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SPHERICAL ISOMETRIES ARE HYPOREFLEXIVE
VLADIMIR MULLER AND MAREK PTAK

ABSTRACT. The result from the title is shown.

Let L(H) denote the algebra of all bounded linear operators on a
complex Hilbert space, H. If M C L(H), then we denote by M’ the
commutant of M, M' = {S € L(H) : TS = ST for every T € M}.
The second commutant is denoted by M"” = (M')’. Denote further
by W(M) the smallest weakly closed subalgebra of L(H) containing
M and by AlgLat M the algebra of all operators leaving invariant all
subspaces which are invariant for all operators from M. Recall that
M is said to be reflexive if W(M) = AlgLat M. For a commutative
set M, there is also a weaker version of the reflexivity: M is called

hyporeflexive if W(M) = AlgLat M N M.

Reflexivity and hyporeflexivity have been studied intensely by many
authors. Deddens in [3] proved the reflexivity of a single isometry. The
result was extended to sets of commuting isometries in [2], see also [6].

An analogy and, in some sense, a generalization of commuting N-
tuples of isometries are spherical isometries. A spherical isometry is
an N-tuple T' = (T1,... ,Tn) of mutually commuting operators on H
satisfying 7Ty + -+ + TNTn = In.

The reflexivity of doubly commuting spherical isometries was men-
tioned in [7]. The aim of the paper is to show the hyporeflexivity of
spherical isometries.

If 1 is a positive Borel measure on the unit sphere
OBy = {(21,.-,28) €CN |51 > + - + |2n|* = 1},

then denote by H?(u) the closure of polynomials in L?(p). We start
with the following
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Lemma 1. Let p be a finite positive Borel measure supported on
OBy. Then, for all nonnegative functions h € L*(u) and € > 0, there
exists a polynomial p such that

Ih —IpPllL <e.

Proof. First note that there is a nonnegative continuous function g
such that ||h — g||1 < (¢/2). Moreover, since p is finite, we can also
assume that ¢ > 0. By Theorem 3,5 of [8], there exists a sequence
prn of polynomials such that |p,| < /g and |p,(2)| = 1/g(z) almost
everywhere p on 0By. Hence g — |p,|? < g € LY(u) and g(z) —
|pn(2)]? — 0 almost everywhere y on 0B . By the Lebesgue dominated
convergence theorem, there exists an n such that ||g — |p,|?||1 < (¢/2).
Hence, ||k — |p|?||1 < € for p = p,.

Using the terminology of Bercovici [2], the result of Lemma 1 ex-
actly means that the subspace H?(u) C L?*(u) has the approzimate
factorization property. Thus, by Corollary 1.2 of [2], we have

Corollary 2. Let p be a finite positive Borel measure on 0By and
h € L*(p). Then there exist f € H*(u) and g € L*(n) such that
h(z) = f(2)g(z) almost everywhere p.

Let us fix from now on a spherical isometry T = (Ty,... ,Ty) C
L(H). Then T is jointly subnormal by Proposition 2 of [1]. It
means that there exist a Hilbert space K D H and an N-tuple
T= (Tl, TN) of mutually commuting normal operators on K such
that T; = T |gr for i =1,...,N. Further, the Jomt spectral measure of
T is supported on By, equlvalently Tl Ty +---+ T TN = 1. We can
assume that 7' is the minimal normal extension of T in the sense that
K= vaezNT*aH.

If S € T, then, by Proposition 8 of [1], there exists S € L(K)
commuting w1th T;,i=1,...,N, such that ||S|| = ||S] and S = S|x.
In fact, S is uniquely determlned for the minimal extension 7. Indeed,
S commutes also with T* for i = 1,...,N by Fuglede’s theorem and
ST*xg = T* Sz = T*O‘Sx for a € Zf and ¢ € H. Hence, the

uniqueness of S follows from the minimality of the normal extension.
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Proposition 3. Let T’ be a spherical isometry. If S € AlgLatT'NT",
then S € T".

Proof. Proposition 3, formulated for commuting N-tuples of isome-
tries, is the main result of [5], but it remains true with the same proof
in our situation. For convenience of the reader, we indicate briefly the
main steps of the proof.

Let E(-) be the spectral measure of the normal N-tuple 7. Denote
by pe = || (-)z||* the positive scalar measure corresponding to z € K.

A [5, Lemma 4]. For z,y € H there exists a complete number A such
that the measures pg; V puy and pg1y, are equivalent, i.e., absolutely
continuous with respect to each other.

In fact, all but countably many complex numbers satisfy the property
of A.

For € H, denote by Z,(z), Z(x), the smallest subspace of K
containing x which is invariant, reducing, respectively, with respect
to all Tl, e ,TN.

By the assumption, S commutes with 7; and fi*, 1 =1,...,N.
Further, SZ,(z) C Z; (). Since Z(z) = VaeznT"*Z;(x), we have
SZ(z) C Z(x). Consequently, S|Z(z) = t,(T)|Z(z) for some function
ty € L (ug).

B [5, Lemma 5]. If z,y € H and p, < py, then t, = t, almost
everywhere ;.

By induction it is easy to generalize A and B to finite families of
vectors.

Proof of Proposition 3. Let Ve L(K) commute with Ti,..., Ty, let
u € K and € > 0.

Since K = Vgzep Z(z), we can find vectors z1, ... ,&n, &, ... , 2, € H
and u; € Z(z;),i=1,... ,n, u; € Z(z}), j =1,... ,m, such that

n m
u—Zui <, HVU—ZUQ
i=1 i=1

j
By A and B there exists a function f € L*(u) where p = VI py, V

< E.
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\/2":1/%; such that §|Z(xi) = f(T)|Z(xi) and S’|Z(x;-) = f(T)|Z(x9)
for all 7,j. Then

[75u— 57u] < HVSu VY w

i=1

TR
i=1 j=1

SZu; —SVu
=1

< IVIHIS]

n
u — E U;
i=1
n

; vam S - £ | + 18]

i=1 j=1

m

. -
E u; — Vu
j=1

<IVIIS|e

¥ ||f<:f)||(HV§ui TV

m
+ [Vu qu;
j=1

) +ISlle

< 2| V|[[ISle +2S]le-
Since € was arbitrary, we have V.Su = SVu so that S € (T')".

Recall from [4] that an algebra W C L(H) closed in the weak operator
topology has property D if every weakly continuous functional ¢ on W
can be written in the form ¢(A) = (Az,y), A € W, for certain vectors
z,y € H. Now we will show

Lemma 4. Let T be spherical isometry. Then AlgLatT N'T' has
property D.

Proof. Let ¢ be a weakly continuous functional on B := AlgLatT N
T'. Then there are z;,y; € H, i = 1,...,n, such that ¢(S) =
St (Szi,y;) for S € B. Let Ky be the smallest closed subspace
containing ;,... ,Tn,Y1,-.. ,Yn, which reduces T;, i = 1,...,N.
Using the spectral theory, there exist a finite measure p = VI, (g, V
y;) on OBy, sets OBy = 01 D 02 D -++ D 02, and a unitary operator

2n
U: Ky — @@L
i=1

o:)
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such that Uv(T|x,)U " = M, for every function v € L>(u), where M,
is the operator of multiplication by v. Note that the space &2, L%(u|,,)
can be identified with a subspace of L?(u, F), where F is a Hilbert space
with dim F = 2n.

Let S € B. Since S € Alg Lat T, the space Hy := KoM H is invariant
with respect to S. Since S € T”, we also have SK, C K,. Moreover,
by Proposition 3, we have S € 7", and one can easily show that
S|K0 € (T|Ko)”- Thus, there is a function us € L>(u) such that
S|k, = us(T)|k,, and consequently S|g, = us(T)|m,-

Now we have

n n

p(S) = Z<S$iayi> = Z<U5$i, Uys)

- Z<Uus(f)xi, Uyi) = > (MyUz;, Uy;)

i=1

=3 [ s, W) () du)

= /US(Z) D ((Uzi)(2), (Uyi)(2))r dp(z)

1=

- / us(2) £ (2) dp(2),

=

where f(z) = 3211 ((Uz:)(2), (Uys)(2)) 7 € L' ().

By Lemma 4 of [5] there is a linear combination w of z1,..., %y,
Y1s--- ,Yn such that u, and p are absolutely continuous with respect
to each other. Hence, du = vdp,, for some function v € L*(p,,) and
v > 0 almost everywhere y,,. Thus, fv € L'(uw) and, by Corollary 2,
there exist g € H?(u,) and h € L%(u,) such that fv = gh almost
everywhere fi,,.

Denote by K the smallest subspace of K containing w, which reduces
T;,i=1,...,N. Let V : K1 — L?(p,) be the unitary operator such
that Vr(T)w = r for all 7 € L (1,,). Then we also have M,V = Vr(T)
for r € L™ (uy) = L°°(u). Denote x = V=g € V-1H?(pu,,) C H and
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7=V 'h € K,. Then, for S € B, we have

0(8) = [ustn= [ustodu,

= /usgﬁduw = <Musg,h>Lz(uw)
= (V" Mys9, V7 h) = (us(T)V"1g, V7 h)
= (us(T)x, §) = (Sz,§) = (Sz, Prij) = (Sz,y),

where y = Ppy. Hence B has property D.

Recall that, by Theorem 6.2 of [4], a unital commutative weakly
closed algebra W C L(H) is hyporeflexive if AlgLatWW N W’ has
property D. Hence we have proved the following main result of the
paper. O

Theorem 5. Let T be a spherical isometry. Then T is hyporeflezive,
i.e., W(T)=AlgLatTNT".
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