∥.

Proof. For an arbitrary polynomial, Φ ∈ ∏
|E|−1 and 0 ≤ k ≤ R′, we

have

|(LR′f − f)(k)(x)| ≤
∑

ei,j=1;

0≤j≤R′

|f (j)(xi) − Φ(j)(xi)| · |A(k)
i,j (x)|

+
∑

ei,j=1;

R′+1≤j≤R

|Φ(j)(xi)| · |A(k)
i,j (x)|

+ |(Φ − f)(k)(x)|
≤

∥∥∥∥ ∑
ei,j=1;

0≤j≤R′

‖f (j) − Φ(j)‖ · |A(k)
i,j |

∥∥∥∥
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+
∥∥∥∥ ∑

ei,j=1;

R′+1≤j≤R

‖Φ(j)‖ · |A(k)
i,j |

∥∥∥∥
+ ‖(Φ − f)(k)‖.

Now we choose the polynomial Φ ∈ ∏
|E|−1 as follows:

Φ = Q|E|−1,R′+s(fh,R′+s)

where fh,R′+s ∈ C2R′+s[−1, 1].

For brevity, we write fh := fh,R′+s and Q := Q|E|−1,R′+s. Then from
Theorem 2.2, we obtain

‖(Qfh − fh)(j)‖ ≤ c · n−(R′+s−j) · ‖f (R′+s)
h ‖, 0 ≤ j ≤ R′ + s.

It hence follows that∥∥∥∥ ∑
ei,j=1;

0≤j≤R′

‖f (j) − Φ(j)‖ · |A(k)
i,j |

∥∥∥∥

≤
∥∥∥∥ ∑

ei,j=1;

0≤j≤R′

{‖f (j) − f
(j)
h ‖ + ‖f (j)

h − (Qfh)(j)‖}|A(k)
i,j |

∥∥∥∥

≤
∥∥∥∥ ∑

ei,j=1;

0≤j≤R′

{c · ωR′+s(f (j); h)

+ c · n−(R′+s−j) · ‖f (R′+s)
h ‖} · |A(k)

i,j |
∥∥∥∥

≤
∥∥∥∥ ∑

ei,j=1;

0≤j≤R′

{c · ωR′+s(f (j); h)

+ c · n−(R′+s−j) · h−R′−s · ωR′+s(f ; h)} · |A(k)
i,j |

∥∥∥∥
≤

∥∥∥∥ ∑
ei,j=1;

0≤j≤R′

{c · hR′−j + ωs+j(f (R′); h)
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+ c · n−(R′+s−j) · h−s · ωs(f (R′); h)} · |A(k)
i,j |

∥∥∥∥
≤ c ·

∥∥∥∥ ∑
ei,j=1;

0≤j≤R′

{hR′−j +n−(R′+s−j) · h−s · ωs(f (R′); h)} · |A(k)
i,j |

∥∥∥∥
≤ c · ωs(f (R′); h) ·

∑
0≤j≤R′

{hR′−j + n−(R′+s−j) · h−s}

·
∥∥∥∥ ∑

ei,j=1

|A(k)
i,j |

∥∥∥∥.

For j = k, we have that

‖(Φ − f)(k)‖ ≤ c · ωs(f (R′); h) · {hR′−k + n−(R′+s−k) · h−s}.
We also need estimates for∥∥∥∥ ∑

ei,j=1;

R′+1≤j≤R

‖Φ(j)‖|A(k)
i,j |

∥∥∥∥.

Let R′ + 1 ≤ j ≤ R. Then we have by Lemma 2.1

‖Φ(j)‖ = ‖(Qfh)(j)‖ ≤ ‖Qf
(j)
h − f

(j)
h ‖ + ‖f (j)

h ‖
≤ c · n−(R′+s−j) · ‖f (R′+s)

h ‖ + c · h−j · ωj(f ; h)

≤ c · n−(R′+s−j) · h−(R′+s) · ωR′+s(f ; h)
+ c · h−j · ωj(f ; h)

≤ c · n−(R′+s−j) · h−(R′+s) · hR′ · ωR′+s−R′(f (R′); h)

+ c · h−j · hR′ · ωj−R′(f (R′); h)

≤ c · {n−(R′+s−j) · h−s · ωs(f (R′); h)

+ hR′−j · ωj−R′(f (R′); h)}.
We finally obtain that∥∥∥∥ ∑

ei,j=1;

R′+1≤j≤R

‖Φ(j)‖|A(k)
i,j |

∥∥∥∥ ≤ c ·
∑

R′+1≤j≤R

{n−(R′+s−j) · h−s · ωs(f (R′); h)

+ hR′−j · ωj−R′(f (R′); h)} ·
∥∥∥∥ ∑

ei,j=1

|A(k)
i,j |

∥∥∥∥.
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Combining all these gives, for all s ≥ max{1, R − R′},
‖(LR′f − f)(k)‖ ≤ c · ωs(f (R′); h)

·
∑

0≤j≤R′
{hR′−j + n−(R′+s−j) · h−s} ·

∥∥∥∥ ∑
ei,j=1

|A(k)
i,j |

∥∥∥∥
+ c ·

∑
R′+1≤j≤R

{n−(R′+s−j) · h−s · ωs(f (R′); h)

+ hR′−j · ωj−R′(f (R′); h)}
·
∥∥∥∥ ∑

ei,j=1

|A(k)
i,j |

∥∥∥∥
+ c · ωs(f (R′); h) · {hR′−k + n−(R′+s−k) · h−s}

≤ c · ωs(f (R′); h) ·
{

hR′−k + n−(R′+s−k) · h−s

+
∑

0≤j≤R′
[hR′−j + n−(R′+s−j) · h−s] ·

∥∥∥∥ ∑
ei,j=1

|A(k)
i,j |

∥∥∥∥
}

+ c ·
∑

R′+1≤j≤R

hR′−j · ωj−R′(f (R′); h) ·
∥∥∥∥ ∑

ei,j=1

|A(k)
i,j |

∥∥∥∥.

Corollary 2.4. For the special choice h = 1/n in Theorem 2.3, we
obtain that

‖(LR′f − f)(k)‖ ≤ c · ωs(f (R′); 1/n)

·
{

n−R′+k +
∑

0≤j≤R′
n−R′+j ·

∥∥∥∥ ∑
ei,j=1

|A(k)
i,j |

∥∥∥∥
}

+ c ·
∑

R′+1≤j≤R

n−R′+j · ωj−R′(f (R′); 1/n)

·
∥∥∥∥ ∑

ei,j=1

|A(k)
i,j |

∥∥∥∥.

Remark 2.5. (i) For j0 fixed,the quantities ‖∑
ei,j0=1 |A(k)

i,j0
|‖ figuring

in Theorem 2.3 are bounded from above by
∑

ei,j0=1 ‖A(k)
i,j0

‖. The latter
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terms were used in our previous papers [1] and [2]. It is, however, of
advantage to use the former instead, as will become clear from the
applications below.

(ii) A straightforward way to obtain upper bounds for the quantities
just mentioned is to use Markov’s inequality, giving

∥∥∥∥ ∑
ei,j0=1

|A(k)
i,j0

|
∥∥∥∥ ≤ c · n2k ·

∥∥∥∥ ∑
ei,j0=1

|Ai,j0 |
∥∥∥∥.

However, this approach should only be used if no better inequalities
are available for the derivatives of the fundamental functions.

3. Applications. In this section we will demonstrate what the
above approach implies in several concrete cases. As will become clear
from the statements below, our results generalize and either improve or
at least reproduce all earlier quantitative assertions obtained in special
cases.

In the following, the point sequence ∆n will always consist of the
zeros of the polynomial

πn(x) = (1 − x2) · P ′
n−1(x) = −n · (n − 1) ·

∫ x

−1

Pn−1(t) dt,

where Pn(x) is the Legendre polynomial of degree n, normed such that
Pn(1) = 1.

3.1. (0, . . . , R − 2, R) interpolation. For this case Theorem 2.3
implies Theorem 3.2 in [2]. Thus, it also covers all of the special cases
considered in Section 4 of this paper.

3.2. (0, . . . , R−3, R) interpolation. The most recent paper in which a
nonmodified case was considered is one by Szabados and Varma [5], in
which convergent (0, 3) interpolation processes were investigated. They
showed that the “pure” (0, 3) interpolation operators (case R′ = 0 in
our notation) based on the roots of πn(x) converge for all continuous
functions.
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The incidence matrix has the following form:

E =

⎛
⎜⎜⎜⎜⎝

1 0 0 1
1 0 0 1
...

...
...

...
1 0 0 1
1 0 0 1

⎞
⎟⎟⎟⎟⎠ .

The interpolation polynomials then take the form

P (x) =
n∑

i=1

a
(0)
i · Ai,0(x) +

n∑
i=1

a
(3)
i · Ai,3(x), x ∈ [−1, 1].

For the fundamental functions, the authors proved the following:

Lemma 3.1. (i) ∥∥∥∥
n∑

i=1

|Ai,0|
∥∥∥∥ ≤ c,

(ii) ∥∥∥∥
n∑

i=1

|Ai,3|
∥∥∥∥ ≤ c · n−3 · log n.

Applying Theorem 2.3 for the case R′ = 0 yields

Proposition 3.2 (see [5, Theorem 3]). For f ∈ C[−1, 1] and n > 3,
we have

‖L0,2n−1f − f‖ ≤ c · ω3

(
f ;

log1/3 n

n

)
,

where the constant c does not depend on n or f .

Proof. In Theorem 2.3 put s = 3 and h = (log1/3 n)/n.

The second case we consider is R′ = 3. Here we have the following
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Proposition 3.3. For f ∈ C3[−1, 1], s ≥ 1 and all n ≥ s + 3, we
have for 0 ≤ k ≤ 3,

‖(L3,2n−1f − f)(k)‖ ≤ c · n2k−3 · log n · ω2(f (3); 1/n),

with the constant c depending neither on n nor on f .

Proof. We apply Corollary 2.4. Note first that the terms involving
ωj−R′(f (3); 1/n) will not be present, which is due to the choice R′ =
R = 3. What remains as the upper bound is

c · ωs(f (3); 1/n) ·
{

n−3+k + n−3 ·
∥∥∥∥ ∑

ei,0=1

|A(k)
i,0 |

∥∥∥∥ +
∥∥∥∥ ∑

ei,3=1

|A(k)
i,3 |

∥∥∥∥
}

.

An application of Markov’s inequality gives∥∥∥∥ ∑
ei,j=1

|A(k)
i,j |

∥∥∥∥ ≤ c · n2k ·
∥∥∥∥ ∑

ei,j=1

|Ai,j |
∥∥∥∥ for j ∈ {0, 3}.

This implies

‖(L3,2n−1f−f)(k)‖ ≤ c · ωs(f (3); 1/n)

·
{

n−3+k + n−3 · n2k ·
∥∥∥∥ ∑

ei,0=1

|A(k)
i,0 |

∥∥∥∥
+ n2k ·

∥∥∥∥ ∑
ei,3=1

|A(k)
i,3 |

∥∥∥∥
}

≤ c · ωs(f (3); 1/n){n−3+k+n−3+2k+n−3+2k · log n}
≤ c · n2k−3 · log n · ωs(f (3); 1/n).

We next consider a modified case of (0, 3) interpolation, which was
also investigated in [5]. Here “modified” refers to the fact that the
interpolation conditions can now be visualized by the incidence matrix

E =

⎛
⎜⎜⎜⎜⎝

1 1 0 0
1 0 0 1
...

...
...

...
1 0 0 1
1 1 0 0

⎞
⎟⎟⎟⎟⎠ .
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The interpolation polynomial is then given by

P (x) =
n∑

i=1

a
(0)
i · Ai,0(x) + a

(1)
1 · A1,1(x)

+ a(1)
n · An,1(x) +

n−1∑
i=2

a
(3)
i · Ai,3(x).

For the fundamental functions, one has

Lemma 3.4 (see [5]).

(i) ∥∥∥∥
n∑

i=1

|Ai,0|
∥∥∥∥ = O(1),

(ii)
‖A1,1‖ = ‖An,1‖ = O(n−2),

(iii) ∥∥∥∥
n−1∑
i=2

|Ai,3|
∥∥∥∥ = O

(
log n

n3

)
.

For the case R′ = 0, we get the following result.

Proposition 3.5. For the modified (0, 3) interpolation operators
L0,2n−1, we have

‖L0,2n−1f−f‖ ≤ c·
{

ω3

(
f ;

log1/3 n

n

)
+

1

n · log1/3 n
·ω1

(
f ;

log1/3 n

n

)}
,

for f ∈ C[−1, 1] and n > 3.

Proof. Applying Theorem 2.3 with s = 3 and h = (log1/3 n)/n
immediately yields our statement.

Corollary 3.6 (see [5]).

‖L0,2n−1f − f‖ =

{
O(ω1(f ; (log1/3 n)/n)) f ∈ C[−1, 1],
O(ω3(f ; (log1/3 n)/n)) + O(1/n2) f ′ ∈ C[−1, 1].
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Next we consider the case R′ = 3. Here we obtain the following
result.

Proposition 3.7. For f ∈ C3[−1, 1], s ≥ 1 and n ≥ s + 3, we have
for 0 ≤ k ≤ 3,

‖(L3,2n−1f − f)(k)‖ ≤ c · n2k−3 · log n · ωs(f (3); 1/n),

with constant c depending neither on n nor on f .

Proof. The proof is completely analogous to that of Proposition 3.3.

Now we consider modified (0, 1, 4) interpolation, as investigated in the
recent paper of Varma and the two Saxenas [7]. The incidence matrix
in this case is

E =

⎛
⎜⎜⎜⎜⎝

1 1 1 0 0
1 1 0 0 1
...

...
...

...
...

1 1 0 0 1
1 1 1 0 0

⎞
⎟⎟⎟⎟⎠ .

The explicit form of the interpolation polynomial is

P (x) =
1∑

j=0

n∑
i=1

a
(j)
i · Ai,j(x) + a

(2)
1 · A1,2(x)

+ a(2)
n · An,2(x) +

n−1∑
i=2

a
(4)
i · Ai,4(x).

Estimates for the fundamental functions read as follows.

Lemma 3.8 (see [7]).

(i)

|A1,0(x)| ≤ c, |An,0(x)| ≤ c,

n−1∑
i=2

|Ai,0(x)| ≤ c · log n,
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(ii)

|A1,1(x)| ≤ c

n2
, |An,1(x)| ≤ c

n2
,

n−1∑
i=2

|Ai,1(x)| ≤ c · log n

n
,

(iii)

|A1,2(x)| ≤ c

n4
, |An,2(x)| ≤ c

n4
,

(iv)
n−1∑
i=2

|Ai,4(x)| ≤ c · log n

n4
.

Instead of considering separately all of the meaningful choices for R′,
0 ≤ R′ ≤ 4, we give the following general result covering all these
possibilities.

Theorem 3.9. Let 0 ≤ R′ ≤ 4. Then for the modified (0, 1, 4)
lacunary interpolation operators LR′,3n−1, the following inequalities
hold

‖(LR′,3n−1f − f)(k)‖ ≤ c · n2k−R′ · log n · ωsR′ (f (R′); 1/n)

for all f ∈ CR′
[−1, 1], k = 0, . . . , R′ and R′ ∈ {0, 1, 2, 4} with

s0 = s1 = 1, s2 = 2 and s4 ∈ N arbitrary, n > max{4, R′ + sR′}.

Proof. From Corollary 2.4 and (many) applications of Markov’s
inequality, we arrive at the upper bound

c · ωs(f (R′); 1/n) ·
{

n−R′+k +
∑

0≤j≤4

n−R′+j+2k ·
∥∥∥∥ ∑

ei,j=1

|Ai,j |
∥∥∥∥
}

+ c ·
∑

R′+1≤j≤4

n−R′+j+2k · ωj−R′(f (R′); 1/n)

·
∥∥∥∥ ∑

ei,j=1

|Ai,j |
∥∥∥∥.
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Observing that the sums of fundamental functions which are of interest
here all obey the rule∥∥∥∥ ∑

ei,j=1

|Ai,j |
∥∥∥∥ ≤ c · n−j · log n, j ∈ {0, 1, 2, 4},

we can now replace the upper bound by

c · ωs(f (R′); 1/n) ·
{

n−R′+k +
∑

0≤j≤4

n−R′+j+2k−j · log n

}

+ c ·
∑

R′+1≤j≤4

n−R′+j+2k−j · log n

· ωj−R′(f (R′); 1/n) · (1 − δj,3)

≤ c · ωs(f (R′); 1/n) · n−R′+2k · log n

+ c · n−R′+2k · log n

·
∑

R′+1≤j≤4

ωj−R′(f (R′); 1/n) · (1 − δj,3)

= c · n−R′+2k · log n ·
{

ωs(f (R′); 1/n)

+
∑

R′+1≤j≤4

ωj−R′(f (R′); 1/n) · (1 − δj,3)
}

.

Here δj,3 is the Kronecker symbol, the use of which is justified due to
the fact that ei,3 = 0 for 0 ≤ i ≤ n, i.e., ‖∑

ei,3=1 |Ai,3|‖ = 0.

For R′ = 4, the second term is not present at all, and s ≥ 1 are the
possible orders of the moduli of continuity which can be used in this
case.

For R′ = 2, the second term involves only ω2(f ′′; 1/n),and because
s ≥ R−R′ = 4− 2 = 2, the upper bound can now be given in terms of
ω2 only.

For R′ = 1 and R′ = 0, we have s ≥ 3 and s ≥ 4, respectively.
The second term contains in the case R′ = 1 the quantities ω1 and ω3,
and for R′ = 0 the moduli ω1, ω2 and ω4. Hence, in both cases, the
dominant modulus is ω1.



BIRKHOFF INTERPOLATORS 1317

The proof is complete.

Theorem 3.9 yields a lot of statements for special cases. We refrain
from going through them, except for one.

Proposition 3.10. Let R′ = 0. Then, for all f ∈ C[−1, 1] and
n > 4, we have

‖L0,3n−1f − f‖ ≤ c · log n · ω1(f, 1/n).

In particular, for f ∈ Lipα, 0 < α ≤ 1, we have

‖L0,3n−1f − f‖ ≤ c · n−α log n.

The latter inequality is one of the main results in [7].

3.3. (0, . . . , R − 3, R − 1, R) interpolation. A very recent paper
considering this case and, in particular, modified (0, 2, 3) interpolation
is one by Sharma, Szabados, Underhill and Varma [4]. The incidence
matrix in the latter case is as follows:

E =

⎛
⎜⎜⎜⎜⎝

1 1 1 0
1 0 1 1
...

...
...

...
1 0 1 1
1 1 1 0

⎞
⎟⎟⎟⎟⎠ .

The interpolation polynomial is now

P (x) =
n∑

i=1

a
(0)
i · Ai,0(x) + a

(1)
1 · A1,1(x) + a(1)

n · An,1(x)

+
n∑

i=1

a
(2)
i · Ai,2(x) +

n−1∑
i=2

a
(3)
i · Ai,3(x).

As a consequence, from the above authors’ estimates for the fundamen-
tal functions, we get the following
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Lemma 3.11.

(i) ∥∥∥∥ ∑
ei,0=1

|Ai,0|
∥∥∥∥ ≤ c · log n,

(ii) ∥∥∥∥ ∑
ei,1=1

|Ai,1|
∥∥∥∥ ≤ c · n−2,

(iii) ∥∥∥∥ ∑
ei,2=1

|Ai,2|
∥∥∥∥ ≤ c · n−2 · log n,

(iv) ∥∥∥∥ ∑
ei,3=1

|Ai,3|
∥∥∥∥ ≤ c · n−3.

Proof. In [4] the authors showed∑
ei,j=1

|Ai,j(x)|
∆n(xi)j

≤ c · log n, for j = 0 or 2,

where ∆n(x) =
√

1 − x2/n + 1/n2 ≤ 2/n. Hence,∑
ei,j=1

|Ai,j(x)| ≤ c · nj · log n for j = 0 or 2;

this gives (i) and (iii). For j = 1 they showed (ii) directly, and for
j = 3, an observation analogous to the one for j = 0 or 2 immediately
implies (iv).

As a generalization of the above authors’ convergence theorem for
modified (0,2,3) interpolation, we now have

Proposition 3.12. For any f ∈ CR′
[−1, 1], 0 ≤ R′ ≤ 3, the

following is true:

‖(LR′,3n−1f − f)(k)‖ ≤ c · n2k−R′ · log n · ωsR′ (f (R′); 1/n),
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where s0 = s1 = s2 = 1, s3 ∈ N is arbitrary, 0 ≤ k ≤ R′ and
n ≥ max{2, R′ + sR′}.

Proof. Using Corollary 2.4 again and several applications of Markov’s
inequality, we get as the upper bound the following:

c · ωs · (f (R′); 1/n)
{

n−R′+k +
∑

0≤j≤3

n−R′+j+2k ·
∥∥∥∥ ∑

ei,j=1

|Ai,j |
∥∥∥∥
}

+ c ·
∑

R′+1≤j≤3

n−R′+j+2k · ωj−R′(f (R′); 1/n) ·
∥∥∥∥ ∑

ei,j=1

|Ai,j |
∥∥∥∥.

In this case the sums of fundamental functions also obey the rule∥∥∥∥ ∑
ei,j=1

|Ai,j |
∥∥∥∥ ≤ c · n−j · log n, j ∈ {0, 1, 2, 3}.

Proceeding as in the proof of Theorem 3.9, the above upper bound can
be replaced by

c · n−R′+2k · log n ·
{

ωs(f (R′); 1/n) +
∑

R′+1≤j≤3

ωj−R′(f (R′); 1/n)
}

.

Again, for R′ = 3, the second term equals zero, so that any s ≥ 1 can
be used as the order of the modulus.

For R′ = 2, we get an upper bound of the form

c · n−2+2k · log n · ω1(f ′′; 1/n).

In the case R′ = 1 we get the majorant

c · n−1+2k · log n · ω1(f ′; 1/n),

and for R′ = 0, we obtain

c · n2k · log n · ω1(f ; 1/n).

This implies our claim.
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Remark. A general treatment such as that given in Theorems 3.9 and
3.12 can also be carried out for the (0, 3) case. We chose to present
our results separately in this latter case in order to give a more gradual
development.
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