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ON EQUAL SUMS OF CUBES

AJAI CHOUDHRY

ABSTRACT. The complete solution in positive or negative
rationals of the Diophantine equation x3 + y3 = u3 + v3 was
found by Euler. However, the complete solution in integers of
this equation and of the related equation x3 +y3+z3 = t3 has
not been found earlier. This paper gives a complete solution
of these equations in positive or negative integers as well as a
complete solution in positive integers only.

Introduction. The complete solution of the Diophantine equation

(1) x3 + y3 = u3 + v3

in rational numbers, whether positive or negative, was first given by
Euler. Writing z, t for −u, v respectively in (1), we get the related
equation

(2) x3 + y3 + z3 = t3.

Euler’s solution has been presented by Hardy and Wright [1, pp.
199 200] who have stated that these equations give rise to a number
of different problems, since we may look for solutions in (a) integers
or (b) rationals and we may or may not be interested in the signs of
solutions. They have further indicated that the complete solution of
these equations in integers is not known. Hua Loo Keng [2, p. 290],
while giving the complete rational solution of the equations, has also
stated that, “The solutions to the equation x3+y3+z3+w3 = 0 present
a very interesting problem. Unfortunately we still have not obtained a
formula for all the solutions.”

When we are not interested in the signs of the solutions, both
equations (1) and (2) are equivalent to the equation

(3) x3
1 + x3

2 + x3
3 + x3

4 = 0.
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We give below a new solution of (3) which will be shown to be
a complete solution in integers whether positive or negative. This
solution will then be used to obtain:

(i) the complete solution of (1) in positive integers, and

(ii) the complete solution of (2) in positive integers.

As the equation (3) is homogeneous, any integer solution (x1, x2, x3, x4)
of (3) leads to another integer solution (kx1, kx2, kx3, kx4) where k �= 0
is an integer. There is, therefore, no loss of generality in considering
the equation (3) with (x1, x2, x3, x4) = 1. Similar remarks apply to
equations (1) and (2).

Theorem 1. The complete integer solution of the equation

x3
1 + x3

2 + x3
3 + x3

4 = 0, (x1, x2, x3, x4) = 1

is given by

(4)

⎧⎪⎪⎨
⎪⎪⎩

dx1 = (a4 + 2a3b + 3a2b2 + 2ab3 + b4) + (2a + b)c3

dx2 = −{a4 + 2a3b + 3a2b2 + 2ab3 + b4 − (a − b)c3}
dx3 = c(−a3 + b3 + c3)
dx4 = −{(2a3 + 3a2b + 3ab2 + b3)c + c4},

where a, b, c are arbitrary integers and d �= 0 is an integer so chosen
that (x1, x2, x3, x4) = 1.

Proof. To solve the equation (3), we write

(5) x1 = (a + b)θ+a, x2 = aθ−b, x3 = cθ, x4 = −c.

Substituting in (3), we get the equation

(6) {(a + b)θ + a}3 + (aθ − b)3 + (cθ)3 − c3 = 0

or

(7) (θ2 + θ + 1)[{a3 + (a + b)3 + c3}θ + a3 − b3 − c3] = 0.

Thus, the only rational root of equation (6) is given by

(8) θ = (b3 + c3 − a3){a3 + (a + b)3 + c3}−1
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where we assume that {a3 + (a + b)3 + c3} �= 0. On substituting this
value of θ in (4) we get a rational solution of (3) which on multiplying
throughout by {a3 + (a + b)3 + c3} leads to the solution given by (4).

It is easily verified that (4) gives a solution of (3) even when {a3 +
(a + b)3 + c3} = 0. Thus, when a, b, c take integer values, (4) gives a
solution in integers of the equation (3). We shall now show that this is
a complete solution of (3) in integers. Thus, if (X1, X2, X3, X4) is any
given solution of (1) in integers so that

(9) X3
1 + X3

2 + X3
3 + X3

4 = 0,

we will show that there exist integers a, b, c such that, for these values of
a, b, c, (4) generates the given solution (X1, X2, X3, X4). The solution
Xi = 0, i = 1, 2, 3, 4, is generated by a = b = c = 0. If Xi are not all
zero, then it is easily seen that at least two of the Xi will be nonzero.
In view of the symmetry of equation (3), there is no loss of generality in
taking X3 �= 0 and X4 �= 0. Further, we may, without loss of generality,
also take X1 �= −X3 (if necessary, by rearranging the Xi).

We choose

(10)

⎧⎨
⎩

a = X2X3 − X1X4

b = X1X3 − X2X3 + X2X4

c = X2
3 − X3X4 + X2

4

and we write θ1 = −X3X
−1
4 . Then

(a + b)θ1 + a = −X1(X2
3 − X3X4 + X2

4 )X−1
4 ,

aθ1 − b = −X2(X2
3 − X3X4 + X2

4 )X−1
4 ,

cθ1 = −X3(X2
3 − X3X4 + X2

4 )X−1
4 ,

and therefore we have

{(a + b)θ1 + a}3 + (aθ1 − b)3 + (cθ1)3 − c3

= −(X3
1 + X3

2 + X3
3 + X3

4 )(X2
3 − X3X4 + X2

4 )X−3
4

= 0.

This shows that equation (6) where a, b, c are integers given by (10)
has the rational root θ1. Since (6) can have only one rational root, the
root given by (8) must be the same as θ1. Thus we must have

b3 + c3 − a3

a3 + (a + b)3 + c3
= −X3

X4
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or

(11)
b3 + c3 − a3

X3
= −a3 + (a + b)3 + c3

X4
= k.

The conditions X3 �= 0, X4 �= 0, X1 �= −X3 ensure that k is nonzero.
Moreover, using the relations (10) and subsequently (9),it is easily
established that k is a nonzero integer. Finally, using the relations
(11), we find that when a, b, c are given by (10), the solution given by
(4) is as follows:

dx1 = (a + b)(b3 + c3 − a3) + a{a3 + (a + b)3 + c3}
= (X1X3 − X1X4 + X2X4)(kX3)
− (X2X3 − X1X4)(kX4)

= kX1(X2
3 − X3X4 + X2

4 ).

Similarly,
dx2 = kX2(X2

3 − X3X4 + X2
4 )

dx3 = kX3(X2
3 − X3X4 + X2

4 )
dx4 = kX4(X2

3 − X3X4 + X2
4 ).

We take d = k(X2
3 − X3X4 + X2

4 ). As k �= 0, X3 �= 0, X4 �= 0, d
is a nonzero integer. It follows that the solution of (3) where a, b, c
are integers given by (10) is the given solution (X1, X2, X3, X4). This
completes the proof.

Theorem 2. The complete solution in positive integers of the
equation x3 + y3 = u3 + v3 where (x, y, u, v) = 1 is given by

(12)

⎧⎪⎪⎨
⎪⎪⎩

dx = (a4 + 2a3b + 3a2b2 + 2ab3 + b4) + (2a + b)c3

dy = c(−a3 + b3 + c3)
du = a4 + 2a3b + 3a2b2 + 2ab3 + b4 − (a − b)c3

dv = (2a3 + 3a2b + 3ab2 + b3)c + c4,

where a, b, c are positive integers such that either (i) a < b or (ii) a > b
and c is chosen so that

(13) (a3 − b3)1/3 < c <

{
a4 + 2a3b + 3a2b2 + 2ab3 + b4

a − b

}1/3
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and d > 0 is taken so that (x, y, u, v) = 1.

We note that, given any two positive integers a, b such that a > b,
we can always find integers c satisfying the inequalities (13). As an
example, we may take c = a when (13) holds.

Proof. The solution (12) of equation (1) is obtained by replacing
x1, x2, x3, x4 by x,−u, y,−v, respectively, in equation (3) and its so-
lution (4). It is accordingly the complete solution of (1). It is easy
to verify that, when a, b, c are positive integers satisfying the above
conditions, then (12) gives a solution of (1) in positive integers. On
the other hand, let (X, Y, U, V ) be any given solution of (1) in positive
integers. On account of the symmetry of equation (1), there is no loss
of generality in assuming that X > Y and U < V . Using the results of
the previous section, we find that the solution (X, Y, U, V ) is generated
by taking

a = XV − UY

b = UV + UY + XY

c = V 2 + V Y + Y 2.

It is clear that a, b, c are positive integers. Further, the solution
(x, y, u, v) generated by these values of a, b, c is given by

du = a4 + 2a3b + 3a2b2 + 2ab3 + b4 − (a − b)c3

= kU(Y 2 + Y V + V 2) > 0,

since k = {a3 + (a + b)3 + c3}/V > 0. It follows that either (i) a < b or
(ii) a > b and

c <

{
a4 + 2a3b + 3a2b2 + 2ab3 + b4

a − b

}1/3

.

Similarly,

dy = c(−a3 + b3 + c3) = kY (Y 2 + Y V + V 2) > 0

shows that either (i) a < b or (ii) a > b and c > (a3 − b3)1/3.

This finally proves that, given any solution (X, Y, U, V ) in positive
integers, there exist positive integers a, b, c satisfying the conditions of
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the theorem such that (12) generates the given solution (X, Y, U, V ) in
positive integers. This completes the proof.

Theorem 3. The complete solution in positive integers of the
equation x3 + y3 + z3 = t3 where (x, y, z, u) = 1 is given by

(14)

⎧⎪⎪⎨
⎪⎪⎩

dx = c(−a3 − b3 + c3)
dy = −a4 + 2a3b − 3a2b2 + 2ab3 − b4 + (a + b)c3

dz = a4 − 2a3b + 3a2b2 − 2ab3 + b4 + (2a − b)c3

dt = c{a3 + (a − b)3 + c3}
where a, b, c are positive integers such that a > b and

c > (a3 + b3)1/3,

and, as before, d > 0 is taken so that (x, y, z, t) = 1.

Proof. The solution (14) of equation (2) is derived by replacing
x1, x2, x3, x4 by z, y, x,−t, respectively, in (3) and in its complete
solution given by (4) and by replacing b by −b in (4). It is therefore
the complete solution of (2) in integers.

It is easily seen that, when a, b, c are positive integers such that a > b
and c > (a3 + b3)1/3, the solution given by (14) is in positive integers.
Conversely, let (X, Y, Z, T ) be any given solution of (2) in positive
integers. There is no loss of generality in assuming that X < Y < Z.
As in the case of equation (3), we find that this solution is generated
by the following values of the parameters,

a = TZ + XY,

b = TY + XY − XZ,

c = T 2 + TX + X2.

It is easily seen that a, b, c are positive integers with a > b. Further,
the solution generated by (14) gives

dx = c(c3 − a3 − b3) = k(T 2 + TX + X2)X > 0,

since k = {a3 + (a − b)3 + c3}/T > 0. It follows that

c > (a3 + b3)1/3.
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Thus, there exist positive integers which satisfy the conditions of the
theorem and which generate the given solution (X, Y, Z, T ) in positive
integers. This completes the proof.
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