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QUALITATIVE PROPERTIES OF FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH “MAXIMA?”

B.G. ZHANG AND GUANG ZHANG

ABSTRACT. In this paper some qualitative properties
of the solutions for the functional differential equations with
“maxima” of the form

(2(8) = plt)e(t =) + a(t) max a(s) = 0

are established.

1. Introduction. Consider the neutral differential equation

(1) [z(t) — p(t)z(t — 7)]" + ¢(t) max z(s) =0,

[t—o,t]

where 7 > 0, 0 > 0 and p, ¢ € C([ty, ), R). The differential equations
with “maxima” are often met in the applications, for instance, in the
theory of automatic control [8, 9]. The qualitative theory of these
equations has been developed relatively little. The existence of periodic
solutions of the equations with “maxima” is considered in [10] and
[11]. The oscillatory properties of Equation (1) are considered in [1-3].
The main goal of this paper is to discuss more comprehensively the
oscillation and nonoscillation of Equation (1).

By a solution of (1) we mean a function = which is defined for ¢ >
—max(o, 7) and which satisfies (1) for ¢ > 0. By the method of steps,
we know that, for a given initial function ¢ € C([—max(c,7),0], R),
there exists a unique solution defined for ¢ > — max(o,7) and which
satisfies the initial condition for — max(o,7) < ¢ < 0.

A nontrivial solution of (1) is said to be oscillatory if it is neither
eventually positive nor eventually negative. Otherwise, the solution
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is called nonoscillatory. A solution is called Z-type if it is either
nonpositive or nonnegative.

Equation (1) is much different from the equation without “maxima”
of the form

(2) [z(t) — p()z(t — )" + q(t)z(t — o) =0.

For example, it is easy to see that (1) is nonlinear and (2) is linear. In
particular, the following result is obvious.

Property 1. The function z(t) is an eventually negative solution
of Equation (1) if and only if y(t) = —xz(t) is an eventually positive
solution of the equation
(3) [y(t) — p()y(t — )] + q(t) min y(s) =0.

[t—o,t]

From Property 1, we can see that the positive and negative solutions
of Equation (1) need to be discussed separately.

In Section 2, we will discuss the delay differential equations with
“maxima”

(4) a'(t) +q(t) max z(s) =0,

(5) 2'(t) + 1 (t) max x(s) + ga(t)z(t —r) =0,
and

(6) @'(t) + g(t) max x(s) = r(t),
respectively.

In Section 3, we obtain some oscillation and nonoscillation results for
Equation (1).

2. Delay equations. The following results show that the behavior
of solutions of (4) is much different from the delay equation

(7) z'(t) +q(t)z(t —o) =0
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where ¢ € C(R™, R) is one sign and ¢ > 0.

Theorem 1. If q(t) is of one sign, then all solutions of Equation (4)
are nonoscsillatory.

Proof. When ¢(t) = 0 or o = 0, Theorem 1 is obvious. Therefore, we
assume that ¢(¢) Z 0 and o > 0.

If ¢(t) > 0, suppose that z(t) is an oscillatory solution of Equation (4).
Then (t) is not a Z-type solution and otherwise z(t) = 0 eventually.
Therefore, there exist ¢1,¢2 and t3 such that z(¢1) = x(t2) = x(t3) =0
and z(t) < 0 for t € (¢1,t2) and x(t) > 0 for ¢ € (t2,t3). Thus,
x'(t2) = —q(t2) maxp, o 4,12(s) < 0, which is a contradiction. For
q(t) < 0, Theorem 1 can be proved similarly. The proof is complete.
O

Remark 1. If q(t) has the same sign, by Theorem 1, solutions of (4)
are more nonoscillatory in nature than those of (7).

When ¢(¢) is oscillatory, we see that Equation (4) may have oscillatory
solutions. For example, consider the equation

'(t) +sint =
(8) x'(t) + sin [tlzlgr)ft]w(s) 0,

which has an oscillatory solution x = cost. But it also has a nonoscil-
latory solution x = —2 — cost. This example shows that (4) is different
from the ordinary differential equation without delay.

Theorem 2. If q(t) is oscillatory, then (4) has at least one nonoscil-
latory solution.

Proof. Assume that ¢(t,) = 0 for {¢,}°2, and lim, oo t, = o0
and ¢(t) > 0 for ¢t € (t1,t2), g(t) < 0 for t € (t2,t3), q(¢t) > 0
for t € (ts3,ts),... . We define a function ¢(¢) for t € [t1 — o,t1],
which is nondecreasing and negative; then (4) has a solution y(t) =

B(t1) exp(— ft _,4(s)ds) for t € [t; — o,t2]. Tt is obvious that y(t) < 0
for t € [t; — o, t2] and maxy_,y(s) = y(t). By the method of
steps, we can obtain y(t) for t > t; — 0. In view of ¢(t) < 0 for
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t € (t2,t3), we know that y(¢) < 0 for ¢ € [t; — o,¢3] and y(t) < y(t2)
for ¢t € [ta,t3]. We note that g(¢t) > 0 for ¢ € [ts,t4]. If there
exists £ € (t3,t4) such that maxp_,¢y(s) = y(t2), then we have
y'(t) = —q(t) maxy_, 4 y(s) = —q(t)y(t) for £ <t < ty. By induction
we know that y(¢) < 0 for ¢ > ¢t; — 0. The proof is complete. O

Now we consider Equation (5), where g1, g2 € C([tg, ), RT), 01 >0,
o2 > 0. It is obvious that, if z(t) is an eventually positive solution of
(5), then it satisfies

(9) () +q(t)z(t —o1) + g(t)z(t —02) =0

and if z(¢) is an eventually negative solution of (5), then it satisfies the
equation

(10) o' (t) + qu(t)z(t) + q2(t)z(t — 02) = 0.

By the comparison result, we have
Theorem 3. If Equation (10) is oscillatory, then so is Equation (5).

By comparing (9) and (10), we know that the solutions of (5) are more
nonoscillatory in nature than those of Equation (10). For example, it
is well known that the equation

(11) 2 () + i (t)z(t — 1) + q2(t)z(t) = 0,
may have oscillatory solutions, see [7]. But the equation
(12) 2'(t) + (1 (t) + a2(t))z(t) = 0,

is nonoscillatory. By Theorem 3, the equation

(13) x'(t) + q1(t) [max | z(s) + g2(t)z(t) = 0,

t—o1,t

has nonoscillatory solutions.

We now consider the forced equation (6), where r € C([tg,0), R)
and ¢, o are the same as in (1). It is different from the equation

(14) 2 () + a(O)a(t — o) = r(t).
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Theorem 4. Assume that q(t) > 0 and that there exists R(t)
such that R'(t) = r(t). Let Ri(t) = (|R(t)| + R(t))/2 and R_(t) =
—(|R(t)| — R(t))/2 such that

/00 q(t) max Ry (s)dt = oo,

(15) Too [t—0s]
/ q(t) max R_(s)dt = —o0.

T [t—o’,t]

Then all solutions of (6) oscillate.
The proof is similar to (14); for example, see [6]. It is omitted.

Consider the equation

(16) z'(t) + nax, z(s) = cost.
t—m,t

Theorem 4 does not hold for (16) because maxy_, 4 R (s) = 0. In
fact, x = sint — ¢t is a nonoscillatory solution of (16). But, by the
known result [6], all solutions of the equation

(17) z'(t) + z(t — ) = cost,

oscillate.

3. Neutral equations. In this section we first obtain a lemma for
Equation (1) which is useful for the proof of the main theorems.

Lemma 1. Assume that
(i) p(t) > 0 for t >ty and there exists a T > to such that

(18) p(T+jr)<1, j=0,1,2,...,

(ii) q(t) > 0(£ 0) for t > to.
(iii) z(t) is an eventually positive solution of (1) (or (3)). Set

(19) y(t) = z(t) — p(t)a(t — 7).



362 B.G. ZHANG AND G. ZHANG

Then y(t) > 0 eventually.
The proof is similar to the proof for (2) in [5].

Theorem 5. Assume that the assumptions of Lemma 1 hold and
either p(t) > 0 or o > 0 and q(t) > 0(£ 0) fort € [u—o,u] for all large
u. Then Equation (1) has eventually positive solutions if and only if

(20) [e(t) ~ p(B)a(t -~ ) + q(t) max a(s) <0

has eventually positive solutions and Equation (3) has eventually posi-
tive solutions if and only if

(21) [z(t) — p(t)z(t — 7)]" + q(t) {min z(s) <0

t—o,t]

also has eventually positive solutions.
The proof of Theorem 5 is similar to Theorem 1 in [13].

Theorem 6. Assume that (i) and (ii) of Lemma 1 hold and that
there exists some integer N such that

N-1 j

t
(22) hggggf/t max Z Hp u—14r)ds > -

[s o,s] =0 io

Then each solution of Equation (1) oscillates.

Proof. If x(t) is an eventually positive solution of Equation (1), then
y'(t) <0 and y(t) = z(t) — p(t)z(t — 7) > 0 eventually. Then

r=y(t)+pt)z(t—7)
y(t) +p(t)y(t — 1) + p(t)p(t — 7)x(t — 27)

N-1

>y(t) +p)y(t — )+ + [ plt —ir)y(t — (i + 1)7)

i=0
Hptfzr (t— 7).

]:0 =0

N-—

,_.
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Hence,
N-1
[{n%}x( )>[{n§t . Hp s—ir)y(s—1)
7=0 =0
N—-1 3
= ma, —iT)y(t — o —
[{ng}i] ZO H}p s —iT) oc—T)
J=0 i=
N-1

j
[inz;)i] Hp s—ir)y(t— 7).
=0

M
O
<.

Substituting the last inequality into (1), we have

N—

(23) y'(t) + Hps—zr (t—7) <0,

[t a't
j=0 ¢=0

,_‘

<.

which contradicts the fact that, under condition (22), the inequality
(23) has no eventually positive solution [7].

If Z(t) is an eventually negative solution of (1), then z(t) = —Z(¢) is
an eventually positive solution of (3). Similarly, we have

N—-1
y'(t) +q(t) b Unt]‘ Hps—ZT (t—7)<0.
7=0 =0
That is,
N—-1
~y(0)) + a(t) max [To(s - in)-stt— )] 20
7=0 =0

This is also a contradiction by the same reason to the positive solution.
The proof is complete. O

For the equation

(24) [2(t) —2(t = )" + q(t) max 2(s) =0,

we have the following result.
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Theorem 7. Assume that q(t) > 0. Then (24) has nonoscillatory
solutions if and only if

1

(25) Z"(t)+ —a(t)Z(t) =0
T

also has nonoscillatory solutions.

Proof. Assume that z(t) is an eventually positive solution of (24).
Let y(t) = z(t) — z(t — 7); then y(¢t) > 0 and ¥'(t) < 0 eventually.
Let T be a large number so that x(¢) > 0, y(¢) > 0 and y'(¢) < 0 for
t>T—7. Set m =min{z(t) : -7 <t <T}. When N <t< N+,
we have

t+7
z(t) =y@t)+z(t—7) > % /t y(s)ds + m.

By induction, for T+ k7 <t < T + (k + 1),

t+7
z(t) > l/t y(s)ds +m.

T —kT
Hence,
1 t-‘rT
o> [ yodstm 21 =147,
T Jp=
and
l t
m(t)Z—/ y(s)ds+m, t>T*+r.
T T*+7
Set
1 t
Z(t) = —/ y(s)ds + m.
T T* 4T
Thus, we have
" ]‘
(26) Z7(t) + —a(t)2(t) < 0,

which implies that (25) has an eventually positive solution.

If z(t) is an eventually positive solution of the equation

(27) [z(t) — z(t — 7)]" + q(t) min z(s) =0,

[t—o,t]
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we can also prove that (25) has an eventually positive solution by the
above method.

If (25) has an eventually positive solution Z(t), then Z”(¢) < 0 and
Z'(t) > 0 eventually. Therefore, there exist T" and M > 0 such that
Z(t) > M and Z'(t) < M eventually. Set

TZ'(t) t>T
Ht)=¢ t-T+71)Z'(T) T-1<t<T,
0 t<T —r.

Then H(t) > 0. Define

y(t) =Y H(t—ir)>0
=0
and
y(t) —y(t—7)=H(t) fort>T.

That is,

y(t) —y(t — 1) =72'(t).
Setting

p=max{y(t), T —7 <t < T},

we have

Therefore, we have

t
y(t)g/ Z'(s)ds+p< 2(t) for t>T.
T

Thus,

[max]y(s) < Z(t) and {min]y(s) <Z(t) fort>T.
t—o,t t—o,t
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Therefore, we have

[y(t) — y(t — 7))’ + q(t) max y(s) <0

[t—o,t]

and

[y(t) —y(t — )] +q(t) [tn_lff,lt] y(s) <0.

By Theorem 5, (24) has nonoscillatory solutions. The proof is complete.
]

Theorem 8. Assume that p(t) =p # —1, q(t) > 0, and

(28) / " g(s) ds = oo,

to

Then any nonoscillatory solution x(t) of (1) satisfies lim; o z(t) = 0.

Theorem 9. Assume that p(t) = —1, q(t) > 0, Q(t) = min{q(t), ¢(t—
7)} and

b Q(t) dt = 0.

to

Then any eventually positive solution x(t) of (1) satisfies lim; o x(t) =

0.

The proofs of Theorems 8 and 9 are similar to Theorems 2 and 1 in
[12].

Remark 2. Theorem 6 improves Theorem 3 in [1].

Remark 3. By Theorem 7 and the known results of Equation (25),
we can obtain some improved results for Equation (24). For example,
consider the equation

(30) o(t) — ot — )] + t% s o(s) = 0
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We may show that every solution of Equation (30) is oscillatory if
and only if k¥ > 1/(47). Therefore, we see that Theorem 7 improves
Theorem 1 in [1].
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