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DIFFERENTIAL OPERATORS OVER C*-ALGEBRAS

JOHN G. MILLER

1. Introduction. The study of differential operators over C*-
algebras was initiated by Miscenko and Kasparov in their work on
the Novikov conjecture. The setup is as follows. Let M be a closed
smooth manifold. Let A be a unital C*-algebra. We consider A-linear
partial differential operators on sections of bundles of finitely generated
Hilbert A-modules over M. The goal is to develop an index theory
where the index takes values in the K-groups of A. A prerequisite is
the availability of a package of basic analytic facts concerning domains,
ranges and compactness of operators. These are most conveniently
expressed in terms of Sobolev spaces. This matter has been handled
by several authors in a fairly ad hoc way. (This will be discussed further
below.) The purpose of this paper is to give a rather general treatment,
including the case of manifolds with boundary. This extension is
somewhat speculative, since to date no work has been done on C*-
algebraic index theory on manifolds with boundary.

The main difficulty involved is one which is ubiquitous in working
with operators over C*-algebras: bounded operators between Hilbert
A-modules often don’t have everywhere-defined adjoints. When this
happens, analysis on the usual pattern can’t be carried out. We
will establish the existence of adjoints for A-linear differential (and
pseudodifferential) operators between Sobolev spaces by using classical
results on the Dirichlet problem over C.

Let ep be a trivial bundle over R™ with fiber a finitely generated
Hilbert A-module P. The Sobolev space Wy (ep) for an integer k > 0
consists of £? sections of ep with k distributional derivatives in £2,
with an inner product derived from these derivatives. For an A-module
bundle V over a manifold with boundary M the definition is globalized
using local trivializations and a partition of unity to obtain Wy (V). For
manifolds with boundary, one also has W (V'), the subspace satisfying
zero Dirichlet boundary conditions in a weak sense, see Section 3.1.
Most of this paper is concerned with these spaces. I don’t know whether
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similar results hold for Wy (V). In the case A = C, this works well.
For general A, it isn’t clear that the inner products resulting from this
pasting process have any useful properties with respect to adjoints.
There seem to be no direct proofs of the adjointability of differential
operators, or of the theorem of Rellich on compactness of inclusions,
for example.

An alternative approach is via self-adjoint extensions of differential
operators. Let Dy be a formally self-adjoint A-linear elliptic differential
operator of order 2k on V. Assume that Dg is elliptic with respect
to Dirichlet boundary conditions. (These are given by the normal
derivatives of orders 0,... ,k —1.) Let D be its extension with domain
D(D) = Fo, (V) := War(V)NW (V). The basic facts we will generalize
are as follows: if A = C, then D is self-adjoint. If (Dou, u) > (u,u), the
spectrum of D is contained in [1,00). In particular, D is bijective and
we can define a Hilbert space £, as D(D'/?) with the inner product
(u,v)4 = (DY?u, D'/?v). This turns out to be W2 (V). For arbitrary
A there is a problem. All general proofs of these facts require some sort
of application of the Riesz representation theorem, which is equivalent
to the existence of adjoints for bounded operators.

Particular cases of this problem, for closed manifolds, were dealt with
by Kasparov [11, 12], and by Rosenberg, Skandalis and Weinberger
[19, Section 1]. In this case the situation simplifies considerably. For
closed manifolds Wj,(V) = W2(V) so that Fo, (V) = W (V). If Dy is
of second order such that D(D'/2) = WP(V), then D(D*/%) = W(V).
Therefore it suffices to consider second order operators. The relevant
results of these papers are mainly applicable to a covering space
situation. Take A = C*(m1(M)), the group C*-algebra, and ¢ the
flat bundle associated to the universal covering space of M by the
representation (M) — C*(w(M)). Let E be a complex vector
bundle. The operators Dy are obtained from differential operators on
E extended to ¥ ® E using the flat connection of ¢. Dy is actually
of the form Tg‘7HE Ty + I, with T first order. (Tg# denotes the formal
adjoint.) In this situation, D has the desired properties.

The approach adopted in [19] is perturbative and has strongly influ-
enced this paper. (This method has also been used by U. Bunke.) We
give a very rough sketch of the ideas involved, which doesn’t accurately
describe the work in [19]. The essential point is that the principal sym-
bol of Dy is complex, in the sense that it is of the form I, ® 7, where
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T is a symbol on E. Such an operator is a direct summand of an oper-
ator D() on some ¢ ® F with symbol I, ® 7. Do is then a lower order
perturbation of the extension to ¢ ® E of a differential operator on E.
Because of the special form of Dy, only bounded perturbations have to
be considered.

For manifolds with boundary it is necessary to consider operators
of arbitrary even order. Therefore, the more elaborate perturbation
theory of Rellich and Kato is required. The conclusion is that, for
operators Dy with complex principal symbol, D has the same properties
as in the case A = C above, Theorem 4.1. This suffices to describe
all customary constructions of W2(V) in the form &, for some D,
Proposition 5.2. It is an interesting question whether the conclusions
concerning D are true without the assumption of complex symbol.
Theorem 4.3 gives an affirmative answer when A is commutative, i.e.,
for the case of families of operators.

The properties of the spaces W (V) are developed within the frame-
work of “scales of spaces.” This originally was developed as a setting for
the Friedrichs extension and generalizations, such as the Lax-Milgram
theorem, which exploit the Riesz representation theorem to obtain weak
solutions for differential operators. Here the situation is reversed. It
follows from the above results that an extension of D realizes the iso-
morphism between W2 (V') and its dual, which allows one to construct
adjoints for many operators on W,? (V). We show in Theorems 5.3 and
5.4 that a class of inner products on W2 (V) which includes all of the
usual ones are compatible, in the sense that the identity map between
any two of them has an adjoint. Therefore, there is a preferred com-
patibility class of inner products which depends only on the smooth
structure of the manifold. Further, a properly supported pseudodiffer-
ential operator between any two has an adjoint, and Rellich’s theorem
holds. I believe that many of these results are new even for closed
manifolds.

Knowledge of Hilbert modules and related matters is assumed. The
necessary material is in [22]. Proofs cited from the literature, unless
otherwise noted, are either valid for operators on Hilbert modules or
require only minor modifications.

The next section sets up a general framework of Hilbert module
structures on domains of operators and establishes the basic duality
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and its consequences concerning adjoints. It also contains a discussion
of connections with regular operators in the sense of Baaj and Julg.
Sections 3 and 4 investigate the spectral properties of certain extensions
of A-linear differential operators. The main results on Sobolev spaces
are in Section 5.

2. Abstract Sobolev spaces. This section contains the construc-
tion of spaces defined by certain self-adjoint operators over C*-algebras,
which have many of the properties of Sobolev spaces. The framework
was developed during the 1950’s by a rather large number of mathe-
maticians. The approach here is very similar to that of Berezanskii [4,
Chapter 1], although the intent is quite different. Also see this refer-
ence for attributions. There is a close connection with the work of Baaj
and Julg on unbounded Kasparov modules [3], which will be explained
in Section 2.2.

2.1. Let A be a unital C*-algebra and € a Hilbert A-module. We will
work with unbounded A-linear operators D on £ which are symmetric
(so in particular have dense domain D(D)), with real spectrum o(D)
bounded below by some real . (Shortly we will take @ > 0.) This
implies that D is self-adjoint [23, Theorem 5.19]. However, there are
self-adjoint operators on Hilbert modules whose spectrum isn’t real [9,
Section 2.9].

Lemma 2.1. The conditions above are equivalent to the following:
D is densely defined with a nonempty resolvent set p(D) and (Du,u) >
a(u,u) for all u € D(D).

Proof. Assuming the given conditions, let 8 < a. Then o(D — ) C
[@ — B,), so D — 3 is bijective and o((D — 8)~!) is nonnegative.
(D — B)~! is self-adjoint and bounded, so (D — §) /2 exists and is
self-adjoint. For v € &,

(v,(D = B)"10) = (D — B)" /2, (D = B)~/v) > 0.
Then if v = (D — B)u,

(Du,u) — B(u,u) = (D — B)u,u) > 0.
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Therefore, (Du,u) > a(u,u).

If (Du,u) is self-adjoint, then D is symmetric [23, Theorem 4.18].
Since p(D) # @, by a standard continuation argument [23, Theorem
5.21], p(D) contains the upper or lower half-plane. By [1, Theorem
12.8], the condition (Du,u) > o(u,u) implies that p(D) contains
{z | Rz < a}. Continuation then shows that o(D) C [a, 00). O

If either of the equivalent sets of conditions is satisfied, we will say
that D is bounded below by a. Henceforth we assume that this holds
for some a > 0.

The proof in [1] also shows that ||[(D+ ) ! < (RA+a) !, RA > 0.
Making use of this, Kato [13, Theorem 3.35] shows that D has a unique
square root with the same properties, except that it is bounded below
by al/2.

Let £, be D(D'?) equipped with the inner product (u,v); =
(DY/2u, DY/?v). &, is complete since D'/? is closed. Since D(D) is a
core for D'/? [13, Lemma 3.38], D(D) is dense in D(D'/?) with respect
to the same inner product. Then (u,v)y+ = (Du,v) for u,v € D(D).
Note that D'/? : £, — £ is unitary. The inclusion £, — £ is bounded,
for if u € D(D), Jullt = |(Du, w)] > alul.

We might, as is customary, define the negative space £_ as the
representable (anti-)dual £ of £, but this can be given a more
concrete description. D2 : D(D/?) — £ is a bijection with bounded
inverse. Equip £ with the inner product (u,v)_ = (D~Y?u, D~1/?v).
Let £ be the completion of £ with respect to this. The inclusion
£ — £ is bounded, for if u € &, ||lul|_. = ||[D7'2u|| < K|u|| since
D='/2 is bounded. D : D(D) — & is isometric for the inner products
(,)+ and (,-)_ since

(Du, Dv)— = (D=2 Du, D~Y/2Dv) = (D*/?u, D*/*v),
so it extends to a unitary D : £, — £_. There is a natural unitary

p:& = &, (pu)(v) = (u,v)4. Then 905_1 : €. — & is unitary. If
w € &, w = Du with u € D(D), then

(¢D ™ 'w,v) = (u,0)4 = (Du,v) = (w,0),

so 90571 is the bounded extension of w — (w, ).



244 J.G. MILLER

We will construct adjoints for a class of operators between these
spaces, which includes differential (and pseudodifferential) operators
in concrete cases. Let D; and Dy be operators as above on Hilbert
A-modules &; and &>, and let £; 4 and & 1 be the associated spaces.
Suppose dense submodules S; of £ and S of £ 4 are given. Then,
since D(D}/Z) is dense in &; and &; + — &; is bounded, S; is dense in &;.
Let Ty : S — S be an A-linear homomorphism admitting a “formal
adjoint” in the sense that there exists an A-linear Tg‘# : Sy — 51 so
that (Tou,v)s = (u,TS#v)l ifue S, veS,.

Proposition 2.2. If Ty extends boundedly to T' : &y — &> 4, then
Tg# extends boundedly to T# : E_ — & _. In this situation T has
the bounded adjoint for the +-inner products T* = E;lT#ﬁg &4 —
Ei 4.

Proof. Since S5 is dense in &, & is dense in & _, and & — & _ is
bounded, it follows that S; is dense in £ . It is therefore sufficient
to show that {7 is bounded from || - ll2,— to || - ||1,—. (In what follows,

omitted subscripts denote the generic case.) Since D'/2 is self-adjoint,
for u,v € S,
1w, )| = (D 2u, D~20)|| < ||IDV2ul[| D7 20]| = [Jul|4[jv]] -

Therefore, (u,v) extends continuously £, x £ — A, and

sup ||(u, v)|| < o] -
lull+=1

To show equality, let v = D 'v =D forve S SiceD is

isometric [|ull; = [lv]|-. Then ||(w,v)|| = [[((D~'v,v)[| = [[v]|2, so
l(w/||ull4+,v)]| = ||v]|—. Then S is dense in &, and we conclude that
(2.1) llull+ = Sup [(w, 0)[| = lvll-,  w,veS.

Ul|+=

As above, for u € S1, v € S,

1w, T )|l < [ Toulla+llollz,— < Cllully+l[vllz,-



DIFFERENTIAL OPERATORS OVER C*-ALGEBRAS 245

by the boundedness of Tj. Then, by (2.1),

ITF vl = sup I, T w)ull < Cllo]la,-

lull,+=1

o) Tf is bounded.

Since EIIT#BQ is bounded, it is enough to check the adjoint con-
dition on a dense set. Since Sy is dense in £, — and Dy : & 4 — &5
is unitary, 52_1(52) = D;'(S,) is dense in & . Then, for u € S,
v € So,

— 1 — _
(uaDl T#D2U)1,+ = (ua Dy IT(#DZU)L-!-

= (DY?u, D}*D7'TY Dyv),

= (u, T Dyv) = (Tou, Dyv) = (Tu,v)z 1. O

We call two complete inner products on the same A-module compat-
ible if the identity map has an adjoint. This is an equivalence relation;
for, if k is an adjointable bijection of Hilbert modules, then k* is bi-
jective and (k=1)* = (k*)~!. (This is a special case of [22, Theorem
15.3.8].) It follows easily from this that compatible inner products have
the same adjointable and compact operators.

Now let Dy and Dy be two operators as above acting on the same
Hilbert module &.

Proposition 2.3. If D(D;) = D(D,), then D(D/?) = D(DY/?),
and the inner products (-,-)1,4+ and (-,-)2,+ are compatible.

Proof. Now 'D(D}/z) = 'D(Déﬂ) follows from [23, Theorem 9.4(b)],
with a few modifications. The main inequality should be replaced by
ISFIl < 2¢||(T + I)f]|, which is easily derived. A suitable proof of
the subsidiary Theorem 9.1 can be found in [18, Theorem 10.12]. The
fact that D((D + I)'/?) = D(D/?) is contained in the proof of [13,
Lemma 3.4]. Call the common domain D. We verify the hypotheses
of Proposition 2.2. Let S; = Sy = D and Ty = Ip, so that T = Ip.
It must be shown that Ip is bounded from || - [|1,+ to || - ||2,+. Since
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D(Diﬂ) = D(D;/z), D;/Z is Di/z—bounded [23, Theorem 5.9]; that
is, there exists a C' > 0 so that ||D;/2u|| < C(fJull + ||D}/2u||) By

assumption, for v € D(Dy),
1D} %l = [|(D1*u, Dy*u)|[Y2 = [|(Dyu, w)[|Y? > aul|

for some « > 0. Since D(Dy) is a core for Di/Q, this holds for v € D.
It follows that [|ulz.+ = ||D3%ul| < K||Dy?ul| = K||u|l1.4. ©

2.2. We have been considering operators D which are symmetric
with real spectrum bounded below by some positive number. There is
a construction due to Baaj and Julg [3] which essentially exhausts this
class of operators. Although the following material will not be used in
this paper, it seems helpful to clarify the connections. Let £ and &
be Hilbert A-modules.

Definition 2.4. A regular operator from &; to & is a closed A-linear
mapping T such that D(T') and D(T™*) are dense, and T*T+I has dense
range.

The operator we are interested in is D =TT + I. A full account of
the properties of regular operators was first published by Woronowicz.
An exposition may be found in [14, Chapter 9]. The basic facts are as
follows: If T is regular, then 7** =T and T*T + I is surjective. T is
also regular.

We show that D meets our requirements.

Proposition 2.5. If T is reqular, D is symmetric with real spectrum
contained in [1,00) and therefore is self-adjoint.

Proof. That D is symmetric follows from [14, Proposition 9.9]. Since
(Du,u) > (u,u), D is bijective and D~! is bounded, so p(D) # @.
Lemma 2.1 shows that o(D) C [1,00). O

In the reverse direction, suppose that D is symmetric and o(D) C
[a, 00) with o > 0. By [13, Theorem 3.35], D — a has a self-adjoint
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square root with spectrum in [0,00). Then o 'D = (a Y?(D —
04)1/ 2)2 + 1, so up to constant multiples the operators we are concerned
with arise from regular operators.

Define the T-inner product by (u,v)r = (Tu,Tv) + (u,v). The next
proposition connects regular operators and the modules £, defined in
Section 2.1.

Proposition 2.6. D(DY?) = D(T) and (-,-)+ = (-,-)r on this
domain.

Proof. By [14, Lemma 9.2], D(T*T) is a core for T. By [13, Theorem
3.35], it is also a core for (T*T)'/2. Thus D(T) is the set of u € &
such that there exists (u;) C D(T*T) with u; — u and (T'w;) Cauchy.
By [13, Lemma 3.41], D(D'/?) = D(T*T + I)*/?) = D((T*T)"/?).
Therefore D(D'/?) is similarly described, with ((T*T)/?u;) Cauchy.
But for v € D(T*T), |Tv|| = ||[(T*T)*/?v||, so the domains are the
same. On D(T*T), (-,-)+ = (+,*)r, so this holds on the common
domain. |

3. Differential operators over A.

3.1. Our goal is to extend to elliptic operators with coefficients in
a C*-algebra some of the classical results on the Dirichlet problem.
We start by reviewing differential operators and Sobolev spaces on
a manifold with boundary in a slightly more general context than is
usual. Details and proofs may be found in [8, Chapter 1] and [6,
Chapter 2]. Let A be a C*-algebra with unit (perhaps C). Let M™
be a compact connected Riemannian manifold with boundary M and
V' a smooth Hermitian A-module bundle over M with fiber a finitely
generated Hilbert A-module P. Let C§°(V) be the smooth sections of

V with support in M and O (V) the restrictions of elements of C$° (V)
to M, where V is any extension of V over M Ugps (OM X I).

Throughout this paper a differential operator on V will be an A-
linear partial differential operator Dy on C*°(V) with C* coeffi-
cients. This is the same as saying that locally Dy may be written
2ol <k %a () (0% /92*), where the a,, are smooth A-linear bundle en-
domorphisms and the partials are defined with respect to A-linear local
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trivializations of V. An eztension of Dy will be an operator extending
the action of Dy on C§° (V). We will also consider differential operators
between smooth sections of two A-bundles.

The Hilbert module £2(V) is the completion of C§° (V') with respect
to the norm ||-|| derived from the inner product (v, v)y = [,,(u,v) dpn,
with (-, -} the fiberwise inner product on V and pjs the measure coming
from the inner product on M. Different inner products give equivalent
norms, so that the £2(V') for different choices are canonically identified
as topological vector spaces. The Sobolev space Wy (V) for an integer
k > 0 is the set of all u € £2(V) such that, for all A-linear differential
operators Ty of order < k, Tou € L*(V) in the sense of distributions.
This means the following: let Tg#é be the formal adjoint of 7. Then, for
each u € Wy(V), there must exist z € £2(V) so that (z,v) = (u, T v)
for all v € C§°(V).

Lemma 3.1. Wy (V) is independent of the smooth inner products on
M and V.

Proof. Let p1 and po be smooth measures on M, with dus = pdu;.
For a fixed inner product on V' and u,v € C§°(V),

(w0)s = [ ehpdur = [ (uspo) dis = (u o).

(Note that this can be read as saying that multiplication by p is formally
adjoint to the identity on C§° (V) from (+,-); to (+,-)2.) The same holds
by continuity for u,v € £2(V). A brief computation using this shows
that, if Tgé’E is the formal adjoint of T" with respect to (-,-)2, then its
formal adjoint with respect to (-,-); is pT{ p~'. Let u € Wi(V) for
(-,)1. For all v € C(V), (u, T v)y = (u, pT p~'(pv))1, and there
exists z € £2(V) such that (u, T v)y = (z,pv)1 = (z,v)2. Therefore,
u € Wi(V) for (-, ).

Suppose that V has two inner products, with that on M fixed. The
formal adjoint of the map on C§°(V) induced by the identity of V is
the induced map of the adjoint bundle map. The rest of the argument
is the same as before. O

Let n = H™ x P, a metrically trivialized bundle, where H" = {x €
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R"™ | &, > 0}. For an integer k > 0, the Sobolev k-inner product on
compactly supported elements of Wi (n) is

sy o= [ (5L S e

Oz’ Oxo
la|<k

Cover M with finitely many coordinate charts X; : U; — U;, where the
U; are open in M and the U; have compact closure in H™ and V is trivial
over each U;. Choose isometric bundle isomorphisms X; : Vv, — 1|z, -
Let {¢;} be a partition of unity subordinate to {U;}. The Sobolev
k-inner product on Wy (V) is

(w,v)ve = D _(X; "o (du) o Xi, X; 0 (¢0) 0 X

%

Wi, (V) is a Hilbert module in this inner product. Varying all the choices
made gives equivalent norms. C°°(V) is dense in W (V). Let W2(V)
be the closure of C§°(V) in W (V). We set Wy (V) = WJ(V) = L2(V).
There are bounded inclusions Wy41(V) — W (V) and similarly for
the spaces W/Q(V). A differential operator of order k extends by
distributional derivatives to bounded operators Wi,.(V) — W,.(V)
and W¢,,(V) = W2(V) for r > 0. The various standard inequalities
will be used in what follows without further comment.

Let For(V) = War(V) N W2(V), k > 0. More precisely, Far(V) is
the set of elements of Wor (V') whose image under Wor (V) — Wy (V)
is in the image of W (V) — Wy(V). Fa (V) will always be considered
with the 2k-inner product. (The pullback of the two preceding maps
gives an equivalent norm, but the inner product isn’t convenient.) For
the present, we assume that a fixed choice of the data {U;}, {U;}, {X;}
and {X;} is used to construct all Sobolev spaces.

3.2. We consider the Dirichlet problem with A = C. Let E be
a Hermitian C-vector bundle over M and Dy a formally self-adjoint
differential operator of order 2k on F. Assume that Dy is elliptic, in
the sense of Lopatinski, with respect to Dirichlet boundary conditions
[10, Chapter 20, 6, Chapter 5]. This is a condition which only involves
the principal symbol of Dy and requires in particular that Dy be elliptic
in the usual sense. Let D be the extension of Dy with the domain
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Fs;(E). The basic fact we wish to generalize is: D is symmetric with
real spectrum [6, Chapter 5.

The largest known general class of symbols which are elliptic with
respect to Dirichlet boundary conditions appears to be those which
are strongly elliptic [2, Section I.2]. Let oax(x,&) be the principal
symbol of Dy, for x € M, £ # 0 € T#(M). Then we require that,
for all v # 0 € E,, (—=)*(oax(x,&)v,v) > 0. (The usual condition
that this expression be > K|¢|?! for some K > 0 follows since o
is homogeneous and M is compact.) In addition, self-adjoint scalar
elliptic operators are of even order and are elliptic with respect to
Dirichlet boundary conditions [6, Chapter 5, Section 4.5].

If Dy is to be of use in constructing an inner product, we should
require at least that (Dou,u) > «a(u,u) for some @ € R and all
u € CP(E). In fact, this implies that an elliptic Dy is strongly
elliptic. (I don’t know of a reference for this. Since it won’t be
used, the proof is omitted.) Conversely, if Dy is strongly elliptic,
then Garding’s inequality holds: There are C; > 0 and C such that
(Dou,u) > Ci|ul|2 — Cal|ul|? [6, Chapter 4, Section 8.7]. Therefore, Dy
is bounded below. Despite these remarks, we will not generally assume
that Dy is strongly elliptic.

In several places we will need a Dirichlet form. More generally, let
By be any differential operator of order 2k acting on sections of an
A-bundle, V. Let {¢;} be the partition of unity of Section 3.1. Then
By = ) B¢, and each By¢; is the sum of terms aa(m)(ﬁ‘o‘v@azo‘)qﬁi.
For u,v € C$°(V), we may replace (aq(z)(8!*!/02%)¢;u,v) by a form
with no more than £ differentiations on the left and the formal adjoints
of no more than k differentiations and a,(z) on the right. This is
justified since ¢;u € C§°(V|y,). Summing all these forms gives a form
which is equal to (Bou,v) on C{°(V). It extends to a form ®(u,v)
which is continuous for u,v € W2 (V).

Let B be the extension of By to Fa (V).

Lemma 3.2. ®(u,v) = (Bu,v) for u,v € For(V).

Proof. Let (u;) C C§° such that wu; K uandve C§°. By definition,
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(Bu,v) = (u, Byv). Then
(u, Bov) = lim(u;, Bov) = lim(Bou;, v) = lim ®(u;,v) = ®(u, v).

Therefore, (Bu,v) = ®(u,v). By continuity this holds for v € Fy.
[}

The following applies in particular to D.

Proposition 3.3. If p(B) # & and (Byv,v) > a(v,v) for some
a € R and allv e C§°(V), then o(B) C [a,00).

Proof. We may take o = 0. Let u € Fyy, and (u;) C C§° with u; LY
Then

(Bu,u) = ®(u,u) = lim ®(u;, u;) = lim(Bou;,u;) > 0.

The conclusion now follows from Lemma 2.1. O

We will consider operators on V ® E, where E is a C-vector bundle
and V is an A-vector bundle. We first take V =e¢p = e = M x P.

We will use the notation ® for algebraic tensor product and ® for
completed tensor product of Hilbert modules. If P is an A-module and
Q@ is a B-module, P ® Q is the A ® B-module which is the completion
of P® Q for the inner product (p; ® q1,p2 ® ¢2) = (p1,P2) ® (q1,¢2) [5,
Section 13.5].

For the rest of this section, we will require that the bundle isomor-
phisms X; used in the construction of the Sobolev inner products be of
the form X; - ®X; g : (eQ E)|u, — (np®ncr)lg,, where X;,e is the iden-
tity on fibers. These will be called special inner products. The product
structure of ¢ determines a homomorphism s : POC™>(E) — C*(¢QF)

by s(p ® u)(z) = p @ u(x).

Lemma 3.4. s extends to unitaries s : P @ Wi(E) — Wi(e ® E).
These restrict to unitaries Sy, : P ® W2(E) = WP (e ® E).

Proof. By [21, Section 44.1], the image of s is dense in the C*
topology. Since C*°(e ® E) — Wy (¢ ® E) is continuous and C*°(¢ ® E)
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is dense in Wy (e ® E), the image of s is dense in Wi (¢ ® E). Under
the stated conditions on the X;, a calculation shows that the inner
products of p; ® uy, p2 ® uy and of their images are both given by
(p1,p2)p(u1, u2) g,k Therefore, completion gives a unitary. The proof
of the other statement is similar. O

These maps are compatible with inclusions such as Wy, — W; in an
evident sense. The diagrams involved commute on algebraic tensor
products with smooth sections, and therefore commute, since the
extensions between completions are unique. This type of argument
proves the commutativity of a number of diagrams in this paper.

It follows from this lemma that P ® Wy (E) and P @ W (E) may be
considered as subspaces of P ® Wy(E). It is generally true that, if Hy
and Hy are Hilbert spaces, T': H; — H is bounded and injective, and
P is a finitely generated A-module, then I @ T: P® H;y - P ® H is
injective. Since no further use of this fact will be made, the proof is
omitted.

We will show eventually that there are unitaries P @ Fy,(E) —
Fo,(e @ E). The following lemma is the first step.

Lemma 3.5. Fy, (V) is a closed subspace of War (V).

Proof. Let (u;) C Far be a Cauchy sequence for the 2k-norm. Then

2k . . . k
u; — u € Wog. Since Fop — W,? is continuous, u; — v € W,?. By
continuity of the inclusions of Wo; and W} into Wy, u; — u and v in
Wo, so u = v and u € Fyy. |

Consider the diagram below

P ® War(E) i>VV2]9(€ ® E)

> T

P®F2k(E) P®W0(E) —2 W0(€®E)

| |

P@WR(E) —5— Wi(e® E)



DIFFERENTIAL OPERATORS OVER C*-ALGEBRAS 253

The unlabeled maps are of the form identity ® inclusion. Commuta-
tivity of the triangle is clear. The right side commutes by the remark
following Lemma 3.4. Using that lemma, this shows that sx(I ® j)
maps P® Fyi,(E) isometrically into Fa (e ® E). We will show in Propo-
sition 3.8 that it is onto. This is most economically done after it has
been shown that the spaces are the domains of suitable operators.

3.3. Given a differential operator Dy on E, we will construct an A-
linear differential operator DO on £ ® F with similar properties. In fact,
we will construct a homomorphism of the algebras of differential oper-
ators Diff (F) — Diff4(¢ ® E). This is a special case of a construction
using connections in Section 4.

To a smooth endomorphism c¢ of E, assign ¢ = I, ® ¢. Choose
coordinate charts {U;} for M and isometric trivializations of the E|y;,.
A metric product structure on & was assumed given, so that each
(e ® E)|u, is trivialized. On U; assign to 9/0z; on E|y,,

—

o o0 0 7 7 0

b 0m 0w TV oy

These two assignments determine a homomorphism of the algebras of
differential operators over U;, which is independent of the choice of
trivializations for . Let Dg be a differential operator of order k on E.
If we use its local representations in the U; to construct A-differential
operators over the Uj, it follows from the transformation rule for 8/0z;
that the latter agree on each U; NUj;, which gives the desired Dy. Since

#

on (e®E)|y,.

% 8 8 8

8.Z'i a 6$i B 8.Z'i a 6$i ’
the composition rule for formal adjoints shows that the correspondence
preserves adjoints. The principal symbol of 0/0z; on E|y, or € ® E|y,
at € M is right multiplication by ¢ for ¢ € T* M,. Since (r ® €)¢* =
r® et for r € e,, e € E,, there is the equality of principal symbols
Ok (DO) = I. ® o1(Dy). Therefore Dy is elliptic if and only if Dy is.
(The definition of ellipticity for A-linear pseudodifferential operators is
the direct analog of the usual one, see [16, Section 3].

Let Dy have order 2k and D be the extension of Dy to For(e ® E).
The following shows that D is symmetric if Dy is formally self-adjoint.
Let V be any Hermitian A-bundle.
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Lemma 3.6. Let By be a formally self-adjoint differential operator
of order 2k on' V' and B its extension to Far (V). Then B is symmetric.

Proof. Let ® be the form of Lemma 3.2, so that ®(u,v) = (Bu,v) for
u,v € Fyp. Since By is formally self-adjoint, it can be shown in exactly
the same way that ®(u,v) = (u, Bv), so (Bu,v) = (u, Bv). O

3.4. From now on, we assume that Dg is formally self-adjoint and
elliptic with respect to Dirichlet boundary conditions; therefore, D is
symmetric with real spectrum. We aim to prove that the spectra of
D and D are identical. We will discuss the following diagram, with
reC.

P® ng(E) L)ng(&‘ ® E)
(3.3) 1®D,\J JD—A

I® D is defined to be the closure of I ® D considered as an unbounded
operator on P ® Wy(E) with domain P ® Fy,(E). D is symmetric,
so I ® D is symmetric and therefore closable. We will show first that
D(I ® D) = P ® Fy(E).

We observe that the extension of the inclusion P ® Foy(E) —
PO Wy(E) to P® Fa,(E) - P ® Wy(E) has as image the elements u
such that there exists a sequence (u;) C P ® Fy,(E) which is Cauchy
for the norm of P® Fo,(F) and u; — u. f A € Cthen D(I® D — \) =
D(I ® D). By definition, u € D(I ® D — )) if and only if there exists
(u;) C P ® Fa(E) such that u; — u and ((I ® D — A)u;) is Cauchy.
Choose A ¢ o(D). Then D — X : Fy,(E) — Wy(E) is bounded and
bijective. By the open mapping theorem D — A has a bounded inverse.
Then I® D — X =10 (D —)) is also bounded and bijective with
bounded inverse, so that (u;) is Cauchy in the norm of P ® Fa,(E) if
and only if ((I ® D — A)u;) is Cauchy.

To show that the diagram commutes it is sufficient to consider D and
D acting on the larger spaces Wa,. We can also replace the completed
tensor products with the dense subspaces given by algebraic tensor
products. Since C°(FE) is dense in Wy (E), it is enough to consider
elements p ® u with p € P and u € C*°(FE). For these, commutativity
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is direct from the definition of Dy. The following argument is given
since the proofs of more general statements in the literature are much
more involved.

Lemma 3.7. The spectra of D and I @ D are the same.

Proof. Let Ao ¢ (D). Since A — I ® A is a faithful representation
of LIWy(E)) into L(P @ Wy(E)), c(I® D — Xg)~ 1) =a((D — Xo)™}).
If T is an operator which is closable and injective, and T~ is closable,
then T-1 =T . Take T = I ® (D — Ay), so that T = I ® (D — Ao).
Then T~' =T ® (D — X\o)~! and T-1 = I ® (D — \g)~!. Therefore,

1
I®D ) =T D ) =16 (D - X)
—ToD X '=(I®D-x)",

so \p ¢ o(I®D). Then, by [23, Example 5.27], A € o(I®D) if and only
if (A=Xo)~! € o((I®D—Xp)~1) ifand only if (A—=Xg) ™! € o((D—Xo)™ 1)
if and only if A € o(D). O

Proposition 3.8. 1. The map s, of Lemma 3.4 is an isomorphism
from P ® Fy,(E) to For(e ® E).

2. The spectra of D and D are the same, in particular, O'(D) 1s real.

Proof. Tt has been shown that, in diagram (3.2), s is an isomorphism
and sg a monomorphism, and that so(I ® j) is a monomorphism of
P ® Fy,(F) into For(e ® E). Choose A€ C—R,s0 A ¢ o(I® D). It
follows that D — X is surjective. Dis symmetric, Lemma 3.6, so DX
is injective with bounded inverse [23, Theorem 5.18]. Therefore D — A
is bijective and sy, is an isomorphism. For (2) it remains to show that
o(D) = ¢(I ® D). From the diagram, for any A € C, D — X is bijective
if and only if I@ D—\is. If D=\ : For(e® E) — Wy(e® E) is bijective,
then since it is bounded, by the open mapping theorem its inverse is
bounded into Fy(e ® E) and so into Wy (e ® E); therefore, A ¢ o(D).
In the same way, I ® D — X is bijective if and only if A ¢ o(I ® D).

N

Therefore o(D) = (I ® D). u]
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3.5. Operators with “coefficients in A” will be introduced in earnest
by considering lower order perturbations of the operator D. The theory
of Rellich and Kato will show that such perturbations preserve certain
properties of the spectrum.

Let S and T be A-linear operators between Hilbert modules. Recall
that S is T-bounded if D(T) C D(S) and there exists C' > 0 such that
|Sull < C(||Tul| + ||u||) for w € D(T). The infimum of the numbers
a > 0 such that there exists a b > 0 with ||Su|| < al|Tul| + b||u is the
T-bound of S. If this is zero, we say that S is infinitesimally small with
respect to 7.

The perturbation result we need is as follows [18, Theorem 10.13]. Let
S and T be symmetric with D(S) = D(T") with S — T T-bounded with
bound less than one. Then S has real spectrum if and only if 7" does.
We take T' = D. Let Dy be a formally self-adjoint elliptic differential
operator of order 2k on € ® F with the same principal symbol as Do.
Let S = D be the extension of Dy to Fai(e ® E). D is symmetric by
Lemma 3.6.

Lemma 3.9. D — D is infinitesimally small with respect to D.

Proof. D is closed since p(D) # @. Since D(D D) C War(e ® E), D
satisfies an inequality of the form ||ul|sx < C(||Dul + |[ul)), K >0, [1,
Theorem 15.2]. It is therefore sufficient to show that, for every ¢ > 0,
there exists K. > 0 such that ||(D — Dyu|| < eHquk + K¢||u|| for all
u € ’D(D). Dy — Dy is a differential operator of order < 2k — 1 and
D — D is its extension to Foi(e ® E). Therefore, there exists L > 0
so that ||(D — D)u|| < L||ullax_1, v € Far(e ® E). The estimate now
follows from the interpolation property: given n > 0 there exists C;, > 0
such that [[uf|2x-1 < 7llullor + Cylluf. B

It follows that D has real spectrum.

If the principal symbol of a differential operator on ¢ ® E is of the
form ¢ = I ® 7, where 7 is a symbol on E, we say that the operator
has complex symbol. If, further, 7 is elliptic for Dirichlet boundary
conditions, we say that the operator has complex Dirichlet symbol.
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Now let Dy be any 2kth order formally self-adjoint differential oper-
ator on € ® E with complex Dirichlet symbol I ® 7. Then there exists
a 2kth order formally self-adjoint elliptic differential operator Dy on E
with o9 (Do) = 7 [17, Theorem 4.3.2], so Dy is elliptic with respect to
Dirichlet boundary conditions. Then o (ﬁo) = I ® 7. The preceding
discussion yields the following.

Theorem 3.10. Let E be a Hermitian C-vector bundle on M and €
a trivial Hermitian A-vector bundle. Let Dqy be a formally self-adjoint
differential operator of order 2k on e® E' with complex Dirichlet symbol.

Then the extension D of Dy to Fap(e ® E) is symmetric with real
spectrum.

4. Operators on nontrivial A-bundles. Results similar to those
of the preceding section can be proved for operators with complex prin-
cipal symbols on nontrivial A-bundles. The most important examples
are operators with coefficients in an A-bundle. We will continue the
notation of the preceding section.

4.1. Let V be a Hermitian A-vector bundle on M and D} a formally
self-adjoint differential operator of order 2k on V ® E. Let D! be the
extension of D} to Fur(V ® E).

Theorem 4.1. If D} has complex Dirichlet symbol, then D' is
symmetric with real spectrum. If (D§u,u) > a(u,u) for some a € R
and all u € C§°(V ® E), then D' has spectrum in [a, 00).

Proof. Using polar decomposition, one can choose an A-bundle W
and an isometric isomorphism r : V & W — ¢ for some trivial A-
bundle . Regard r as an identification. Let o2, (D}) = Iy ® 7. There
exists a formally self-adjoint differential operator D3 on W ® E with
oor(D3) = Iy @ 7. Let Dy = D} @ D2. Then o9,(Do) = I. @ 7 is a
complex Dirichlet symbol. Let D and D? be the extensions of Dy and
D to the appropriate Fag-spaces. By Theorem 3.10, D is symmetric
with real spectrum.

We will show that D and D! & D? are unitarily equivalent. Then,
since the spectrum of an orthogonal direct sum of operators is the union
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of the spectra, the spectrum of D! is real. It is also easy to see that
an orthogonal direct summand of a symmetric operator is symmetric,
so D' is symmetric. If the boundedness condition holds, then D' has
spectrum in [, 00) by Proposition 3.3. The remainder of the proof
doesn’t depend on a tensor product decomposition, so we will replace
V®EbyVand W ® E by W for notational simplicity.

We first show that the domains of D and D' & D? are the same. r
induces an isomorphism C*>°(V)@C>®(W) — C*(g). The construction
of the Sobolev inner products made use of trivializations of the bundles
over coordinate patches. We will assume that these have been chosen so
that those for € are the sums of those for V and W. Note that this choice
does not affect the generality of the conclusion. The inner products are
then direct sums, so that there are unitaries ¢y : Wi(V) & Wi (W) —
Wi(g). The same holds for the Wp-spaces. These are compatible
with inclusions for different values of &, since extensions from smooth
sections to Sobolev spaces are unique.

Lemma 4.2. to restricts to an isomorphism Fo, (V) & For(W) —
ng(&‘).

Proof. Every u € Fyi(e) corresponds uniquely to the sum of some
v € Wo(V) and w € Wy(W). It is therefore sufficient to show that
such a representation is possible with v and w in the Wy,-spaces and
in the Wp-spaces. These follow using the above isomorphisms for the
subscripts 2k and k. a

To continue with the proof of Theorem 4.1, consider m:

(Wo (V) @ Wo(V)) & (Wo(W) @ Wo(W))
— (Wo(V) @ Wo(W)) & (Wo(V) @ Wo(W))

Oy () @ Wo(e),

where the first map interchanges terms. This takes the direct sum of
the graphs of two operators to the graph of their direct sum. It follows



DIFFERENTIAL OPERATORS OVER C*-ALGEBRAS 259

from Lemma 4.2 that m takes D(D') @ D(D?) to D(D). The diagram

Fop (V) & Fop(W) —2— Fp(e)

Dl@DZJ/ JD

Wo(V) & Wo(W) ——— Wo(e)

to

is commutative. It is enough to check this with Fyj replaced by Wy
and then on the dense subspaces of C*° sections. For these it is clear
since Dy = D} @ D3. Tt is then evident that m takes the sum of the
graphs of D' and D? to the graph of D. u]

4.2. We construct operators satisfying the hypotheses of Theorem 4.1
by taking complex operators with coefficients in an A-bundle. The
construction is related to one in [17, IV.9]. Consider a first order
differential operator Ty on E. We initially work on a coordinate chart
U for M over which F is trivialized. Choose a connection V¥ for E.
Since VaE/ o differs from 0/0z; by an operator of order zero, we may
write

To=Ao+ Y AiVE .,

on U. Using a partition of unit for M puts Tp in the form By+) BjV§j
where the X; are vector fields. Let VYV be an A-linear connection
for V and V the connection on V ® E determined by V(u ® v) =
VVu®v+u® VEu. Let

(4.1) Ty=1Iy®@By+ Y (I® B))Vx;,

which is clearly a differential operator. Since we can write Ty =
Iy ® Ty + ZV}/(]_ ® Bj, it doesn’t depend on the choice of VE.
Then, since 01(Vy)az,) = 01(0/0z;), it follows as in Section 3.3 that
o1 (Tg) = Iv ® 01(Ty). If VV is unitary, the correspondence T = T
preserves adjoints. This results from a computation using the skew-
adjointness of the connections, taking V¥ unitary.

For an arbitrary unitary connection we don’t obtain a correspondence
of higher order operators, since the different Vj,5,, don’t commute.
However we may consider polynomials in a fixed first order operator
To. If p(t) is a monic polynomial of degree k with real coefficients, then
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define Dy = p(7}) and ﬁq = p(Tp). Then, by the composition rule for
symbols, 0% (Dy) = o1(p(1y)) = Iv ®01(1p)* = Iy ® 0 (Dy). A similar
computation shows that adjoints are preserved.

If VV is flat, i.e., curvature zero, one obtains a homomorphism
Diff (E) — Diff4(V ® E). Indeed, this situation is locally the one
we considered in Section 3.3. VV determines (by parallel transport)
a class of local trivializations of V' with respect to which Vg/azi =
0/0z;. Using (4.1) with the connection on E|y determined by partial
differentiation gives 87\8:1:1 = (0/0z;) @ Ig + Iy ® (0/0z;) = 0/0x;
on (V ® E)|y. Then, as in Section 3.3, if Dy is of order k, O'k(Do) =
I ® 0 (Dy) and adjoints are preserved if VV is unitary.

Therefore, in both cases Dy has complex principal symbol, and
Theorem 4.1 may be applied with Dé = IA)O provided that Ty or Dy is
formally self-adjoint and elliptic and p(t) is of even degree, then p(Tp)
is formally self-adjoint and strongly elliptic. p(t) = (2 + I)* gives a
lower bound of one and is often used for Ty = d + ¢ on differential
forms.

4.3. The conclusions of Theorem 4.1 hold for commutative C*-
algebras without assuming that the symbol of the operator, which will
be denoted Dy, is complex. The idea of the proof is to show that D,
is equivalent to a continuous family of operators over C.

So far we have avoided giving a definition of elliptic boundary condi-
tions over a C*-algebra A. The most frequently used description over
C is that of Hérmander [10, Definition 20.1.1]. It makes sense in gen-
eral and clearly agrees with our notion of complex Dirichlet symbol in
the case of Dirichlet boundary conditions. However, for a commutative
A it is rather easy to see that this definition is equivalent to assuming
that the restriction of the operator, in the sense described below, to
every point of the spectrum of A is elliptic for the restricted boundary
conditions. In what follows we will assume the latter.

We begin with some preliminaries on continuous fields of Hilbert
spaces [7, 10.1, 10.2] and families of differential operators. A fair
number of routine verifications are omitted.

Let Y be a compact connected Hausdorff space and £ a Hilbert C(Y)-
module. For y € Y, let e, : C(Y) — C be the evaluation. £, = £®., C
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is a quotient £/ Mg . The submodule Mg , can be described in two
ways: as {u € € | ey(u,u) = 0} or as EM,, where M, is the kernel
of e,. The inner product on &, is induced from that on £ by e,. Let
gy : € — &, be the quotient map. If T' = {(¢y(v)) | y € Y,u € &},
it is immediate that {€,} and I' satisfy the axioms for a continuous
field of Hilbert spaces. A homomorphism 7" : £ — F of Hilbert
C(Y)-modules, not necessarily with adjoint, induces homomorphisms
T,=T®., C:& — F, by T,(qyu) = qy(Tu).

Let V be a smooth bundle over M with fiber a finitely generated
C(Y)-module P. There is a natural C-bundle V,, over M such that
C(Vy) = C(V),. By Swan’s theorem, P may be realized as the

continuous sections of a Hermitian C-vector bundle over Y, so C(P), =
C" for some r. Let p, : C(P) — C". If X; are local trivializations of V

as in Section 3.1, the bundles of kernels of the maps V|y, X Uix P ey
U; x C" form a smooth subbundle of V. Let V, be the quotient bundle
and r, : V. — V, the quotient map. Then

1%
(4.2) TleiJ erPy

‘/;l |Ui )2—>Ul X CT
Y,

X 7
U; —)UZ’XP

defines local trivializations X,; for V,. A C(Y)-valued fiber inner
product for V' defines C-valued fiber inner product for Vj by evaluation
at y. Let ry« : C(V) — C(V,) be the induced homomorphism. The
L2-inner products (-,-) on C(V) and (-,-), on C(V,) are related by
(ry=u,ry=v)y = ey(u,v). wu is in the kernel of 7, if and only if
u € Mg(v),y. A linear splitting C” — P of p, and a partition of unity
determine a smooth right inverse s, of r,. Therefore, ry- is surjective,
and C(V,) = C(V), as claimed. Since r, and s, are smooth, r,- is
split surjective on C* (V') or C§° (V).

We now turn to differential operators and Sobolev spaces. A smooth
C(Y)-linear bundle endomorphism a of V descends to a smooth endo-
morphism a, of V,, which is bijective if a is. Given a differential oper-
ator Dy of order k on V, define Do, on V, by Dy, (ry-u) = ry«(Dou)
for u € C*(V). Dy, is differential, since in local coordinates (4.1)
(0/0z;)(ry=u) = 1y« (0u/Oz;). From what has been said it is evident
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that o4 (Dy,y) = 0k(Dy)y, so Do, is elliptic if Dy is. If Dy is formally

self-adjoint, then Dy, is also with respect to (-, ).

If (-,-)x is a Sobolev k-inner product for V' constructed using the lo-
cal trivializations (4.1), then its evaluation (-, ) , is a k-inner product
for V,,. The C(Y)-modules Wy(V), W2(V) and Fa, (V) define contin-
uous fields with spaces {Wy(V),}, etc. We will show that there are
isomorphisms of the type Wy(V,) = Wy (V),. ry- and sy~ are bounded
on smooth sections between the k-norms. For r,- this is clear; for
sy+ the usual proofs that a smooth bundle map defines a bounded ho-
momorphism apply. Therefore, ry« and sy~ extend to maps between
Wi (V) and Wy(Vy). Since rys, = I, 7y« is surjective. If u € Wy(V),
ry=u = 0 is the same as (ry-u,ry-u), = 0 or ey(u,u) = 0. There-
fore the kernel of ry- is My, (v),y, and Wy(V), is canonically iso-
morphic to Wy(V,). Since the inner products on both quotients are
induced by evaluation at y, the isomorphism is isometric. The proof
that W2 (V), = W) (V,) is the same. For Fy;(V), a diagram similar to
(3.2) shows that sy« : War(V,) = War(V) maps For(Vy) into For(V).
Then ry- : Fo, (V) — Fa,(V,) is surjective and the same argument as
before applies.

Theorem 4.3. Let Dy be a formally self-adjoint differential operator
of order 2k on a bundle V' of finitely generated modules over a commu-
tative C*-algebra with unit, which is elliptic with respect to Dirichlet
boundary conditions. Then the extension D of Dy to Far(V) is sym-
metric with real spectrum. If (Dou,u) > a(u,u) for some a € R and
u € C§°(V), then (D) C [a, 00).

Proof. D is symmetric by Lemma 3.6. Therefore, for A € C — R,
D — X is injective with continuous inverse [23, Theorem 5.18]. We will
show that D — A has dense range, so that A ¢ o(D). We consider two
operators from Fy(Vy) to Wo(V). One is Dy and the other is D,, the
extension of Dy ,. These are identical: D extends to an operator D’ on
W2 (V') acting by distributional derivatives, so D, extends to D, on
War(V,). D, extends to 5; on Wai(V,). By construction, D; = 5;
on C%°(V,). Since C*°(V,) is dense in Wa(V,), D, = B;. Therefore

D, = D,.

Ey is self-adjoint by the ellipticity assumption, so D, — A is surjective.
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Proposition 10.2.2 of [7], the implication (i) = (i7'), asserts that
(D — A)Fa,(V) is dense in Wy(Y').

The second conclusion is a consequence of Proposition 3.3. ]

5. Concrete Sobolev spaces. This section makes the connection
between the abstractly defined spaces £, of Section 2 and the concrete
Sobolev spaces of Section 3. We show that the Sobolev inner products
(+,-)r give rise to symmetric operators D on Fy, (V) with strictly
positive spectrum. The domain of D'/2 is W?(V) and on this (-,-); =
(-,-)4 which was defined to be (D'/2.,D'/2.). It follows that the
Sobolev inner products are all compatible. This gives a preferred
compatibility class of inner products on W,? (V), depending only on
the smooth structure of M. As consequences, differential or properly
supported pseudodifferential operators between Sobolev spaces have
adjoints, and Rellich’s theorem holds.

5.1. For the purposes of this section, a tensor product decomposition
of the bundle isn’t relevant, since the operator in question is essentially
scalar. Therefore, we will consider W (V) for any A-bundle V, which
is to be thought of as V ® e¢. In this context a symbol is complex when
it acts by complex scalars. We will show that there exists a differential
operator Dy of order 2k which satisfies the hypotheses of Theorem 4.1
such that (-,-)x = (Do-,-) on C§°(V). For this discussion, we assume
that a fixed choice of the inner products (-, -); has been made.

Lemma 5.1. There exists a formally self-adjoint differential operator
Dy with strongly elliptic complex symbol, which is bounded below by
some positive constant, such that if u,v € C§(V), then (u,v)r =
(Do’u,,’U).

Proof. For k = 0, where (-,-)o = (,-) we have Dy = I, so assume
k > 0. Let f and g be smooth sections of the trivial bundle n over
H™ with compact supports in the interior of H”. We can rewrite the
expression (3.1) as

(had= [ (FF.0) dus
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by integration by parts, where F' = Z‘algk(f)“((?'m'/axm). F is for-
mally self-adjoint and has the complex principal symbol (—)* E|a|= L §2%,
which is strongly elliptic. We defined

(wv)ve = D (X; o (@u) o Xis X; 0 (¢0) 0 X

%

If u,v € C§°(V), a single term of the integrand for this pulls back under
X; to L
(pigi(X; o F(Xi o (¢u) oX; ") 0 Xi,v) dpns

(after some rearrangement), where (dXx;)'dpgn» = p;dunp. Let Dou
be the sum of the expressions on the left of the bracket so that
(Dou,v) = (u,v),. Formal self-adjointness follows immediately from
the symmetry of (-,-) gn . We check that Dy is bounded below by some
positive number. By definition, (f, f)u»x > (f, f)ur, so as above

(u, wk >Z u) o Xi,X; o (diu) 0 Xi)n
= Z/M(¢iu’ Giw)pi dpar

- (St

The sum is bounded below on M so the estimate follows.

We show that D, is a differential operator with strongly elliptic
complex symbol. G; defined by G;s = X;l o F(X; o s) operates
on C”((X;l)*Vbi), which is the set of smooth functions s from Uj;
to the total space of V such that mys(z) = X;'z. If we define
Xis C°°((X;1)*V|a_) — C®(nlg,) by Xixs = X os, then Gis =
)A(;*lF Xixs. Therefore, G; is the composition of differential operators
and is differential of order 2k. Since oo (F') is complex and strongly
elliptic, the same is true of oo (G;).

The operator Q;u = Gj(u o Xi_l) on V|y, is differential with
o21(Qi)(, &) = o2k (Gs)(Xi(x), (dx;)'E) [15, p. 186]. From this it is
clear that o9, (Q;) is also complex and strongly elliptic. Including the
scalar factors gives p;¢;Q;¢; which is a differential operator on V|y,
with complex symbol which is strongly elliptic on the interior of the
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support of ¢;. Let R; be its extension by 0 to M. Then Dy = > R;
has strongly elliptic complex symbol on M. ]

Recall that a strongly elliptic symbol is elliptic for Dirichlet boundary
conditions. It follows from Theorem 4.1 that the extension D of Dy to
F5, (V) is symmetric with positive spectrum.

Proposition 5.2. D(D'/2) = W2(V) and (-,-)+ = (-,-)x on this
domain.

Proof. We first show that (u,v); = (u,v); for all u,v € Foy.
From Section 2.1 (u,v); = (Du,v) for u,v € Fa;. By Lemma 3.2
there is a Hermitian form @ which is continuous on W} such that
(Du,v) = ®(u,v), u,v € Fai,. Therefore, (u,v)s = ®(u,v), u,v € Foy.
By Lemma 5.1, (u,v)r = (Du,v), u,v € C§°, so (u,v)r = ®(u,v),
u,v € C§°. Since both sides are continuous on W,g , this equality holds
for u,v € W). Therefore, (u,v); = (u,v) for u,v € Fay.

Fyy, is a core for D'/2 so D(Dl/z) is the set of u € Wy for which there
exists (u;) C Far with u; — u and u; is Cauchy for || - ||+. I claim
that W) is the set of u € W, for which there exists (u;) C C§° with
u; — w and (u;) is Cauchy for || - ||x. If this holds and T} is a differential
operator of order < k, (Tou;) is Cauchy in Wy, so for some z € Wy,
(Tou;) — 2. Then, for v € Cg°,

(z,v) = lim(Tyu;,v) = lim(ui,va) = (u, Tg%v)

and u € Wy, so u € WQ. Conversely, if u € W), there exists (u;) C C§°
such that wu; LA u, which clearly implies the stated condition.

From these descriptions and the facts that C§° C Fay, and ||-||x = |||+
on Fyy, it follows that W2 C D(D?). On the other hand, suppose
(u;) C Fop, u; — u and (u;) is Cauchy for || - |+. Since C§° is
dense in W and Fy, C WP, we may choose (v;) C C§° such that
lu; — vil|]+ < 1/i. Then v; — u and (v;) is Cauchy for || - ||+, so
D(DY?) c Wy.

The equality (-,-)+ = (-,-) follows since it holds on the core Fy of
DY/?2. o
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5.2. We now derive consequences concerning Sobolev spaces. For the
properties of properly supported pseudodifferential operators, which
include differential operators, see [20, Chapter II]. Let V and W be
any Hermitian A-bundles on M.

Theorem 5.3. 1. All Sobolev k-inner products on WP (V) are
compatible.

2. Let Ty be a properly supported pseudodifferential operator of order
k—1 fromV to W. For any choice of such inner products, the extension

T:W2(V)— W2 (W) has an adjoint.

Proof. 1. We check the hypotheses of Proposition 2.2. Given two
such inner products, & and &, are Wy with the £2-inner products.
Dy and D, are the operators with domain Fs (V) derived from the
k-inner products. By Proposition 5.2, D(Dy/?) = D(D}/?) = W(V)
and (-,-)1,+ and (-,-)2,4+ are the k-inner products. We take S; = Sy =
C§°(V). It was noted in Section 3.1 that the identity j : S; — S» has
a formal adjoint. Since all k-norms are equivalent, j extends to the
identity W2(V) — W2 (V). By Proposition 2.2, this has an adjoint for
the two k-inner products.

2. Properly supported pseudodifferential operators have properly
supported formal adjoints, so Proposition 2.2 again applies. ]

The next theorem is more general and applies in particular to oper-
ators constructed using Theorem 4.1. For this we assume that inner
products have been chosen for M and V, so an inner product (-,-) on
Wo (V) is defined. Let D be a symmetric operator with domain Fy (V)
and positive spectrum.

Theorem 5.4. 1. For all such choices of inner products and
D, D(DY?) = W2(V), and the inner products (-,-)+ on W2(V) are
compatible.

2. If two such operators Dy and Dy have domains For(V) and
Fy (W), respectively, then the analog of (2) in Theorem 5.3 holds for
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the inner products (-,-)1,+ and (-,-)2,+.

Proof. If D is the operator associated to some k-inner product
for a given inner product (-,-) on Wo(V), D(DY?) = W2(V) by
Proposition 5.2. For any other D satisfying the conditions for (-,-),
conclusion (1) follows from Proposition 2.3. Theorem 5.3 provides the
connection between different choices of (-, ).

Assertion (2) is immediate from (1) and Theorem 5.3. O

Our remaining results can be similarly generalized. We now prove an
extension of Rellich’s theorem.

Proposition 5.5. The inclusions W2 (V) — W?(V) are compact for
k > 1, for any Sobolev inner products on these spaces.

Proof. Let WP(¢) have a special inner product as in Section 3.2.
Then, by Lemma 3.4,

P W, ———W(e)

I®jJ Jm

P oW ——— W(e)

with the horizontal arrows unitaries. The Sobolev spaces on the left
are those for complex functions. By Rellich’s theorem, j is compact.
For any Hilbert module @ there are isomorphisms

L(P)@ K(Q) = K(P) ® K(Q) = K(P® Q),

the latter coming from tensor product of operators [5, Chapter 13,
Section 5.1]. Therefore, I ® j, and thus m is compact. Since all
Sobolev inner products are compatible, the same will hold if they
are constructed as in Section 4.1, so that there are unitaries ¢ :
WR(V)eWR(W) — W(g). The conclusion then follows by composing
¢ 'mty, on the right with the inclusion of W (V') and on the left by the
projection onto W2 (V). o

We finally deal with inclusions of codimension zero submanifolds.
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Proposition 5.6. Let N be a codimension zero submanifold with
boundary of M. Then the inclusion of N induces adjointable maps
WR(V | N) = W{(V).

Proof. Consider the diagram

WE(V | N) ———Wg(V)

jJ Jm

Wi(e | N) —— Wi(e)

The k-inner product on C§°(V) restricts to one on C§°(V | N) so that
the inclusion of these spaces induces the inclusion r, and similarly for
s. If a special inner product is used for e, then s is identified with
I®q: P® Wj%’k —+ P® W}&Lk where ¢ is constructed like » and s.
Since ¢ is adjointable, so is s. On the other hand, using the inner
products and maps t; of Section 4.1, we may assume that j and m are
inclusions of orthogonal summands. Then m* is the projection onto
WR(V) so r=m*sj and r* = j*s*m. O
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