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CYCLIC COMPOSITION OPERATORS
ON SMOOTH WEIGHTED HARDY SPACES

NINA ZORBOSKA

ABSTRACT. We determine hypercyclic and cyclic compo-
sition operators induced by a linear fractional self map of the
unit disc, acting on a special class of weighted Hardy spaces.
We establish the extreme possible cases and provide examples
of spaces where they occur.

1. Introduction. Let H be a Hilbert space of functions analytic
in the unit disc D, and let φ be a nonconstant self map of D. The
composition operator Cφ on H is defined by Cφf = f ◦φ for all f in H.

When H is the classical Hardy space H2, the operator Cφ is bounded.
Some general properties of Cφ on H2 are known, but still there are a lot
of open basic questions. The situation becomes more complicated as
we turn to some general classes of Hilbert spaces, for example, weighted
Hardy spaces. Then it is still an open question precisely which analytic
self maps of D will induce bounded composition operators. Neverthe-
less, composition operators provide a very interesting and important
class of concrete examples of operators and, like multiplication opera-
tors, give a natural connection between operator theory and analytic
function theory.

For an extensive reference on composition operators in general, see
[4] and [10].

This paper deals with the problem of cyclicity of composition oper-
ators. Recall that the operator T on a Hilbert space H is cyclic if
there is a vector f , called cyclic vector, whose orbit {TNf |n ≥ 0} has
a dense linear span in H, and T is hypercyclic if there is a vector,
called hypercyclic vector, whose orbit is dense in H. Hypercyclicity is
a much stronger property than cyclicity and, clearly, every hypercyclic
operator is cyclic.

Bourdon and Shapiro have done an extensive study of cyclic and
hypercyclic linear fractional composition operators on H2, see [1] and
[2].
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We shall determine cyclic and hypercyclic linear fractional composi-
tion operators on smooth weighted Hardy spaces. As in [1], the cyclic
behavior will be determined by the position of the fixed points of the in-
ducing function. However, the classification itself reveals a completely
different situation.

Non-elliptic linear fractional transformations induce composition op-
erators on disc-automorphism invariant smooth weighted Hardy spaces
that are:

(a) never hypercyclic,

(b) cyclic only when φ has two fixed points in C∪{∞}, one of which
is exterior, i.e., outside D.

The main results containing the above classification and a few other
results in a more general setting are presented in Section 2, after the
preliminaries. Section 3 contains results on the cyclicity of composition
operators on non disc-automorphism invariant smooth weighted Hardy
spaces and some open problems.

2. Preliminaries. Let us define first the weighted Hardy spaces
H2(β). For more details, see Shield’s paper on weighted shifts and
analytic function theory, [11].

Let β = {βn}∞n=0 be a positive sequence with β0 = 1, and let

H2(β) =
{
f(z) =

∞∑
n=0

anz
n; ai ∈ C,

∞∑
n=0

|an|2β2
n <∞

}
.

The inner product inducing the norm in H2(β) is defined by

(f, g)β =
∞∑
n=0

anb̄nβ
2
n,

where f and g are formal power series in H2(β) with coefficients an and
bn, respectively. If the sequence β has the property that (βn+1/βn) → 1
as n → ∞, the Hilbert space H2(β) is a space of functions analytic in
the unit disc D = {z : |z| < 1}.

Examples. 1) If βn = (n+1)a for some a in R, we denote the spaces
H2(β) by Sa. Then S0 = H2, the classical Hardy space; S1/2 = D, the
Dirichlet space; and S−1/2 = B, the Bergman space.
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2) If βn = expna for a in [1/2, 1), we denote the spaces H2(β) by Qa.

Every derivative of a function in the space Qa exists and is continuous
on the closed unit disc. Functions in Qa can have only finitely many
zeros in the closed unit disc, counting multiplicity, and so they form a
quasi-analytic class of functions.

For ω in D, let

kβω(z) =
∞∑
n=0

1
β2
n

ω̄nzn.

Then (f, kβω)β = f(ω) for all f in H2(β). Hence, kβω is the reproducing
kernel for ω, and it belongs to H2(β). This is not true in general if ω
is on the unit circle. But, if the sequence β converges to infinity fast
enough, for example, if

∑∞
n=0(1/β

2
n) <∞, then all of the above is true

for all ω in the closed unit disc. Note that, in this case, the spaces
H2(β) are small and consist of functions that are continuous on the
unit circle.

For a point ω in D, we define a derivative reproducing kernel dβω by

dβω(z) =
d

dω̄
kβω(z).

Then dβω(z) =
∑∞
n=1(n/β

2
n)ω̄n−1zn. For every ω in D, dβω belongs to

H2(β), and (f, dβω)β = f ′(ω).

Taking the sequence β to approach infinity fast enough so that∑∞
n=1(n

2/β2
n) < ∞, we get that the functions dβω(z) are in H2(β) and

that (f, dβω)β = f ′(ω) for all ω in D and f in H2(β). Note that in this
case the space H2(β) is very small and, for every function in it, that
the first derivative exists and is continuous on the unit circle.

We shall call such spaces H2(β) smooth weighted Hardy spaces.

It is easy to see that, for a point ω in D and a reproducing kernel kβω
in H2(β) we have that

C∗
φk

β
ω = kβφ(ω)

where C∗
φ is the adjoint of the (bounded) composition operator Cφ on

H2(β). If ξ in D is a fixed point of φ, where φ and dβξ are in H2(β),
then

C∗
φd
β
ξ = φ′(ξ) dβξ
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for Cφ a (bounded) composition operator on H2(β). Whenever H2(β)
is a smooth weighted Hardy space, both of the above equations are true
for all ω in D. Note that, in this case, the derivative φ′(ξ) exists as a
radial limit of φ′ at ξ.

A necessary condition for the operator Cφ to be cyclic on H2(β) is
that φ be univalent. The proof from [1, Proposition 1.2] for Cφ cyclic
on H2 applies. The main idea is to use the fact that if φ(a) = φ(b) for
a �= b, then kβa −kβb is a nonzero function in the orthogonal complement
of the range of Cφ, and then to produce at least two pairs of such a’s
and b’s. For details, see [1].

Note that the univalence of the inducing map guarantees boundedness
of the composition operator on some small weighted Hardy spaces, like
for example Sa spaces with 0 < a < 1/2. For details, see [9].

Linear fractional maps, as a simple example of univalent functions,
will be of special interest. They are maps of the form ((az+b)/(cz+d))
where a, b, c and d are complex numbers satisfying ad− bc �= 0.

Linear fractional maps have either one or two fixed points in C∪{∞}
and, with respect to their general behavior around the fixed points, they
are classified into four different groups: parabolic (only one fixed point),
elliptic, hyperbolic and loxodromic (see the first chapter in Ford’s book
on automorphic functions [5]).

We shall be interested in the linear fractional self maps of D. In that
case the Denjoy-Wolff theorem says even more about the fixed point
properties.

Theorem (Denjoy-Wolff). Suppose that φ is analytic in D, maps D
into itself and is not an elliptic automorphism of D. Then there exists
a unique fixed point α in D such that the sequence of iterates of φ,
{φ(n)}∞n=0, converges to the constant function α uniformly on compact
subsets of δ. Moreover,

(i) if |α| < 1, then 0 ≤ |φ′(α)| < 1 and

(ii) if |α| = 1, then limr→1 φ
′(rα) exists and is in (0, 1].

This special fixed point α is called the Denjoy-Wolff point of φ.

To prove the cyclicity of the composition operator in some of the
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cases in the following sections, we shall refer to a theorem of Clancey
and Rogers, see [3, Lemma 4 and Theorem 3].

Theorem (Clancey and Rogers). If A is a Hilbert space operator
and there exists a spanning set of eigenvectors for A corresponding to
pairwise distinct eigenvalues, then A is cyclic and, moreover, A has a
dense set of cyclic vectors.

Note that, if an operator A has a hypercyclic vector f , then it has a
dense set of hypercyclic vectors because every element in the orbit of
f is also hypercyclic for A. This is not necessarily true for every cyclic
operator. For example, the operator multiplication by z on H2 has
outer functions for cyclic vectors and they are not dense in H2. On the
other hand, composition operators on smooth weighted Hardy spaces,
the same as on H2 (see [1]), are either noncyclic or have a dense set of
cyclic vectors.

In some cases the cyclicity of a composition operator on two different
spaces can be derived one from another. If H2(β1) and H2(β2) are two
spaces such that H2(β1) ⊂ H2(β2), then a composition operator that
is bounded and cyclic (or hypercyclic) on the smaller space must also
be cyclic (or hypercyclic) on the bigger space.

This, or more precisely the part about hypercyclicity, is discussed in
[10, p. 111] as a property called the Comparison Principle. The main
reasons why the comparison works are that, since polynomials are dense
in all of the weighted Hardy spaces, the spaceH2(β1) is dense inH2(β2)
and that the convergence in H2(β1) implies convergence in H2(β2). A
cyclic (or hypercyclic) vector of the operator from the smaller space
is then a cyclic (or hypercyclic) vector of the operator on the bigger
space.

Thus, exploring cyclicity on smaller spaces provides cyclic vectors for
the operator on the bigger space that are nicer in the sense that they
satisfy some additional properties. For details, see [10].

Note that, for example, Proposition 3.4 implies that, for the composi-
tion operator Cφ on H2 with φ a nonelliptic disc automorphism, there
exists a hypercyclic vector that is in the Dirichlet space.



730 N. ZORBOSKA

3. Cyclicity of Cφ. In this section we shall present our results on
cyclicity of composition operators on small weighted Hardy spaces con-
tained in H2. We give a complete characterization for the special case
of linear fractional composition operators on smooth weighted Hardy
spaces which are disc-automorphism invariant, i.e., spaces H2(β) for
which disc automorphisms induce bounded composition operators.

The spaces Sa from Example 1 are disc-automorphism invariant, but
the spaces Qa from Example 2 are not, see [8].

We shall suppose that the composition operators considered in this
paper are all bounded.

Let us dispose first of the cyclicity in the case of an elliptic linear
fractional map. Any elliptic linear fractional self map φ of D must
be an elliptic disc automorphism. That means that Cφ is similar to a
composition operator Cψ induced by a rotation ψ. Being an isometry,
Cψ cannot be hypercyclic. If ψ is not a finite order rotation, then any
kβω with ω �= 0 is a cyclic vector for Cψ. Finally, because hypercyclicity
and cyclicity are preserved under similarity, it follows that Cφ is never
hypercyclic, and if φ is not of a finite order, Cφ is cyclic on every
disc-automorphism invariant space H2(β). Note that no smoothness is
needed for the conclusion.

Part (a) of the following result shows how drastically the situation
with hypercyclicity of general composition operators changes when we
move from H2 to smaller weighted Hardy spaces. As for the cyclicity,
i.e., part (b) of the theorem, the conclusion in the case when the
inducing function has two fixed points in D is the same as in H2,
but the proof is much simpler when dealing with smaller spaces.

Theorem 3.1. Let the sequence β satisfy
∑∞

n=0(1/β
2
n) <∞. Then

(a) No composition operator on the space H2(β) is hypercyclic.

(b) If the function φ has two fixed points in D, then Cφ is not cyclic
on H2(β).

Proof. (a) Let α be a fixed point of φ in D and kα the reproducing
kernel for α. Then (f, kβα)β = f(α) for all f in H2(β) and C∗

φk
β
α =

kφ(α)β = kβα. If g is a function in the orbit of some function f in H2(β),
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i.e., g = Cnφf for some integer n, we have that

g(α) = (g, kα)β = (Cnφf, kα)β = (f, (C∗
φ)
nkα)β = (f, kα) = f(α).

So, no orbit of Cφ can be dense in H2(β) and Cφ is not hypercyclic on
H2(β).

To prove (b), we use the well-known fact that the adjoint of a
cyclic operator can have only simple eigenvalues. If α and γ are two
different fixed points of φ in D, we have that C∗

φk
β
α = kβφ(α) = kβα and

C∗
φk

β
γ = kβφ(γ) = kβγ . So 1 is an eigenvalue for C∗

φ with multiplicity at
least two, and Cφ is not cyclic.

In the case when the spaces are even smaller, i.e., when
∑∞
n=0(n

2/β2
n)

<∞, the following is true.

Theorem 3.2. Let φ be a self-map of D with the Denjoy-Wolff point
α on the unit circle. If φ′(α) = 1, then Cφ is not cyclic on any of the
smooth weighted Hardy spaces.

Proof. Since φ(α) = α and φ′(α) = 1, we get that

C∗
φkα = kφ(α) = kα,

and that
C∗
φd
β
α = φ′(α)dβα = dβα,

where dβα is the derivative reproducing kernel of H2(β). But then, as
before, 1 is an eigenvalue of C∗

φ with multiplicity at least two, and Cφ
cannot be cyclic.

Note that parabolic self maps of D satisfy the restrictions of Theo-
rem 3.2 and, so, they do not induce cyclic composition operators on
the smooth weighted Hardy spaces. This is a striking difference from
the H2 situation, where parabolic maps induce cyclic composition op-
erators with a dense set of cyclic vectors, see [1].

An interesting family of weighted Hardy spaces is the spaces Sa,
Example 1. As a grows, the spaces Sa get smaller. When a is bigger
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than 1/2, i.e., when the space Sa is smaller than the Dirichlet space, we
have an example of a space that satisfies the restrictions of Theorem 3.1.
When a is bigger than 3/2, i.e., when the derivative of a function in Sa
is in a space smaller than the Dirichlet space, we have an example of a
space that satisfies the restrictions of Theorem 3.2, i.e., a space that is
a smooth weighted Hardy space.

What happens with the cyclic behavior of composition operators on
the spaces betweenH2 and the Dirichlet space, or between the Dirichlet
space and S3/2? Where exactly is the place where the changes occur?

The following results determine the cutoff space for the hypercyclicity
of composition operators. They show that the hypothesis on β needed
for Theorem 3.1 is sharp.

We start with a lemma that is a generalization of a result about H2

from [2, Proposition 1.1].

Lemma 3.3. For ζ on the unit circle, let Aζ be the set of functions
analytic on the closed unit disc that vanish at ζ. Then Aζ is dense in
the space H2(β), where β is such that

∑∞
n=0(1/β

2
n) = ∞.

Proof. Suppose that f(z) =
∑∞

n=0 anz
n is in H2(β) and is orthogonal

to Aζ . Just as in [2], we shall use the functions (ζ−z)(zn/β2
n+1) which

are in H2(β) for all n. We have that:

0 =
(
f, (ζ − z)

zn

β2
n+1

)
β

= ζ̄

(
f,

zn

β2
n+1

)
β

−
(
f,
zn+1

β2
n+1

)
β

= ζ̄an
β2
n

β2
n+1

− an+1,

and so |an+1|βn+1 = |a0|(1/βn+1) for all n.

Then, either a0 = 0 and thus an = 0 for all n, implying f ≡ 0 or

∞∑
n=0

1
β2
n

=
1

|a0|2
∞∑
n=0

|an|2β2
n <∞,

since f is in H2(β). But the second case contradicts the assumption
on β, and so it must be that f ≡ 0. Hence, Aζ is dense in H2(β).
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Note that, if
∑∞
n=0(1/β

2
n) < ∞, then the point evaluation kζ is in

H2(β) and is orthogonal to Aζ . Thus, Aζ cannot be dense in such
H2(β).

Proposition 2.3 from [1] states that every nonelliptic disc automor-
phism induces a hypercyclic composition operator on H2. The proof
uses the fact that the sets Aζ from above are dense in H2. So, using
Lemma 3.3, the same proof applies to the following.

Proposition 3.4. If φ is a nonelliptic disc automorphism, then Cφ
is hypercyclic on every disc automorphism invariant space H2(β) with∑∞
n=0(1/β

2
n) = ∞.

The previous proposition shows that, for hypercyclicity of disc-
automorphic composition operators on Sa spaces, the cut off occurs
at a = (1/2), i.e., at the Dirichlet space. It also confirms that the
restriction on β in Theorem 3.1 is necessary and sharp. It is still an
open question if the smoothness of the space is necessary for the con-
clusion of Theorem 3.2. Even a more specific question is the following:
if φ is a parabolic linear fractional transformation, is Cφ cyclic on Sa
whenever a ≤ (3/2)? Is there any difference in the cut off for cyclicity
of parabolic disc-automorphic and non disc-automorphic composition
operators?

We now turn from general univalent to linear fractional self maps
of D. Since the latter ones have either one or two fixed points in
C∪ {∞}, the cases left to determine the cyclicity of the corresponding
composition operators on smooth weighted Hardy spaces are when the
map has an external fixed point.

We shall show that, in that case, the induced composition operator
is cyclic on every disc-automorphism invariant space H2(β) and has a
dense set of cyclic vectors.

The following two examples will set the ground work for the last
theorem, which completes the cyclicity classification.

Examples. (a) Exterior and interior fixed points. Let φ(z) = az+b,
where a and b are complex numbers such that |b| < |1− a| and φ maps
D into D. Then φ is a linear fractional self map of D with interior
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fixed point (b/(1 − a)) and exterior fixed point infinity. Let

fk(z) =
(
z − b

1 − a

)k
for k = 0, 1, 2, . . . .

Then

Cφfk = fk ◦ φ =
(
az + b− b

1 − a

)k

=
(
az − a

b

1 − a

)k
= akfk

for all k,

and so fk’s are eigenvectors for Cφ on a general H2(β) corresponding
to different eigenvalues ak. (Note that, by the Denjoy-Wolff theorem,
|a| < 1.) Also the functions fk for k = 0, 1, 2, . . . , not only belong to
any general space H2(β) but they even span the space. By the theorem
of Clancey and Rogers, Cφ is then cyclic on H2(β) and has a dense set
of cyclic vectors.

(b) Exterior and boundary fixed points. Let φ(z) = rz + 1− r where
0 < r < 1. Then φ is a linear fractional self-map of D with boundary
fixed point 1 and exterior fixed point infinity. Let

fk(z) = (1 − z)k for k = 0, 1, 2, . . . .

As in Example 1, the fk’s are functions that belong to every space
H2(β), they are eigenvectors for Cφ corresponding to the distinct
eigenvalues rk and form a spanning set forH2(β). Thus, by the theorem
of Clancey and Rogers, Cφ is cyclic on every H2(β) and has a dense
set of cyclic vectors.

Theorem 3.5. Let φ be a nonelliptic linear fractional self-map of
D with exterior fixed point. Let β be a weight such that H2(β) is disc-
automorphism invariant, and such that Cφ is bounded on H2(β). Then
Cφ is cyclic on H2(β) and has a dense set of cyclic vectors in H2(β).

Proof. Let ξ1 be the exterior fixed point of φ. Since φ is a linear
fractional self map of D, it must have another fixed point ξ2 which is
in D.
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If ξ2 is interior, i.e., ξ2 is in D, take ψ to be the disc automorphism

ψ(z) =
z − (1/ξ2)
1 − (1/ξ2)z

.

Then φ1 = ψ◦φ◦ψ−1 has an interior fixed point ψ(ξ1) and the exterior
fixed point is infinity. Thus, φ1 must be of the form

φ1(z) = az + b

for some complex numbers a and b, where (b/(1 − a)) = ψ(ξ1), for
details see [5].

From Example (a) Cφ1 is cyclic on H2(β) and has a dense set of cyclic
vectors, and by similarity, the same is true for Cφ.

If ξ2 is a boundary fixed point, i.e., ξ2 is on the unit circle, then take
the disc automorphism

ψ(z) = λ
z − (1/ξ2)
1 − (1/ξ2)z

with λ =
1 − (1/ξ2)ξ1
ξ1 − (1/ξ2)

.

Then ψ(ξ1) = 1 and, if φ1 = ψ ◦ φ ◦ ψ−1, we have that φ1(1) = 1 and
the other fixed point of φ1 is ∞. In that case φ1 must be of a form

φ1(z) = az + 1 − a,

and, because of the Denjoy-Wolff theorem, we have 0 < a ≤ 1, for
details see [5].

But a could not be 1 for φ is not the identity, and so φ1 is as in
Example (b). We conclude by similarity that Cφ must be cyclic on
H2(β) and must have a dense set of cyclic vectors.

We summarize from the results on linear fractional transformations
in this section that, on smooth weighted Hardy spaces,

(a) the nonelliptic linear fractional self-maps of D induce nonhyper-
cyclic composition operators and that,

(b) except in two cases, they induce noncyclic composition operators.

The two exceptional cases are covered in Theorem 3.5.
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Note that, for the cyclicity of linear fractional composition operators
on the class of disc-automorphism invariant spaces H2(β), the smooth
spaces provide an example of an extreme possible situation.

4. Cyclicity on small spaces that are not disc-automorphism
invariant. Recall that, by Theorem 3.5, every linear fractional trans-
formation with exterior fixed point induces a cyclic composition op-
erator on disc-automorphism invariant spaces H2(β). What happens
with the same class of operators if the space is not disc-automorphism
invariant? Does the result still hold?

The operators from Examples (a) and (b) from the previous section
are bounded, cyclic and have a dense set of cyclic vectors on any
space H2(β). But not all of the linear fractional transformations
(automorphic or not) induce bounded composition operators on all of
the spaces.

One of the results from [7] states that if β has an exponential growth,
i.e., limn→∞(nA/βn) = 0 for all A > 0, then the space H2(β) is not
disc-automorphism invariant. Note that the spaces Qa are such, i.e.,
have the defining sequence with an exponential growth, and that all of
the above spaces are smooth weighted Hardy spaces.

The map φ(z) = (z/(z − 2)), which is not a disc-automorphism and
fixes the points 0 and 3, induces the operator Cφ which is unbounded
on, for example, the space Qa. The reason is that φ(1) = −1 and
|φ′(1)| = 2, and so φ has a derivative by modulus greater than one at
a point from the unit circle that is mapped onto the unit circle. For
details, see [7].

Is it then true that every bounded Cφ, where φ is a linear fractional
map with exterior fixed point, is a cyclic composition operator on a
small space H2(β) even though the space is not disc-automorphism
invariant? We will show that the answer is yes in the case when the
other fixed point of φ is 0.

Before we present the result, let us mention a few other general
remarks.

If the linear fractional transformation φ that is not a disc automor-
phism has an exterior and interior fixed points, then either φ(D) ⊂ D,
i.e. ‖φ‖∞ < 1, or if ‖φ‖∞ = 1, then φ2 = φ ◦φ is such that ‖φ2‖∞ < 1.
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Maps that are analytic on D, such as linear fractional transformations,
and have sup norm strictly smaller than one, induce compact compo-
sition operators on any space H2(β), see [12].

Note that, if Cφ is bounded and Cφ2 is cyclic, then Cφ must be cyclic
too.

We will combine these few remarks later, in the proof of the proposi-
tion.

We need one more result due to Hurst [6] which originates from
Cowen’s study of linear fractional composition operators on H2, see
[4], and is extended and used also in [7].

For the linear fractional map φ(z) = ((az+b)/(cz+d)) with ad−bc �=
0, let σ(z) = ((āz− c̄)/(−b̄z + d̄)). The pair [φ, σ] is called a dual pair.
If φ maps D into D, then so does σ. If z0 is a fixed point of φ in
C ∪ {∞}, then (1/z0) is a fixed point of σ and σ′(1/z0) = (1/φ′(z0)).
Define ν to be the map ν(z) = (ad− bc/(−b̄z+ d̄)2), and let Mν be the
operator of multiplication by ν.

For a positive sequence β, define the sequence γ by γ(0) = 1 and
γ(n) = (1/βn+1) for n ≥ 1.

Lemma [7, Lemma 3.1] and [6, Theorem 5]. Let the sequence
β be eventually monotonically increasing. Let the maps φ, σ, ν and
the sequence γ be as above. Then the operator Mν is bounded on
H2(γ) and, if Cφ is bounded on H2(β), then Cσ is bounded on H2(γ).
The restriction of C∗

φ onto the invariant subspace zH2(β) is unitarily
equivalent to MνCσ acting on H2(γ) via the unitary map U from H2(γ)
onto zH2(β) defined by Uzn = (1/β2

n+1)z
n+1.

Proposition 4.1. Let φ be a linear fractional map with exterior
fixed point that is not an automorphism and such that φ(0) = 0. If the
sequence β is eventually monotonically increasing and if Cφ is bounded
on H2(β), then Cφ is cyclic on H2(β) with a dense set of cyclic vectors.

Proof. Let z0 be the external fixed point of φ. If z0 is ∞, then
φ(z) = az and Cφ is cyclic, by Example (a) in Section 3. Hence, we
shall assume that z0 is finite.
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We shall also assume that ‖φ‖∞ < 1 since, if not, then ‖φ2‖∞ < 1
and the argument below applies to Cφ2 . But if Cφ2 is cyclic, then so is
Cφ.

Since ‖φ‖∞ < 1 and φ is analytic on D, we get that Cφ must be
compact on H2(β). The restriction of Cφ on the invariant subspace
zH2(β) is also compact. If f(0) = 0 and if Cφf = λf , then f◦(φn(z)) =
λnf(z) for every z in D. But φn → 0 as n→ ∞, and if f �= 0, it must
be that |λ| < 1. Thus, the spectral radius ρ(Cφ/zH2(β)) < 1 and so
‖Cφn

g‖ → 0 for every g in zH2(β). We shall use this to prove that
Ukγw +1 is a cyclic vector for Cφ, where U is the unitary defined above
and kγw is a point evaluation function from H2(γ) with w ∈ D and
w �= (1/z0).

Let h from H2(β) be such that

(Cφn(U
γ
kw

+ 1), h)β = 0

for all n. The proof will be completed when we prove that h must be
the zero function.

Since Ukwγ is in zH2(β), we have

0 ≤ lim
n→∞ |(Cφn

Ukwγ , h)β| ≤ lim
n→∞ ‖Cφn

Ukγw‖ · ‖h‖ = 0,

i.e.,
lim
n→∞(Cφn

Ukγw, h)β = 0.

But then
0 = lim

n→∞(Cφn(Ukγw + 1), h)β

= lim
n→∞((Cφn

Ukγw, h)β + (1, h)β)

= (1, h)β
= h(0),

and so h is in zH2(β).

We use the formula for C∗
φ on zH2(β) from the lemma to get that

0 = (Cφn
(Ukγw + 1), h)β = (Cφn

Ukγw, h)β
= (Ukγw, C

∗
φn
h)β = (Ukγw, UMνn

Cσn
U∗h)β

= (kγw,Mνn
Cσn

U∗h)γ = νn(w) · U∗h(σn(w))
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where [φn, σn] are a dual pair, and νn and U are as above.

Note that the maps νn are never 0 on D and that {σn(w)} is a
sequence of points in D converging to the point (1/z0). The map U∗h
from H2(γ) is analytic and zero on a sequence which converges to a
point in D, and thus U∗h must be the zero map. Since U∗ is unitary,
h must also be the zero map.

The maps φ(z) = rz + 1 − r, 0 < r < 1, from Example (b) which
fix a boundary and an exterior point are cyclic on all spaces H2(β). It
is known that they are also compact on a large class of H2(β) spaces,
where β is of exponential growth, see [7] and [8]. Since the compactness
played an important role in Proposition 4.1, it would be of interest to
see if there is any connection between the compactness and cyclicity of
composition operators on spaces H2(β) with β of exponential growth.
For example, if φ is a nonelliptic linear fractional transformation and
if Cφ is bounded on H2(β) with β of exponential growth, is Cφ cyclic
whenever a power of Cφ is compact?

Note that the parabolic maps, or linear fractional maps with interior
and boundary fixed point, always induce noncyclic composition oper-
ators Cφ on spaces H2(β) by Theorems 3.1 and 3.2, and no power of
Cφ is compact on such spaces, [7, Theorems 2.1 and 2.2].

The possible connection between cyclicity and compactness of some
composition operators is also suggested in [2, p. 87] where the space
considered is the space H2.
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