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ON NECESSARY CONDITIONS FOR
THE EXISTENCE OF ODD PERFECT NUMBERS

JOHN A. EWELL

ABSTRACT. Based on a well-known theorem of Euler,
which gives a necessary condition for the existence of odd
perfect numbers, the author presents two apparently new
necessary conditions. The method of proof also reveals a
couple of interesting related results.

1. Introduction. Asusual, Z := {0,£1,£2,...}, N :={0,1,2,...}
and P := N\{0}. Further, recall that the sum- of divisors functlon ois

defined by
=>d, neP
d|n

A positive integer n is called perfect if and only if o(n) = 2n. The
existence, or nonexistence, of odd perfect numbers is perhaps the
oldest open question of number theory, e.g., see [2, p. 12]. There
are, however, several theorems which give necessary conditions for the
existence of odd perfect numbers. Doubtless, the best known of them
is the following theorem due to Euler [1, p. 231].

Theorem 1.1. Ifn € P\{1} and n is an odd perfect number, then
canonically
e 2ey 2es 2e,

n=ppy P """Pr >
where p,p1,D2, - .. ,pr are distinct odd primes and p =e =1 (mod 4).

Clearly, this theorem requires that the given odd integer n(> 1) be
factored or, at the very least, partially factored as

n = p°m?,

where p = ¢ = 1 (mod 4) and m € P. However, even this partial
factoring can be decidedly difficult. Based on the obvious consequence
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166 J.A. EWELL

of Euler’s result that any odd perfect number must be the form 4m +1,
we here propose to give a couple of necessary conditions which are
entirely additive in character. These are: Theorem 1.2, stated below,
and its corollary, 2.3.

Theorem 1.2. For each m € P, if 4m+1 s an odd perfect number,
then

2m

(4m+1)°+ > o(8m+3—2k)o(2k—1) =0  (mod 2).
k=1

In Section 2 we prove this theorem and observe a couple of additional
results that originate in our method. Several arithmetical functions
arise naturally. These we collect in the following definition.

Definition 1.3. (i) For each n € N,

ra(n) == |{(x1, 22, 3, 74) € Z%|n = 27 + 23 + 2} + 23}

(ii) For each n € P, b(n) := the exponent of the exact power of 2
dividing n, and then 0d(n) := n2%™ is the odd part of n.

(iii) The arithmetical function ¥, is defined by
Z\Iflz(n)x" ::xH(l—mZ”)lz, lz| < 1.
1 1

In part (iii) of the foregoing definition x is to be regarded as a complex
variable. The function ¥;2 is due to Ramanujan [5, p. 155].

2. Proofs. Our proofs depend on the following two identities:

oo

(2.1) [T -2+t + e =Y 2™,
1 —oo
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which is valid for each pair of complex numbers ¢,z such that ¢ # 0
and |z| < 1.

o0

H (1—2")(1 +abz® ) (1 +a o 2?7
1

(ka0 o e
— Z mez a2m io: m2n2 b2n

) %)
+x § me(m+1)a2m+1 § xZn(n+1)b2n+1,

— 00 — 00

which is valid for each triple of complex numbers a, b, z such that a # 0,
b # 0 and |z| < 1. The first of these two identities, the triple-product
identity, is a celebrated result; and, elementary proofs of it abound,
e.g., see [4, pp. 282-283]. The second identity, due to the author, is
not so widely known. But there is an accessible proof of it in [3].

Our first step in the proof of Theorem 1.2 is to establish the following
lemma.

Lemma 2.1. For each m € N,

(2.3)
2m—+1
Up2m+1) = > (1) 'rg(2m + 1 - k)2"Fko(0d(k))
k=1
2m
+4) 22 R R 6 (0d(2m + 1 — k))o (0d(k))
k=1
2m—1 2m—k
+4 Z (—=1)Fry (k) Z 9b(2m+1-k—j)+b(7)
k=1 j=1

o(0d(2m+1—k — 7))o (0d(y)),
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2m—+2
(24) D (=1)Fra@m+ 2 - k)2"Pko(0d(k))
k=1
2m—+1
+4 ) 2=k R 6 (0d(2m + 2 — K)o (0d(k))
k=1
2m 2m+1—k
+4 Z(—l)km(k) Z 9b(2m+2—k—j)+b(j)
k=1 j=1

o(0d(2m +2 — k — 7))o (0d(5)) =

Proof. To prove Lemma 2.1 we first appeal to identity (2.1) to express
each series on the right side of identity (2.2) as an infinite product.

lo_o[(l_x2n)2(1+abx2n—1)(1+a—1b 1 2n 1)
1
(1—|—ab 1 2n 1)(1+a_1bx2"_1)
= ﬁ 1—z*)2(1 4+ a®2z*" 2)(1 + a22*"7?)
1
( +b2$4n 2)(1+b_2$4n_2)

oo

+a(at+a)b+b ][ - 231+ a’2™)
(1+a72 4n)(1+b2 4n)(1+b 2 4n)

Next, in the foregoing identity, we let a« = b and then let a — ia to get

H 1 —z? 1 +l‘2n 1)2(1 _ a2ac2"_1)(1 _ a_2m2"_1)
1

— H(l _ w4n)2(1 _ a2w4n—2)2
(1
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Now in (2.5) we let (i) + — —=, (ii) multiply the resulting identity and
(2.5), and (iii) in the product of the two identities let = — x/2 to get

(2.6) H(l —2™)*(1 - 22" )2 (1 —a*2?H (1 — a2

— H(l _ m2n)4(1 . a2x2n71)4(1 . a72m2n71)4
1

(oo}

—(a— a71)4x H(l — :vz")4

1
. (]_ _ a2w2n)4(l _ a72$2n)4‘

With z a complex variable and D, denoting differentiation with respect
to z, we define the operator ©, by O, := zD,. We then operate on
both sides of (2.6) with ©%; and, thereafter let a — 1. Since there
is a considerable amount of formal algebra in our proof, we adopt the
following abbreviations.

G=G(a,z) ==z H(l —2"")*(1 — a®2™)*(1 — a%2?")*,
1

E =E(a,z):

(1 _ 'Z_Qn)(l _ a2$2n—1)(1 _ a—2x2n—1),
(1 _ 1172")(1 _ a4m2n—1)(1 _ a—4w2n—1)
and -

a(z) = [J(1 - 2)*@1 - 2® 1"

Of course, F(a,r) = E(a?,z) and a(x) = E(1,z)3. But we use different
symbols to help us keep track of proceedings. Identity (2.6) now reads

(a —a 1)*G(a,z) = E(a,z)* — a(z)F(a, ).

Easily,
0%{(a —a H*G(a, )} a=1 = 2* - 41G(1, 2).
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We now operate on the right side of the foregoing identity, and there-
after let a — 1.

Recall that, for any complex number z and any k € N, (2) :=
z(z—1)-+-(z—k+1). Then, appealing (via identity (2.1)) to the series
representations of F(a,z) and F(a,z), we get

OE(a, ) a=1 = 3- (4)2 - 2*- E(l,x)z{ Z(—l)"nzwnz}

+4-20 B(1,2)> Y (1) e,
O~ a(z)F(a,2)}Haer = 2% B(L,2)* - (- 1)"nta"".
Hence,
2G(1,z) = —E(1,2)? Z(—l)"n4m”
(2.7) . )
+3E(1, w)2{ Z(—l)"n%” }
Put -
fla) = (-1)"a™
Then we easily recognize
0. f(z) = Y (~1)"n%™
and -
O2f(z) =Y (-1)"n*e"".

However, identity (2.1) yields

f@) =] 2" ).
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Hence,

and
0 f(x)=f (w){ [ i?(")“a(od(n))x"] 2

- i 26+ (0d(n))z™ }

1

Now, substituting these values for ©,f(z) and ©2f(x) back into
identity (2.7), we get

(o]

(2.8) G(1,z) = E(1, 9;)4{ > 2! ng(0d(n))z"
+4 [ i 2b(")0(0d(n))m"} }
We now recall that

E(l,w)4 = H(l _ mZn)4(l _ x2n71)8

Now, substituting this last series for E(1,z)?* into the right side of (2.8),
thereafter expanding and equating coefficients of like powers of =, we
prove Lemma 2.1. O
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On the strength of a well-known formula of Jacobi, we now eliminate
r4 from the identities (2.3) and (2.4). This formula is r4(n) = 8(2 +
(—=1)™)o(0d(n)) for each n € P. For a proof, see [4, pp. 311-314].

Corollary 2.2. For each m € N,

+82 k 1{2+ )2m+1—k}

o(0d(2m + 1 — k))2*® ko (0d(k))
2m
+4 Z 9b(2m+1—Fk)+b(k)
k=1
a(0d(2m + 1 — k))o(0d(k))
2m—1

+32 Z D2+ (-1)"}
U(Od(k)) Qik 2b(2m+1—k—j)+b(j)
o(0d(2m + 1 —k — 5))o(0d(34)),

(2.9)

(2.10)  2°C™F2)(2m, 4+ 2)5(0d(2m + 2))
2m—+1

+8 Z {2+ )2m+27k}

o(0d(2m + 2 — k))22® ko (0d(k))

2m+1
+4 Y 220 (0d(2m + 2 — K)o (0d(k))
k=1
2m+1—k
+32 Z {2+ (~1)FYo(0d(k)) Y 2b@mr2-kmib)
j=1

o(0d(2m + 2 — k — 7))o (0d(j)) =

Identity (2.10) is the key to completing the proof of Theorem 1.2.
We recall that, for each n € P, b(2n) = b(n) + 1 and 0d(2n) = 0d(n).
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Then, in (2.10) we let m — 4m and cancel a factor of 4 to get

(4m + 1) (4m + 1) — 2(4m + 1)o(4m + 1)?
+2Z )2+ (-1

a(0d(8m + 2 — k))2°® ko (0d(k))

8m+1
+2 Z {2 +( )8m+27k;}
k=4m-+2
o(0d(8m + 2 — k))2"® ko (0d(k))

8m+1
+ Y EmE2RHE o (0d(8m + 2 — k))o (0d(k))

k=1

8m+1—k
+8 Z ) {2+ (=1)*}o(0d(k)) Z ob(8m+2—k—7)+b(j)
=1

o(0d(8m +2 — k — 7))o (0d(j)) =

Now we explicitly assume that 4m + 1 is perfect, so that o(4m + 1) =
2(4m + 1). For the first and second sigma-sums of the foregoing
identity, the terms corresponding to even values of the index k are
clearly divisible by 2. For the first sigma-sum, the sum (including the
factor 2) corresponding to odd values of the index k is

2m—1
Spi=-2 ) o(8m+2—2j— 1){2j + 1}o(2j +1).

Jj=0

And, for the second sigma-sum, the sum corresponding to odd values
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of the index k is

=2 Z c(8m+2—2j —1){2j +1}o(2j + 1)
j=2m+1
2m—1

722 (8m+2 — (8m + 1 — 2j))

A{8m +1—2j}0(8m + 1 — 27)
:_22331 (25 + D){8m+2-2j—1}
(8m+2*23*1)-
Hence,

2m—1
S1+ 8o = —2(8m +2) Z a(2j + 1)o(8m +2 —25 —1).

Jj=0

Regarding the third sigma-sum, we observe that

8m+1
D 2PEmFR TR 6 (0d(8m + 2 — k) o (0d(k))
k=1
2m
=o(4m+1)*+2) o(8m+3 — 2k)o(2k — 1)
k=1

+ a sum divisible by 4.

Now we cancel a factor of 2 in the identity and observe that

(4m +1)* + i o(8m+3 —2k)o(2k —1) =0 (mod 2).
k=1

This completes the proof of Theorem 1.2.

Corollary 2.3. For each m € P, if 4m + 1 is perfect and

S:={keP|k<2m;8m+3 -2k and 2k —1 are squares},
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then |S| =1 (mod 2).

Proof. We recall that, for n € P, o(n) is odd if and only if n is a
square or twice a square. Hence, for each k € {1,2,...,2m}, the term
o(8m + 3 — 2k)o(2k — 1) is odd if and only if both 8m + 3 — 2k and
2k —1 are squares. Thus, because of Theorem 1.2 we must have |S| =1
(mod 2). O

Concluding remarks. The arithmetical function ¥, of identity
2.3 arises naturally in our proof of Theorem 1.2. It is one of a family of
such functions first introduced by Ramanujan [5, p. 155]. As a matter
of fact, for each positive divisor « of 24, the arithmetical function ¥,
is defined by

i\lla(n)x” = mﬁ(l — gin/e)e
1 1

an identity which is valid for each complex number z such that |z| < 1.
Of course, Vo4 = 7, the celebrated Ramanujan tau function. Formulas
for both ¥g and ¥y, are presented and discussed elsewhere.
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