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SYMMETRY INCREASING BIFURCATIONS
VIA COLLISIONS OF ATTRACTORS

CORDULA HEINRICH

ABSTRACT. In 1988, Chossat and Golubitsky observed
numerically, in discrete dynamical systems equivariant under
the action of a finite group, a phenomenon for which they
coined the name symmetry increasing bifurcation. They ob-
served that, while varying a parameter, conjugate attractors
of such a system may collide yielding an attractor with larger
symmetry group than before.

One of the questions arising in this context is the following:
Given a group Γ, which subgroups Σ of Γ are admissible in the
sense that Σ-symmetric attractors of a Γ-equivariant mapping
may undergo a symmetry increasing bifurcation?

In this paper we extend the approach to solve this prob-
lem made by Dellnitz and Heinrich. We construct collisions
of attractors at arbitrary reflection hyperplanes, as well as
collisions which take place at points of trivial isotropy. Com-
bining these results we are able to give necessary and sufficient
criterions for admissibility of these collisions.

1. Introduction. Discrete dynamical systems on Rn equivariant
under the action of a finite group Γ typically possess attractors display-
ing symmetry. More precisely, these attractors as a set are invariant
under the action of a subgroup of Γ. If a parameter is introduced into
the system, preserving the symmetry, then one can often observe that
these attractors collide with conjugate attractors yielding an attractor
with larger symmetry than before. This phenomenon was observed by
Grebogi, Ott, Romeiras and Yorke [11] and Chossat and Golubitsky
[6], who named these transitions symmetry increasing bifurcations.

Since then, other mechanisms by which symmetry can be increased
have been observed. In particular, three mechanisms have been de-
scribed in [7]. Apart from collisions, also “explosions” of attractors
may take place, see also King and Stewart [13], and, for continuous
groups, an attractor may start to “drift” along its group orbit yielding
larger symmetry than before, see Dellnitz, Golubitsky and Melbourne
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FIGURE 1. A symmetry increasing bifurcation. An attractor collides with
two conjugate counterparts yielding an attractor with increased symmetry.

[7] and Aston [4]. Contrary to symmetry increasing bifurcations caused
by a collision of attractors, one may also observe, for so called Milnor
attractors, that these attractors touch their conjugate counterpart but
do not merge with it to form an attractor with increased symmetry, see
Ashwin [2].

In this paper we consider the special type of symmetry increasing
bifurcation caused by a collision of attractors. The group Γ is always
assumed to be a finite subgroup of O(n) with the standard action
on Rn. We investigate the following question. Given a group Γ, a
subgroup Σ of Γ and an element κ ∈ Γ\Σ, when does there exist a Γ-
equivariant, parameter dependent, continuous system on Rn in which
we may observe a Σ-symmetric attractor A colliding with its conjugate
attractor κA and merging to form an attractor with symmetry 〈Σ ∪
{κ}〉?

To answer this question, another problem has to be considered first,
namely, which subgroups Σ of Γ are admissible in the sense that there
exists a Σ-symmetric attractor of a continuous Γ-equivariant system.
Melbourne, Dellnitz and Golubitsky [14] stated necessary conditions
for admissible subgroups and Ashwin and Melbourne [3] proved that
these conditions were sufficient as well. They showed that admissibility
depends crucially on the reflection hyperplanes of elements in Γ\Σ. The
Σ-symmetric attractor may not intersect these hyperplanes, and hence
it must be contained in certain connected components bounded by these
reflection hyperplanes. For diffeomorphisms, the question of admissible
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subgroups was treated by Field, Melbourne and Nicol [9].

To prove their results, Ashwin and Melbourne use embedded Σ-
symmetric graphs, on which they define the dynamics. We apply their
methods to construct parameter dependent embeddings. This approach
was first made by Dellnitz and Heinrich [8]. The authors considered
collisions taking place at precisely one reflection hyperplane and came
to the conclusion that in this case a symmetry increasing bifurcation
could take place if and only if κ commuted with all elements in Σ.

In this paper we extend this approach. We not only admit collisions at
arbitrary reflection hyperplanes, but we also look at collisions where κ
is not a reflection, thus allowing κ to be any element in Γ\Σ. Moreover,
we extend the construction in [8] beyond the critical point of collision,
that is, we construct attractors with symmetry group 〈Σ ∪ {κ}〉 after
the collision. Our main results are two theorems, Theorems 4.10 and
4.21, which treat the two separate cases depending on whether κ is a
reflection or not. Each of these theorems gives a necessary and sufficient
condition for admissibility of symmetry increasing bifurcations.

An example of an admissible symmetry increasing bifurcation can
be observed in Figure 1. Here, the underlying group Γ is D3, and
the group Σ of the attractor before the collision is D1. From the
picture, it appears that a transition from D1 to full D3-symmetry is
admissible, and indeed it follows from Theorem 4.10 that this is the
case. On the other hand, it will turn out that a transition from Z3 to
D3-symmetry is not possible although both groups may be symmetry
groups of attractors of a D3-equivariant system. Other examples can be
found in Section 4.5, where all admissible transitions of the tetrahedral
group have been classified.

This paper is an excerpt from my Ph.D. Thesis [12].

2. Symmetry increasing bifurcations. In this section we are
going to define what we mean by a symmetry increasing bifurcation.
Roughly we wish to apply this term to the phenomenon of a collision
of chaotic attractors of discrete dynamical systems.

2.1. Preliminaries. Throughout the paper we consider discrete dy-
namical systems, given by a continuous parameter dependent mapping
f : Rn × R → Rn. Now suppose that Γ < O(n) is a finite group with
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the standard action on Rn and that f is equivariant under this action,
i.e.,

f(γx, λ) = γf(x, λ)

for all x ∈ Rn, λ ∈ R and γ ∈ Γ. For a fixed parameter value, there
may be attractors associated to the dynamical system. We define an
attractor to be a stable ω-limit set, precisely

Definition 2.1. A set A ⊂ Rn is called stable (in the sense of
Liapunov) if, for any neighborhood U of A, there exists a neighborhood
V of A such that for any j ∈ N we have f j(V ) ⊂ U .

The ω-limit set ω(x) for any x ∈ Rn is the set of accumulation points
of the orbit of x, that is, of the sequence (f j(x))j∈N.

An attractor is a stable ω-limit set.

An attractor of a mapping f has the symmetry of a subgroup of the
group Γ under which f is equivariant. By this we mean the following:
We define the symmetry group of a set B ⊂ Rn to be the subgroup of
Γ which fixes B as a set, that is,

ΣB = {γ ∈ Γ | γB = B}.

If Σ = ΣB, we say that B is Σ-invariant. Moreover, we call a Σ-
invariant ω-limit set B Σ-symmetric, if B contains points of trivial
isotropy.

If an attractor A has a symmetric group Σ which is strictly smaller
than Γ, it is easy to check that there must exist conjugate attractors γA
for any γ ∈ Γ\Σ. In this context the following result is most relevant,
which was first proved by Chossat and Golubitsky [6] and was then
reproved in [14] in the current setting.

Proposition 2.2. Let A be an attractor of a Γ-equivariant mapping
f . Then, for any γ ∈ Γ, we have either A = γA or A ∩ γA = ∅.

This proposition helps us to understand why symmetry increasing
bifurcations occur. Suppose that we observe a Σ-symmetric attractor
A in a Γ-equivariant system, and let κ ∈ Γ\Σ. Hence, there exists
a conjugate attractor κA which, by the above proposition, does not
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intersect A. Now suppose that, while varying a parameter, these two
conjugate attractors collide. Then, by Proposition 2.2, we would expect
them to merge and form an attractor with a larger symmetry group,
namely 〈Σ ∪ {κ}〉.

2.2. Admissible subgroups of Γ. To understand the setting
of a symmetry increasing bifurcation, it is necessary to look at the
symmetry groups and specific properties of the attractors involved.
A first observation is that a Σ-symmetric attractor A may not, by
Proposition 2.2, intersect any reflection hyperplanes of reflections that
are not contained in Σ. Recall that a reflection is defined as a group
element τ ∈ O(n) such that dim (Fix (τ )) = n − 1, where we let

Fix (τ ) def= {x ∈ Rn | τx = x}.

If A is a ∆-symmetric attractor, the reflection hyperplanes of the set

K∆
def= {τ ∈ Γ\∆ | τ is a reflection}

cannot intersect A. That is, A ∩ L∆ = ∅, where

(2.1) L∆
def=

⋃
τ∈K∆

Fix (τ ).

The set L∆ separates Rn into connected components. These com-
ponents play a crucial role in determining which symmetry groups of
attractors are admissible in the sense that there exists a continuous Γ-
equivariant dynamical system with a Σ-symmetric attractor. Precisely
we define, using the notation of [3],

Definition 2.3. A subgroup Σ of a finite group Γ < O(n) is
called admissible if there exists a continuous Γ-equivariant mapping
f : Rn → Rn with a Σ-symmetric attractor A.

Moreover, we call such a subgroup Σ strongly admissible, if f and A
can be chosen such that A is connected.

An admissible subgroup which is not strongly admissible will be
denoted weakly admissible.
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Now we are in a position to state the main result in [3], which gives
a classification of the admissible groups.

Theorem 2.4. Let Γ be a finite subgroup of O(n), n ≥ 3.

(a) A subgroup ∆ < Γ is strongly admissible if and only if ∆ fixes a
connected component of Rn\L∆.

(b) A subgroup Σ < Γ is admissible if and only if Σ is a cyclic
extension of a strongly admissible group ∆, i.e., if ∆ is normal in Σ
and Σ/∆ is cyclic.

Remark 2.5. This theorem is also valid for n = 1, 2 except in the case
when n equals 2 and Γ is cyclic. In this case both Γ and 1 are strongly
admissible and all other subgroups are weakly admissible.

As stated in the theorem, every admissible subgroup Σ has a strongly
admissible subgroup ∆ such that Σ/∆ is cyclic. However, this subgroup
need not be unique. For example, consider the group Γ = D1 acting
on R2 by a reflection. Then both 1 and D1 are strongly admissible.
Hence we may choose either D1 or 1 as a strongly admissible subgroup
of D1. The cyclic group is then either D1/D1

∼= Z1 or D1/1 ∼= Z2.

In what follows we will describe a way in which to find a unique
subgroup ∆. That is, given a Σ-symmetric attractor A, we want to
determine a specific strongly admissible normal subgroup of Σ which
we are going to call the associated group of A. For this purpose we
need to explain some notation and results obtained in [14], where the
necessary conditions of Theorem 2.4 were proved.

To begin, we let L be a subset of Rn and define PL as the set
containing L and all the preimages of L under f , that is,

PL =
∞⋃

k=0

f−k(L).

Because of f−1(PL) ⊂ PL, we then have a mapping

f : Rn\PL −→ Rn\PL.

Connected components of Rn\PL are mapped into connected compo-
nents, since f is continuous. For an attractor, we have the following
result for these components (the proof can be found in [14]).
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FIGURE 2. Sketch of a D2-symmetric attractor of a D4-equivariant system.
The associated group ∆ is generated by the reflection whose reflection hyper-
plane intersects the attractor.

Lemma 2.6. Let L ⊂ Rn and, let A be an attractor of f : Rn → Rn.
Suppose that A ∩ L = ∅. Then the following holds.

(a) The attractor A is covered by finitely many connected components
C0, . . . , Cr−1 of Rn\PL.

(b) These components can be ordered such that f(Ci) ⊂ Ci+1modr

holds.

As our set L, we choose the following set

L =
⋃

τ∈Γ reflection,
Fix (τ)∩A=∅

Fix (τ )

and consider the connected components of Rn\PL. By Lemma 2.6, A
is covered by finitely many of these components, which we denote by
C0, . . . , Cr−1. Now let

(2.2) ∆ = {δ ∈ Σ | δCi = Ci for all i ∈ {0, . . . , r − 1}}.
In the proof of Theorem 4.10 in [14] it is shown that the group ∆
as defined here is in fact a strongly admissible normal subgroup of Σ.
Moreover, we even have L∆ = L with this choice of ∆, see [8]. We
define

Definition 2.7. Let A be a Σ-symmetric attractor, and suppose
that ∆ is constructed as in (2.2). Then we call ∆ the associated group
of A.
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To illuminate the choice of the associated group, we consider the
following example. Let Γ = D4, and suppose that A is a D2-symmetric
attractor, outlined as shown in Figure 2. Of the copies of D1 contained
in D2, just one may be chosen as the associated group ∆ of D2,
namely the one generated by the reflection whose reflection hyperplane
intersects the attractor. This reflection is, apart from the identity, the
only element in D2 fixing connected components of Rn\L, namely the
ones in which the attractor is contained.

2.3 Admissible triples. We will now introduce our definition of
a symmetry increasing bifurcation via a collision of attractors. To
begin with, let us state some notations which we assume to be valid
throughout the paper.

Notation 2.8. Let Γ < O(n) be a finite group. We assume that the
group ∆ is a strongly admissible subgroup of Γ; for a definition of a
strongly admissible subgroup, see Definition 2.3, and for a classification
of admissible subgroups, see Theorem 2.4. Moreover, let Σ be a cyclic
extension of this group. We denote the order of Σ/∆ by p and choose
an element ρ ∈ Σ of a generator of Σ/∆.

Now let κ be an element of Γ\∆. We wish to consider collisions of
attractors conjugated by κ. If κ is a reflection, we will allow κ ∈ Σ.
Later, it will become apparent why we admit this case although it does
not lead to an increase in symmetry, see Remark 4.31. If κ is not a
reflection, we assume κ ∈ Γ\Σ. Finally, we define L∆ as in (2.1) and
let D be a connected component of Rn\L∆ which is fixed by ∆.

Definition 2.9. The Γ-equivariant mapping f : Rn × R → Rn

undergoes a symmetry increasing bifurcation via a collision of attractors
for λ = λc if the following holds:

(C1) For a sequence λj ↗ λc, j ∈ N, the mapping f(·, λj) possesses
Σ-symmetric attractors Aj . For all j, let ∆ be the associated group of
Aj .

(C2) There are sequences xj ∈ Aj ∩ D and yj ∈ κAj ∩ κD such that
xj and yj both converge to a periodic point x of f(·, λc) for j → ∞.

(R) If κ is a reflection, let the isotropy group of x be {1, κ}.
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(NR) If κ is not a reflection, we assume x ∈ D ∩ κD.

(C3) All Aj consist of precisely k connected components for some
k ∈ N.

(C4) There is a sequence λ̃j ↘ λc such that, for any j ∈ N, there

exists a Σ̃ def= 〈Σ ∪ {κ}〉-symmetric attractor Ãj of f(·, λ̃j).

If there exists a mapping f undergoing a symmetry increasing bifur-
cation, we say that the triple (Σ, ∆, κ) is admissible.

There are some technical assumptions in this definition which are
clarified in the following remarks:

Remarks 2.10. (a) The assumption that the attractors collide at
a periodic point x in (C2) can for our purposes be weakened to the
assumption that the first k iterates of x have the same isotropy group
as x itself, k ∈ N is defined in (C3). Note also that we do not require
x to be the only point of collision.

(b) The assumptions (R) and (NR) can be understood as follows. If
κ is a reflection and the attractors Aj are connected, Aj and κAj must
be separated by the reflection hyperplane Fix (κ), and hence we must
have x ∈ Fix (κ). Of course, if the Aj ’s are not connected there might
be other possible collisions which do not take place at Fix (κ), but we
could then find an s ∈ N such that a collision in the mapping fs would
not be a collision of conjugate attractors, see [12].

We do not allow a larger isotropy group than {1, κ} for x because
after the collision we do not wish to observe an increase in symmetry
beyond the symmetry group Σ̃ = 〈Σ ∪ {κ}〉. Observe that, from (R),
it follows that

dim (Fix (κ) ∩ ∂D) = n − 1.

This means that Fix (κ) is one of the reflection hyperplanes which are
essentially forming the boundary of D.

If κ is not a reflection, then the collision should not take place
at a reflection hyperplane, because again this could mean that after
the collision there might be additional symmetries not contained in
Σ̃ = 〈Σ ∪ {κ}〉. This leaves only the possibility of a collision inside D
(one can show that all components of Rn\L∆ which contain part of
the Aj are fixed by ∆, hence D may be chosen accordingly). From the
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viewpoint of the attractors κAj , the collision should then take place
inside κD; hence, we ask that x ∈ D ∩ κD.

(c) The assumption (C3) is equivalent to the assumption that the
number of connected components of the Aj is bounded. Considering
the fact that an attractor which contains a periodic point of period m
can have at most m connected components, see [14], this assumption
is not too restrictive as well.

3. Necessary conditions. In this section we are going to derive
necessary conditions for symmetry increasing bifurcations. As pointed
out in the last section we have to distinguish two cases depending on
whether κ is a reflection or not. In both cases we are going to find
necessary conditions, which will later turn out to be sufficient as well.

3.1. κ is a reflection. First let us consider the case where κ is a
reflection. Then the following holds.

Proposition 3.1. Let κ ∈ Γ\∆ be a reflection. If the triple (Σ, ∆, κ)
is admissible, then it follows that

(3.3) dim (Fix (σκσ−1) ∩ ∂D) = n − 1

for all σ ∈ Σ.

Proof. Suppose that the mapping f undergoes a symmetry increasing
bifurcation. For each j, by Lemma 2.6 there exist connected compo-
nents C0(λj), . . . , Cr−1(λj) of Rn\PL covering Aj (by (C3) we may
without loss of generality assume that r does not depend on j). We
define Ai

j = Aj ∩ Ci(λj). The mapping f(·, λj) permutes the Ci(λj)
cyclically for fixed j ∈ N, hence it permutes the A0

j , . . . , Ar−1
j as well.

Now consider the sequence xj ∈ Aj ∩ D, which exists by (C2).
Without loss of generality we may assume that all elements of the
sequence xj are contained in A0

j . As the Ci(λj) cannot intersect the
boundary of D, A0

j must be fully contained in D.

All iterates of x by f(·, λc) have the same isotropy {1, κ}, since this
is true for x and x is a periodic point. As the Ai

j are being permuted
cyclically by f(·, λj) we may find, in all Ai

j , sequences converging to
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Fix (κ), in the point f i(x, λc). Apart from κ this point does not possess
any other nontrivial isotropies.

Now let σ ∈ Σ. The Aj are Σ-symmetric, hence we may find
a sequence in each Ai

j converging to a point with isotropy group
{1, σκσ−1}. In particular this holds for A0

j . However, these components
are fully contained in D, which proves the proposition.

3.2 κ is not a reflection. We now turn to the case where κ is not
a reflection.

Proposition 3.2. Suppose that κ ∈ Γ\Σ is not a reflection. If the
triple (Σ, ∆, κ) is admissible, then we have

(3.4) σ−1κσD ∩ D = ∅

for all σ ∈ Σ.

Proof. Suppose that the mapping f undergoes a symmetry increasing
bifurcation. We take a closer look at the sequences xj ∈ Aj ∩ D and
yj ∈ κAj ∩ κD, which exist by (C2). Both sequences converge to
x ∈ D ∩ κD.

Again we use the sets Ai
j = Aj∩Ci(λj), which are permuted cyclically

by f as stated in Lemma 2.6. Without loss of generality we may assume
that xj is contained in A0

j ⊂ D for all j and yj ∈ κAl
j ⊂ κD for some

fixed l ∈ {0, . . . , r − 1}.
For a given σ ∈ Σ, we may find a k ∈ {0, . . . , r− 1} such that, for all

j, the equation fk(A0
j , λj) = Ak

j = σA0
j ⊂ σD holds. We may conclude

fk(xj , λj) ∈ fk(A0
j , λj) = σA0

j ⊂ σD and

fk(yj , λj) ∈ κfk(Al
j , λj) = κf l(Ak

j , λj)

= κf l(σA0
j , λj)

= κσAl
j ⊂ κσD.

Now recall that fk(x, λc) is the limit of both sequences for j → ∞,
which implies fk(x, λc) ∈ κσD ∩ σD. But x ∈ D ∩ κD; thus, x is not
contained in any fixed point space of a reflection in K∆ or in K−1

κ∆κ.
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Moreover, x is a periodic point; hence, the same is valid for all iterates
of x under f . Thus we obtain fk(x, λc) ∈ κσD ∩ σD, which proves the
proposition.

4. Sufficient conditions. The proof that the conditions derived in
the last section are sufficient as well requires much more work than the
necessity. This is due to the fact that we have to construct mappings
undergoing a symmetry increasing bifurcation. Since we rely heavily
on the methods developed by Ashwin and Melbourne [3], we begin
by giving an outline of their method of construction for symmetric
attractors, which they use to prove Theorem 2.4.

4.1. Equivariant dynamics on graphs. Ashwin and Melbourne
use embedded Σ-invariant graphs to construct Γ equivariant mappings
with Σ-symmetric attractors. In this subsection we give an outline of
their method of construction. For a sketch of these methods we begin
with a simple lemma. Its proof may be found in [3, Lemma 4.1].

Lemma 4.1. Let Γ be a finite group acting on the topological spaces
Y and Z. Suppose that X is a closed subset of Y such that Y =
∪γ∈ΓγX. Finally, suppose that f : X → Z is a continuous mapping
satisfying f(γx) = γf(x) whenever x and γx are both contained in X
for some γ ∈ Γ. Then f can be uniquely extended to a continuous
Γ-equivariant mapping f : Y → Z.

We now consider graphs invariant under the operation of a finite
group. For elementary graph theory the reader is referred to [5]. The
aim is to embed these graphs into Rn and to turn these embedded
graphs into attractors. Each graph may be seen as a metric space by
identifying each edge with the unit interval, see [3]. Subsequently, we
will do so without further notice. However, we note that this leads to
an ambiguity in the definition of a graph. On the one hand, a graph is
a set of vertices and edges; on the other hand, we look at a set of points
with a metric structure. It should be clear from the context which of
these viewpoints we assume in the given setting.

Definition 4.2. Let ∆ be a finite group. A graph G is called a
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∆-graph, if

(i) ∆ acts isometrically on G,

(ii) the set of edges (or equivalently the set of vertices) of G is
invariant under the action of ∆ on G, and

(iii) ∆ acts fixed point freely on the set of edges of G.

A subgraph J ⊂ G of a ∆-graph G is called a fundamental subgraph,
if G = ∪δ∈∆δJ holds and, moreover, for each edge E ∈ J and every
δ ∈ ∆ we have δE ∈ J if and only if δ = id.

Assumption (iii) is equivalent to the existence of a fundamental
subgraph, as can easily be shown. In particular, for every ∆-graph
G there exists a fundamental subgraph.

The reason for introducing ∆-graphs is that we may define a ∆-
equivariant dynamical system on such a graph such that the whole
graph becomes an ω-limit set of this system. This is the contents of
the following proposition by Adler and Flatto, as stated in the appendix
of [3], see also [1].

Proposition 4.3. Suppose that G is a finite graph with edges
E1, . . . , Em, and let g : G → G be a continuous mapping with the
following properties.

(i) For every j, g(Ej) is the union of certain other Ei’s.

(ii) Let Eij = Ei ∩ g−1(Ej). Then g|Eij
is an invertible C2-map.

(iii) There exist q ∈ N and θ > 1 such that |(gq)′| ≥ θ wherever it is
defined.

(iv) For all j we have ∪p∈Ngp(Ej) = G.

Then G is topologically transitive, periodic points are dense in G and
there is sensitive dependence on initial conditions. Moreover, there
exists a g-invariant ergodic Lebesgue-equivalent measure on G. If,
instead of (iv), we have the stronger property

(iv)′ There exists p ∈ N such that gp(Ej) = G for all j ∈ {1, . . . , m},
then G is even topologically mixing.

For a definition of the properties names in the definition, we refer
the reader to [3]. We proceed by defining a ∆-equivariant dynamical



572 C. HEINRICH

system with the help of the previous proposition. The degree of a vertex
is the number of edges emanating from this vertex. With this notation
a Eulerian graph is defined as a graph having an even degree at each
vertex. It is well known that, for any vertex of a Eulerian graph, there
exists a path starting and ending at this vertex and passing through
each edge of the graph precisely once.

Theorem 4.4. Suppose that G is a Eulerian ∆-graph where each
vertex has at least degree four. Then there exists a continuous ∆-
equivariant dynamical system g : G → G with the following properties.

(i) G is topologically mixing; in particular, it is topologically transi-
tive.

(ii) Periodic points are dense in G and there is sensitive dependence
on initial conditions.

(iii) There is a unique g-invariant, and Lebesgue-equivalent, ergodic
measure on G.

(iv) The vertices of G are fixed points of g.

(v) Let J be a fundamental subgraph of G, and let an arbitrary
function F : J → G be given, assuming to each edge E ∈ J an edge
F (E) of G. Suppose that xE denotes the midpoint of the edge E; then
g may be constructed such that g(xE) = xF (E) for all E ∈ J .

The proof of the first three conclusions may be found in [3, Theorem
4.3] (with the restriction on the degree of the vertices). We have added
(iv) and (v) since we are going to need them for the subsequent sections.
To prove these statements, it is necessary to give a short outline of the
construction in [3].

Sketch of Proof. We choose an arbitrary fundamental subgraph J of G
and remove an edge E from this subgraph. Since G is Eulerian, we may
find a path in G\E connecting the vertices v and w which correspond
to E, and passing through every edge of G\E precisely once. We let
g(v) = v, g(w) = w and g(E) = G\E such that, while x ∈ E moves
from v to w, the point g(x) follows the path chosen above. In this way
we may define g on every edge of the fundamental subgraph and extend
g using Lemma 4.1 to obtain a ∆-equivariant mapping g : G → G.
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We are free to change the parametrization of g on the edges. This
allows us to construct g in such a way that the requirements of
Proposition 4.3 (with q = 1 and p = 2) are satisfied. From the
construction it is immediately apparent that (iv) is also valid.

It remains to show (v). Let a fundamental subgraph J and a function
F as in (v) be given. Since the construction of g on each edge of the
fundamental subgraph is independent of the outer edges, it suffices to
consider each edge separately. Suppose that some arbitrary edge E ∈ J
is given. There are two cases we have to consider.

If F (E) = E, we temporarily consider the midpoint xE ∈ E as a new
vertex. Then E consists of two new edges which we treat precisely as
described above when defining g. With this definition of g, xE becomes
a fixed point of g and hence we have g(xE) = xE = xF (E).

On the other hand, if F (E) = E, by the above definition of g the
midpoint xF (E) ∈ F (E) lies in the image of E under g. Hence we may
parametrize g on E such that g(xE) = xF (E) is satisfied. However,
when looking at the properties in Proposition 4.3, we have to pay
special attention to (iii). No difficulty occurs if, while transversing
the path, the edge F (E) is not hit as the first or the last one (in the
chosen metric on the graph all edges have the same length). But we
had assumed previously that each of our vertices has at least degree
four, which means that apart from E at least three other edges are
connected with the vertices v and w. This implies that we may always
choose a path from v to w which does transverse F (E) as neither the
first nor the last edge in the path.

Now we want to embed the ∆-graph into Rn. It is therefore necessary
to define the concepts of embeddability and extendability of a ∆-graph.

Definition 4.5. A ∆-equivariant embedding of a ∆-graph G into Rn

is a continuous one-to-one mapping e : G → Rn such that the following
assumptions hold:

(i) e is ∆-equivariant.

(ii) γe(G) ∩ e(G) = ∅ for all γ ∈ Γ\∆.

Using this concept we are in a position to embed the graph of a
group ∆ fixing a connected component of Rn\L∆. The aim is to turn
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the image of this graph in Rn into a ∆-symmetric attractor. If Σ
is a cyclic extension of such a group ∆, we are going to construct the
attractor by extending the ∆-graph. The precise definition is as follows:

Definition 4.6. Let ρ ∈ N(∆)\∆. A ∆-graph G is called ρ-
extendable if there exists a ∆-equivariant isometry h : G → ρG. This
isometry is called a ρ-extension. If G may be ρ-extended for any
ρ ∈ N(∆)\∆, we say that G is extendable.

We note that the graph ρG mentioned in this definition is defined
formally as the set {ρx | x ∈ G}. Since ρ is an element of the normalizer
of ∆, we may define an operation of ∆ on ρG by δ(ρE) def= ρ(ρ−1δρE)
for any edge E ∈ G and any δ ∈ ∆.

The following Theorem 5.4 from [3] leads directly to the proof of
Theorem 2.4.

Theorem 4.7. If there exists a Eulerian, embeddable and extendable
∆-graph, then ∆ is strongly admissible, and any cyclic extension of ∆
is admissible.

To prove Theorem 2.4, it remains to show that for any subgroup ∆
of Γ fixing a connected component D of Rn\L∆, we may construct
a Eulerian, embeddable and extendable ∆-graph. For such ∆, the
following lemma is implicit in [3, Section 6].

Lemma 4.8. Let n ≥ 3, and suppose that ∆ fixes a connected
component D of Rn\L∆. Then there exists a ∆-graph and a ∆-
equivariant embedding of this graph into D. Moreover, this ∆-graph
is Eulerian and extendable.

Remark 4.9. A short note on the construction of the graph and
its embedding will make the arguments in the following sections more
transparent. The difficulty of the construction lies in the fact that ∆
itself may contain reflections. In this case the component D is separated
into fundamental domains of the subgroup ∆R of ∆ generated by its
reflections. The ∆-graph is then constructed in such a way that its
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embedding has a fundamental subgraph J contained entirely inside the
closure of one of these fundamental domains, with its vertices lying
inside the reflection hyperplanes of reflections in ∆ which bound this
fundamental domain. In this way, images of the edges of J under
elements of ∆ will intersect these reflection hyperplanes only in vertices,
and hence the embedding remains one-to-one.

If ∆ does not contain any reflections, the construction of the ∆-graph
and its embedding is much less complicated. For our purposes it suffices
to note that in this case there are no (n − 1)-dimensional obstructions
inside D, and hence each embedded edge may be connected with the
boundary of D by a curve which does not intersect any fixed point
space.

4.2 κ is a reflection. In this section we aim to construct symmetry
increasing bifurcations for the case when κ is a reflection. Using
the methods developed by Ashwin and Melbourne, as outlined in the
preceding section, we are able to prove that the necessary condition
found in Proposition 3.1 is indeed sufficient for symmetry increasing
bifurcations.

Theorem 4.10. We assume Notations 2.8 and let κ ∈ Γ\∆ be a
reflection. The triple (Σ, ∆, κ) is admissible if and only if

(4.5) dim (Fix (σκσ−1 ∩ ∂D) = n − 1

for all σ ∈ Σ.

Since we have shown the necessity of (4.5) in Proposition 3.1, it
remains to construct a mapping undergoing a symmetry increasing
bifurcation for a given triple (Σ, ∆, κ) satisfying (4.5).

Throughout the proof we shall assume n ≥ 3. The cases n = 1 and
n = 2 will be treated separately in Section 4.4.

An overview of the proof is as follows. The first step is to construct
a suitable ∆-graph and a corresponding embedding e into Rn; this we
accomplish in Lemma 4.11. We then introduce a parameter λ into the
embedding and, by varying this parameter, move the embedded edges
of the graph towards the reflection hyperplanes of the elements σκσ−1

such that they touch these spaces for λ = 1, see Lemma 4.12.
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Precisely as in [3] we define the dynamics f on the embedded graph
by first choosing a mapping g on the graph and then conjugating
this mapping with the previously defined embedding e, that is, we let
f(·, λ) = e(·, λ)◦g◦e−1(·, λ). We then want to extend f Γ-equivariantly.
However, for λ = 1 the embedded graphs touch conjugate embedded
graphs, which corresponds to a collision of conjugate ω-limit sets in
Rn. At this critical point we have to take special care not to destroy
the equivariance of the mapping f . This problem is an essential point
in the proof, and we treat it in Lemma 4.16.

After the collision, for λ > 1, we have to change the dynamics on the
embedded graph to obtain Σ̃-symmetric ω-limit sets instead of merely
Σ-symmetric ones. We do this by enlarging the image of a particular
embedded edge under the mapping f , such that it additionally contains
small pieces of the conjugate graphs. To ensure the continuity of f ,
these pieces have to shrink when λ ↘ 1. For this purpose we introduce
new edges into the embedded graph, see Lemma 4.18, whose length goes
to zero as λ ↘ 1. We then expand the image of the above mentioned
embedded edge under f onto these new edges. In Lemma 4.19 we
show that, by using this method, we indeed obtain Σ̃-symmetric ω-limit
sets after the collision. Afterwards we have to extend the mapping f
equivariantly onto all of Rn, such that the constructed ω-limit sets
become attractors. This is accomplished in Lemma 4.20.

Now we turn to the proof. In the following lemma we guarantee the
existence of a ∆-graph fulfilling the requirements we will need later on.

Lemma 4.11. There exists a finite Eulerian ∆-graph G(∆) with the
following properties. The graph is extendable and embeddable into D,
contains a fundamental subgraph numbering at least (2p+1) edges, and
all vertices of the graph have at least degree four.

Proof. An embeddable and extendable Eulerian ∆-graph exists by
Lemma 4.8. If this graph does not satisfy the properties of the lemma,
for each edge E of the fundamental subgraph we introduce another edge
E′ connecting the same vertices as E. We extend this construction
∆-equivariantly. The new edges may be embedded into Rn without
difficulty, since n ≥ 3. Moreover, we may easily extend any ρ-extension
h of the graph onto the new edges: for each “new” edge E′ we simply
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let h(E′) = h(E)′ where h(E)′ denotes the “new” edge corresponding
to the “old” edge h(E). This extension of h is clearly a ρ-extension of
the new graph.

Now we have obtained a graph where the number of edges as well
as the degree of the vertices has doubled. Since the former graph was
Eulerian, each vertex of the new graph must have at least degree four.
If the new fundamental subgraph still contains less than (2p+1) edges,
we repeat the construction until this requirement is satisfied.

Let us now choose a graph G(∆) satisfying the properties of the
lemma. We take p edges E0, . . . , Ep−1 from the fundamental subgraph
J of this graph, and we call their midpoints xi ∈ Ei for all i ∈
{0, . . . , p − 1}. Later on, we will choose an additional edge Ep.

The next step is to introduce a parameter into the embedding be-
longing to the graph G(∆) and, by varying this parameter, to move
the embedded edges such that for a given parameter value they touch
the fixed point spaces Fix (σκσ−1), σ ∈ Σ.

Lemma 4.12. There exists a continuous mapping e : G(∆)×[0, 1] →
Rn with the following properties.

(a) For any λ ∈ [0, 1), the mapping e(·, λ) is a ∆-equivariant embed-
ding of G(∆) into D.

(b) e(·, 1) is a ∆-equivariant one-to-one mapping of G(∆) into D
and, for each i ∈ {0, l . . . , p − 1}, there is a σi ∈ ρ̄i, such that

(i) yi
def= e(xi, 1) ∈ Fix (σiκσ−1

i ) ∩ ∂D,

(ii) the Γ-group orbits of the yi are pairwise disjoint and do not
coincide with Γ-group orbits of the embedded vertices of G(∆), and

(iii) each yi possesses the isotropy {1, σiκσ−1
i }.

Proof. By Lemma 4.11 we know that for G(∆) there exists an
embedding into D. We denote this embedding by e(·, 0) : G(∆) → Rn.

The σi are chosen as follows. If ∆ contains reflections, then denote
the subgroup of ∆ generated by its reflections by ∆R. The connected
component D is then separated into fundamental domains by the
reflection hyperplanes of the elements in ∆R, see Remark 4.9. By this
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remark, the embedding of the fundamental subgraph J is contained in
the closure of one of these fundamental domains F . By (4.5) and, since
elements of ∆R act transitively on these fundamental domains, for each
i ∈ {0, . . . , p − 1} the fundamental domain F is bounded by at least
one reflection hyperplane Fix (σiκσ−1

i ) for some σi ∈ ρ̄i.

If ∆ does not contain any reflections, we choose the σi ∈ ρ̄i arbitrarily.

Now we claim that, for each i ∈ {0, . . . , p − 1}, the embedded mid-
point e(xi, 0) may be connected with the fixed point space Fix (σiκσ−1

i )
by a continuous curve which does not intersect any other edges or fixed
point spaces. We may do this since we have chosen the σi precisely
such that e(xi, 0) is not separated from Fix (σiκσ−1

i ) by any other re-
flection hyperplane. Moreover, the dimension of the space is at least
three and the group Γ is finite, which means that we may move around
other edges or fixed point spaces.

Using these considerations we now move the embedded edges Ei

continuously towards the fixed point spaces Fix (σiκσ−1
i ). We do

this by fixing the vertices and moving the midpoints e(xi, 0) of the
embedded edges e(Ei, 0) towards the fixed point spaces. The edges in
J\{E0, . . . , Ep−1} remain fixed. Since n ≥ 3 and Γ is finite, we may
do this in such a way that in orbit space, the embedded edges never
intersect themselves or the images of other embedded edges. We also
may avoid fixed point spaces of nontrivial groups. We will denote the
homotopy which we have obtained in this way by e : J × [0, 1] → Rn.

Let e be parametrize in such a way that all embedded edges e(Ei, λ)
touch the corresponding fixed point spaces simultaneously for λ = 1
in precisely one point, which is yi = e(xi, 1). We may assume that
this point has σiκσ−1

i as the only nontrival isotropy. Since we may
perturb the yi inside Fix (σiκσ−1

i ) and since Γ is finite, we may fulfill
the assumptions (ii) and (iii) by a suitable choice of the yi’s.

Using Lemma 4.1, for each λ ∈ [0, 1] we extend the mapping e(·, λ)
equivariantly. It remains to show that e(·, λ) is one-to-one. We fix
λ ∈ [0, 1] and suppose for contradiction that e(E, λ) and e(Ẽ, λ) have
a nonempty intersection, where E, Ẽ are arbitrary edges in G(∆). If
there is no δ ∈ ∆\1 satisfying δE = Ẽ, then the embedded edges
e(E, λ) and e(Ẽ, λ) are not conjugate to each other and hence they
belong to different edges of the fundamental subgraph in orbit space.
By our construction they cannot intersect each other.
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Hence, suppose that δE = Ẽ for some δ ∈ ∆\1. We then choose a
parametrization s of e(E, λ) and define the induced parametrization
s̃ on e(Ẽ, λ) by s̃(t) = δs(t). From s(t1) = s̃(t2) we compute
δs̃(t2) = δs(t1) = s̃(t1). Then we have either t1 = t2 which means
that e(Ẽ, λ) intersects the fixed point space Fix (δ), or t1 = t2, and
in this case the curve e(Ẽ, λ) intersects itself in orbit space. However,
we had excluded both cases during the construction of the homotopy
e. We may conclude that indeed e(·, λ) is one-to-one for all λ ∈ [0, 1].

Up to now we have mainly considered the strongly admissible group
∆. Now we turn to the case Σ = ∆, in which we need to extend the
∆-graph G(∆) to a Σ-graph. As in [3], we define

G(Σ) = G(∆)∪̇ρG(∆)∪̇ · · · ∪̇ρp−1G(∆).

We apply Lemma 4.1 to the mapping e constructed in Lemma 4.12 to
obtain a Σ-equivariant mapping e : G(Σ)× [0, 1] → Rn. For each λ < 1
the mapping e(·, λ) is a Σ-equivariant embedding of G(Σ). For λ = 1,
there are two cases to be considered.

Remark 4.13. (i) κ /∈ Σ. The σyi are pairwise disjoint for all σ ∈ Σ
and i ∈ {0, . . . , p − 1}, since we had chosen the yi to lie on different
group orbits and to have σiκσ−1

i as the only nontrivial isotropy. Hence
the images e(ρiG(∆), 1) are pairwise disjoint for all i ∈ {0, . . . , p − 1},
which implies that e(·, 1) is one-to-one.

(ii) κ ∈ Σ. Using yi = σiκσ−1
i yi for all i ∈ {0, . . . , p − 1}, we arrive

at
e(σxi, 1) = σyi = e(σσiκσ−1

i xi, 1) for all σ ∈ Σ.

This means that e(·, 1) is no longer one-to-one. Actually, for each σ ∈ Σ
and i ∈ {0, . . . , p − 1} there are precisely two preimages of σyi, and
the mapping is one-to-one on all other points of the graph. However,
we may restrict the mapping e to a one-to-one mapping as follows. If
σ ∈ ρ̄k, then σσiκσ−1

i is contained in ρ̄k+p/2, since by Lemma 3.2 in
[8] in this case p is even and κ ∈ ρ̄p/2. We let

Σ̂ def= {ρiδ | p/2 ≤ i < p, δ ∈ ∆}
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and denote by ê(·, 1) the restriction of e(·, 1) to

Ĝ(Σ) def= G(Σ)\{σxi | σ ∈ Σ̂, i ∈ {0, . . . , p − 1}}.

Our considerations imply that ê(·, 1) is one-to-one.

We now construct the dynamics on the graph using Theorem 4.4.
Precisely we choose a mapping g∆ on G(∆) satisfying the assumptions
(i) to (v) of the theorem. In Lemma 4.11 G(∆) was constructed in a
way which allows us to apply this theorem.

Case 1. Σ = ∆. We choose a function F as in (v) of Theorem 4.4,
such that this function satisfies F (E0) = E0. On all other edges of
the fundamental subgraph F may be defined arbitrarily. Hence, the
mapping g∆ then obtained by the theorem satisfies g∆(x0) = x0. We
let

f(z, λ) def= e(g∆(e−1(z, λ)), λ)

for all λ ∈ [0, 1] and z ∈ e(G(∆), λ). By Lemma 4.12, the inverse of e
on e(G(∆), λ) exists by Remark 4.13 (i) for any fixed value of λ. Now
f is topologically conjugate to g∆ which implies that f satisfies all the
properties of Theorem 4.4.

Case 2. Σ = ∆. For each i ∈ {0, . . . , p − 1}, the image of the
graph ρG(∆) under e(·, 1) contains a point ỹ′

i inside Fix (σiκσ−1
i ).

This is due to the construction of e. The set e(G(∆), 1) intersects
Fix (σκσ−1) for any σ ∈ Σ, and by equivariance the same holds for
e(ρG(∆), 1) = ρe(G(∆), 1). We denote the preimage of ỹ′

i under e(·, 1)
by x̃′

i ∈ ρG(∆). If κ ∈ Σ, this preimage is not well defined, see
Remark 4.13 (ii), so in this case we choose the preimage of ỹ′

i under
the mapping ê defined in this remark. Using the Σ-equivariance of e
we see that x̃′

i is the midpoint of an edge in ρG(∆).

Moreover, there exists a ρ-extension h : G(∆) → ρG(∆) by
Lemma 4.11. For each i ∈ {0, . . . , p−1}, we denote by x′

i the preimage
of x̃′

i under h. This point is again the midpoint of an edge E′
i ∈ G(∆),

since h is an isometry.

We now define a function F , later to be used when applying Theo-
rem 4.4, on the edges of the fundamental subgraph J as follows. On
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the subset {E0, . . . , Ep−1} of J we let F (Ei) = E′
i. On all other edges

F may be defined arbitrarily. However, for subsequent considerations
we will need an additional property of F , which can also be satisfied in
the strongly admissible case.

Lemma 4.14. There exists an edge Ep in the fundamental subgraph
J , Ep = Ei for all i ∈ {0, . . . , p−1}, and the function F may be chosen
such that

F (E) = δEp

for all δ ∈ ∆ and all edges E ∈ J .

Proof. By Lemma 4.11, the fundamental subgraph J contains at least
(2p + 1) edges. From these we had chosen p edges Ei, i = 0, . . . , p− 1,
and at most p more edges of J are conjugate to the edges E′

i, i =
0, . . . , p − 1 defined above. Hence, there remains at least one edge Ep

in the fundamental subgraph J which is not conjugate to any of the
above mentioned edges. We have chosen F to satisfy F (Ei) = E′

i. On
all other edges, we may define F arbitrarily. Hence, there is a choice of
F which satisfies the assumption stated in the lemma. Note that the
proof works as well in the strongly admissible case.

We will need this lemma later on for the construction of attractors
after the collision. Now we proceed by choosing a mapping g∆ :
G(∆) → G(∆) using Theorem 4.4 with the function F chosen above.
Then g∆ satisfies g∆(xi) = x′

i for all i ∈ {0, . . . , p − 1}.
For an overview of the correlations between the mappings e, g∆ and

h we include the following diagram:

(4.6) e(G(∆), 1) e−1−→ G(∆)
g∆−→ G(∆) h−→ ρG(∆) e−→ ρe(G(∆), 1)

yi �−→ xi �−→ x′
i �−→ x̃′

i �−→ ỹ′
i

We now extend the mapping h ◦ g∆ Σ-equivariantly to obtain a
mapping gΣ : G(Σ) → G(Σ) using Lemma 4.1. For gΣ, the property
(iv)′ in Proposition 4.3 does not hold anymore. Hence, G(Σ) is
not topologically mixing, but at least topologically transitive, since
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property (iv) of this proposition is still valid. This implies that all
properties of Theorem 4.4 except (i) remain true for gΣ.

For κ /∈ Σ, we let

f(z, λ) def= e(gΣ(e−1(z, λ)), λ)

for all λ ∈ [0, 1] and all z ∈ e(G(Σ, ), λ) (note that by Remark 4.13 (i)
e is one-to-one in this case). The mapping f is topologically conjugate
to gΣ, hence possessing all properties of gΣ we have listed above. In
particular, f is topologically transitive and has a Σ-symmetric ω-limit
set.

For κ ∈ Σ, we are going to use the mapping ê defined in Remark 4.13
(ii). We have to show that in this manner we obtain a well-defined
mapping f :

Lemma 4.15. Let κ ∈ Σ. Then the mapping

f(z, λ) def=
{

e(gΣ(e−1(z, λ)), λ) for λ ∈ [0, 1), z ∈ e(G(Σ), λ),
e(gΣ(ê−1(z, 1)), λ) for λ = 1, z ∈ e(G(Σ), 1),

is well-defined and continuous.

Proof. By Remark 4.13 (ii) we already know that ê is one-to-one and
hence f is well defined. The continuity of f may only be violated in
the points σyi for i ∈ {0, . . . , p − 1} and σ ∈ Σ. Therefore, we have
to check that whether we use σxi or σσiκσ−1

i xi as a preimage for σyi

under e(·, 1), we get the same result when applying e(·, 1) ◦ gΣ to these
points. We compute, see (4.6),

e(gΣ(σxi), 1) = σe(h(g∆(xi)), 1) = σe(h(x′
i), 1) = σe(x̃′

i, 1) = σỹ′
i

and

e(gΣ(σσiκσ−1
i xi), 1) = σσiκσ−1

i e(h(g∆(xi)), 1) = σσiκσ−1
i ỹ′

i = σỹ′
i,

since the isotropy group of ỹ′
i is {1, σiκσ−1

i }.

We have succeeded in defining the mapping f on the embedded Σ-
graph for all possible cases. Now we wish to extend it to a Γ-equivariant
mapping on

B
def= {(x, λ) | λ ∈ [0, 1], x ∈ Γe(G(∆), λ)}.
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Lemma 4.16. Let f be defined as above. Then f can be extended to
a Γ-equivariant mapping f : B → Rn.

Proof. For each λ ∈ [0, 1), we want to apply Lemma 4.1 to f(·, λ)
to obtain an Γ-equivariant mapping on Γe(G(∆), λ). There are no
obstructions for λ ∈ [0, 1). Here, e(G(∆), λ) is fully contained in D
and does not intersect conjugate sets. For λ = 1, however, we have to
show f(γz, 1) = γf(z, 1), whenever there exists γ ∈ Γ such that, for
some z, both z and γz are contained in e(G(Σ), 1).

By definition, f(·, 1) is Σ-equivariant on e(G(Σ), 1), and this set is
contained in

(ΣD) ∪
⋃

σ∈Σ

Fix (σκσ−1).

Hence, we need only consider the case z = σyi for some i ∈ {0, . . . , p−
1}, σ ∈ Σ and γ ∈ Γ\Σ. By assumption we have γz ∈ e(G(Σ), 1),
implying that there must be a σ̃ ∈ Σ such that γσyi = σ̃yi (we have
used Lemma 4.12 (b) (ii) in this step).

Moreover, the element σiκσ−1
i is the only nontrivial isotropy of yi

which allows us to conclude γσ = σ̃σiκσ−1
i (otherwise we would have

γσ = σ̃, which can only hold if γ is contained in Σ).

To verify the equation γf(σyi, 1) = f(γσyi, 1), we begin by calculat-
ing the value of f(yi, 1). We ask the reader to recall the definitions of
xi, x′

i and x̃′
i as displayed in (4.6). Suppose that Σ = ∆ and κ /∈ Σ,

then we compute

f(yi, 1) = e(h ◦ g∆(e−1(yi, 1)), 1) = e(h ◦ g∆(xi), 1)
= e(h(x′

i), 1)
= e(x̃′

i, 1) = ỹ′
i.

Using this consideration we conclude

f(γz, 1) = f(γσyi, 1) = f(σ̃σiκσ−1
i yi, 1) = σ̃f(yi, 1) = σ̃ỹ′

i

= σ̃σiκσ−1
i ỹ′

i = γσf(yi, 1) = γf(σyi, 1) = γf(z, 1),

since we had chosen ỹi to have the isotropy σiκσ−1
i .

In the case κ ∈ Σ there is nothing to show, since γσ = σ̃σiκσ−1
i

implies γ ∈ Σ. Finally, if Σ = ∆, we arrive at the same conclusion.
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Note, however, that in this case we have p = 1, f(y0, 1) = y0, and there
is no ρ-extension h, which simplifies the calculations.

We have shown that even for λ = 1 the Lemma 4.1 may be applied.
Hence, for all λ ∈ [0, 1] we obtain a Γ-equivariant mapping f(·, λ) on
Γe(G(∆), λ). The mapping f : B → Rn is even continuous, since the
extension by Lemma 4.1 does not destroy the continuity.

The next step is to construct a Σ̃-symmetric ω-limit set for λ > 1.
We remind the reader that we have defined Σ̃ = 〈Σ ∪ {κ}〉. From
the following construction it will become apparent that Σ̃ is indeed an
admissible subgroup of Γ with strongly admissible subgroup

(4.7) ∆̃ = 〈∆ ∪ {σκσ−1 | σ ∈ Σ}〉.

Case 1. κ ∈ Σ. Here the construction of a Σ̃-symmetric ω-limit
set turns out to be no problem at all. Since Σ = Σ̃, such a limit set
already exists for λ = 1. To simplify notation, we let Gλ

def= e(G(∆), λ)
for λ ∈ [0, 1) and Gλ

def= e(G(∆), 1) for λ ∈ [1, 2]. Then we may extend
f to the following set

B̃
def= {(x, λ) | λ ∈ [0, 2], x ∈ ΓGλ}.

Lemma 4.17. Let κ ∈ Σ. Then f : B → Rn may be extended to a
continuous Γ-equivariant mapping

f : B̃ → Rn

such that for each λ > 1 the mapping f(·, λ) possesses a Σ̃-symmetric
ω-limit set.

Proof. We let f(x, λ) def= f(x, 1) for all λ ∈ (1, 2] and x ∈ Γe(G(∆), 1).
Since we have Σ̃ = Σ, there is nothing to show.

Case 2. κ /∈ Σ. In this case there is considerably more work to
be done. On the one hand, for λ = 1 the ω-limit sets have already
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collided; thus, there exists an embedded Σ̃-invariant graph Σ̃e(G(∆), 1)
consisting of several ω-limit sets. Apparently this set presents itself as
the one on which we should construct our Σ̃-symmetric ω-limit set. On
the other side, to this end we need to modify the dynamics of f on this
graph such that this set indeed is turned into the Σ̃-symmetric ω-limit
set we are looking for.

We will achieve this goal by a slight modification of the embedded
graph and the mapping f defined on it. The first step is to introduce
addition “small” edges Wi(λ) near the collision points yi into the
embedded graph for λ > 1. Afterwards, we define a mapping f(·, λ)
on this slightly larger graph by modifying the image of the set e(Ep, 1)
under the mapping f(·, 1). This image will then additionally contain
the edges σiκσ−1

i Wi(λ) in the neighboring embedded graphs. We will
then show that the dynamics of f(·, λ), when defined in this way,
extends onto the whole Σ̃-symmetric graph in the sense that this set
becomes an ω-limit set of f . To preserve continuity while extending f ,
the length of the additional edges must approach zero when λ decreases
to one.

We introduce some additional notation first. Since we only work on
the embedded graph from now on, we denote the embedded edges by
Zi = e(Ei, 1) for all i = 0, . . . , p, and we name the embedded ∆-graphs
Gλ = e(G(∆), λ) for all λ ∈ [0, 1]. If z, z̃ are two points inside an
edge Z ∈ G1, then denote by [z, z̃]Z the piece of the edge Z which
is bounded by these points. For λ > 1 we intend to define a graph
Gλ which essentially consists of the edges in G1 plus some additional
“small” edges Wi(λ) near the collision points. To this end we begin by
defining points wi(λ) on the edges Zi of G1, which will later be turned
into the endpoints of our new edges Wi(λ).

Lemma 4.18. For any i ∈ {0, . . . , p − 1}, there exist continuous
functions wi : [1, 2] → Zi with the following properties:

(i) For each l ∈ N, f l(wi(1 + 1/l), 1) is a vertex of G1.

(ii) For each j ≤ l, the set f j([yi, wi(1 + 1/l)]Zi
, 1) is fully contained

in a single edge of G1. This edge is not contained in the ∆-group orbit
of the edge Zp.

(iii) wi(1) = yi.
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Proof. We remind the reader of the function F : J → G(∆)
defined to obtain the dynamics g∆ on the graph G(∆) with the help of
Theorem 4.4. In Lemma 4.14 this function was chosen in such a way
that for all edges E ∈ J and all δ ∈ ∆ we have F (E) = δEp. Since
midpoints of edges are again mapped onto midpoints by f , this implies
in particular that none of the points yi is ever being mapped onto a
point in Zp or onto an edge in its group orbit. Hence, if we choose a
point on Zi close to yi, for a large number of iterates this point is not
going to be mapped onto ∆Zp as well. This remains true at least for
as long as the images of this point and of yi under f j remain in the
same edge.

For some fixed i ∈ {0, . . . , p−1} and l ∈ N there exists a point z(l, i)
in Zi which is mapped onto a vertex of G1 after precisely l iterations by
f(·, 1) and whose image by f j(·, 1) will remain inside the same edge of
G1 as that of yi for any j < l. This can be seen as follows. We choose a
piece [yi, z(l, i)]Zi

so small that for all j ≤ l the set f j([yi, z(l, i)]Zi
, 1)

is contained in one single edge. Now we move z(l, i) on Zi away from
yi until f l(z(l, i), 1) hits a vertex. Then f l([yi, z(l, i)]Zi

, 1) is precisely
one half of an edge (recall that yi is always mapped onto a midpoint).
Since f is expanding, all sections f j([yi, z(l, i)]Zi

, 1) are fully contained
in one edge for any j < l.

There are two possibilities to choose z(l, i), since it may be positioned
on either side of yi. We choose the z(l, i) such that for fixed i =
0, . . . , p − 1 and any l the point z(l, i) lies on the same side of yi, and
we define wi(1 + 1/l) def= z(l, i). With this choice we have satisfied (i)
and (ii). We just remind the reader that by definition of the function
F in Lemma 4.14 the second property in (ii) holds as well.

Now we have to extend the points wi(1+1/l) to continuous functions
wi : [1, 2] → Zi. There is no difficulty in doing this, since the sequence
(wi(1 + 1/l))l∈N converges monotonically on Zi towards yi for l ↗ ∞.
This is again due to the expanding properties of the function f(·, 1).
This especially proves (iii), which completes the proof of the lemma.

Using the points wi(λ) we now define new graphs Gλ for λ ∈ (1, 2]
as follows. Let Gλ contain all the edges and vertices of the graph G1.
Additionally, let the wi(λ) be the vertices, and we introduce additional
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edges Wi(λ) connecting the vertices yi and wi(λ) and having no other
common points with the remaining edges of the graph or with their own
group orbits. Moreover, we may choose the Wi(λ) in such a way that,
apart from yi, they are fully contained inside D and such that their
length goes to zero as λ decreases to one. This last request is possible
since, by Lemma 4.18 (iii),the vertex wi(λ) converges to yi. Finally we
add the ∆-group orbits of the vertices wi(λ) and of the edges Wi(λ) to
the graph Gλ. In this way we obtain, for each λ ∈ (1, 2], a ∆-graph in
Rn.

Moreover, we let G̃λ = ∆̃Gλ, see the definition of ∆̃ in (4.7). This
graph is obviously a ∆̃-graph and even connected, since Gλ is connected
to the conjugate graphs σiκσ−1

i Gλ via the points yi, and together with
the elements in ∆ the elements σiκσ−1

i generate the group ∆̃.

We proceed by defining the dynamics on G̃λ. To this end we modify
f(·, 1) to a mapping f(·, λ) defined on ΓGλ. This function will then
have Σ̃-symmetric ω-limit sets for λ > 1, but only for certain parameter
values. We define

B̃
def= {(x, y) | λ ∈ [0, 2], x ∈ ΓGλ}

and obtain the following lemma.

Lemma 4.19. Let κ /∈ Σ. The mapping f can be extended to a
continuous and Γ-equivariant mapping f : B̃ → Rn. For each l ∈ N,
f(·, 1 + 1/l) possesses a Σ̃-symmetric ω-limit set.

Proof. For λ ∈ (1, 2] and z ∈ G̃λ\(∆̃{Zp}) we define f(z, λ) def=
f(z, 1), that is, on all edges which are not contained in the group orbit
of Zp we do not change the dynamics. In particular, all properties of
Lemma 4.18 hold not only for f(·, 1) but also for f(·, λ), λ > 1. This is
due to the fact that in (ii) of this lemma, the relevant points are never
mapped onto points in the ∆-group orbit of Zp by f j(·, 1) for any j < l,
and hence f j(·, 1) and f j(·, λ) are identical at these points.

We define f on the new edges Wi(λ), i = 0, . . . , p− 1, as follows. Let
the image of the edge Wi(λ) under f(·, λ) be the same as that of the
section [yi, wi(λ)]Zi

. We may assume that the edges Wi(λ) have been
chosen so small that the expanding property of f as in Proposition 4.3
(iii) is not destroyed by this extension.
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Fix σ κσi i
−( )1

σ κσi i iZ−1

σ κσ λi i iW− ( )1

σ κσ λi i iw− ( )1wi λ( )

Wi λ( )
yi

Zi

FIGURE 3. Part of the path in the image of the edge Zp under f(·, λ).

On the edge Zp we intend to modify the dynamics in such a way
that all of Σ̃Gλ is turned into an ω-limit set of f(·, λ). Let us assume
first that Σ = ∆ is strongly admissible. Then f(Zp, 1) describes a path
containing all the edges in G1\{Zp}. Especially, it contains all the
points yi and in these points touches the conjugate graphs σiκσ−1

i G1.

For λ > 1 let f(Zp, λ) be defined as the path described by f(Zp, 1).
However, for every i ∈ {0, . . . , p − 1} we replace the piece [wi(λ), yi]Zi

in the image of f(Zp, 1) by the path obtained by joining the sections
[wi(λ), yi]Zi

, σiκσ−1
i Wi(λ) and [σiκσ−1

i wi(λ), yi]σiκσ−1
i

Zi
in this order,

see also Figure 3. At all other points z ∈ Zp we let f(z, λ) = f(z, 1).

Hence the image of f(Zp, λ) contains small loops inside the conjugate
graphs σiκσ−1

i Gλ. We claim that by defining f(·, λ) in this way, the
whole graph G̃λ is turned into an ω-limit set. Note that f still expands
sections of the graph, since f(Zp, λ) covers a longer path than f(Zp, 1).

Now we extend the construction of f∆̃-equivariantly for any λ ∈
(1, 2]. We may do this because f(·, 1) is Γ-equivariant and all changes
in the mapping f while varying λ have been accomplished inside of D
(recall that Zp ⊂ D and Wi(λ)\{yi} ⊂ D by Lemma 4.18).

We claim that f(·, 1 + 1/l) : G̃1+1/l → G̃1+1/l satisfies the properties
of Proposition 4.3 for each fixed l ∈ N. To prove the claim, we begin by
defining new vertices of G1+1/l. Let all midpoints of the former edges in
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G1 be additional vertices and, moreover, we consider all the images of
the vertices wi(1+1/l) under f j(·, 1+1/l), j ∈ N, and their group orbits
as additional vertices. By Lemma 4.18, after finitely many iterations
these vertices are mapped onto “real” vertices of G1+1/l; hence, with
this method we only obtain a finite number of new vertices.

We have chosen these vertices mainly because now f(·, 1 + 1/l) maps
vertices onto vertices. Hence, property (i) of Proposition 4.3 is satisfied.
For a suitable choice of parametrization of f , the properties (ii) and
(iii) may also be fulfilled. The critical property is (iv)′. We have to
find p ∈ N such that fp(Z) = G̃1+1/l for any edge Z ∈ G̃λ.

For a given l ∈ N, the image of each edge in G1+1/l after l iterations
by f(·, 1 + 1/l) will at least contain a half edge of the graph G1.
Another iteration will then yield at least one “real” edge, and after
(l + 4) iterations the image will cover all of G1+1/l except the group
orbits of the edges Wi(λ), and additionally the edges σκσ−1Wi(λ) of
the conjugate graphs σκσ−1Gλ for all σ ∈ Σ. Now we apply the
argument above to these small pieces in the conjugate graphs and
conclude that these neighboring graphs will also be covered after (l+4)
more iterations. By this time we will also cover the edges Wi(1 + 1/l)
of the graph G1+1/l, plus additional “small” edges (loops) of other
conjugate graphs.

In the worst case G̃1+1/l consists of a finite number c of such conjugate
components and with each (l+4) iterations we reach just another one of
these components. Then p = c(l + 4) is sufficient for our purposes. We
have shown that the assumption (iv)′ of Proposition 4.3 is satisfied with
this choice of p; hence, we may apply this proposition and conclude that
the mapping f(·, 1 + 1/l) possesses a Σ̃-symmetric ω-limit set, namely
G̃1+1/l.

If Σ is weakly admissible, we proceed in a similar fashion as above.
We only have to recall that the image of Gλ under f(·, λ) is contained
in ρGλ. Hence, we have to define the path f(Zp, λ) such that it
contains the corresponding “small” edges inside the conjugate graphs
neighboring ρGλ instead of Gλ.

As was the case for λ < 1, in the nonstrongly admissible case the
mapping will not satisfy property (iv)′ in Proposition 4.3. But in a
similar manner as above, we may verify the properties (i) (iv). In
particular, for each l ∈ N the set Σ̃G1+1/l is topologically transitive
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and hence an ω-limit set.

Finally, we remark that f is continuous since, for λ ↘ 1, the
additional edges Wi(λ) shrink and all points on Wi(λ) converge to yi.

Now we have constructed a mapping f : B̃ → Rn which, for all
λ < 1, possesses Σ-symmetric ω-limit sets and, for at least a sequence
of λ’s greater than one, Σ̃-symmetric ones. The final step in the proof
demands to extend this mapping equivariantly onto Rn × [0, 2] such
that these ω-limit sets are turned into attractors.

Lemma 4.20. The mapping f : B̃ → Rn can be extended to a
Γ-equivariant mapping f : Rn × [0, 2] → Rn such that for all λ < 1,
f(·, λ) possesses Σ-symmetric attractors and, for all λ = 1+1/l, l ∈ N,
Σ̃-symmetric ones.

Proof. We begin by forming closed, tubular, ∆-symmetric neighbor-
hoods Uλ ⊂ D of e(G(∆), λ) for each λ ∈ [0, 1). We may assume that
their boundaries vary continuously and converge to U1

def= e(G(∆), 1)
as λ increases to one.

On Uλ we define f(·, λ) precisely as in the proof of Theorem 5.4 in [3].
Roughly speaking this means that all points inside these neighborhoods
are being mapped directly onto e(G(Σ), λ).

Since we have Uλ ⊂ D, for fixed λ we may apply Lemma 4.1 to obtain
a Γ-equivariant mapping on ΓUλ. In particular, the set e(G(Σ), λ) now
becomes a Σ-symmetric attractor of f(·, λ).

For λ ∈ (1, 2], we define closed ∆̃-symmetric neighborhoods Uλ of
G̃λ such that they are fully contained in ∆̃D. As before we may
construct these neighborhoods in such a way that their boundaries vary
continuously and converge to ∆̃U1 as λ decreases to one. Just as before
we may now extend the mapping f(·, λ) onto Uλ as in Theorem 5.4 of
[3].

Afterwards, for each λ we extend f Γ-equivariantly onto ΓUλ. In this
manner we obtain, at least for all λ = 1 + 1/l, l ∈ N, Σ̃-symmetric
attractors Σ̃Gλ. For all remaining λ > 1 the sets Σ̃Gλ are at least
stable.
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Now we have defined the mapping f on the set

U
def= {(x, λ) | λ ∈ [0, 2], x ∈ ΓUλ}.

On this set, f is continuous since the boundaries of the Uλ vary
continuously.

Finally it remains to extend f onto all of Rn × [0, 2]. The set U
is closed; hence, we may use the Tietze extension theorem to extend
f to a continuous mapping on Rn × [0, 2]. Afterwards for each fixed
λ ∈ [0, 2] we average f over the group to obtain a Γ-equivariant mapping
f(·, λ). Since this process preserves the continuity of f , we have finally
constructed the desired map.

Proof of Theorem 4.10. Choose an arbitrary sequence λj ↗ 1.
Then the mapping f constructed above satisfies (C1) in Definition 2.9
by Lemma 4.16 with the choice of Aj = e(G(Σ), λj), j ∈ N. By
construction we have fp(e(G(∆), 1), 1) = e(G(∆), 1). Since the set
e(G(∆), 1) ∩ Fix (κ) contains only finitely many points, there must be
a periodic point x ∈ Fix (κ) ∩ D. Again, by construction, this point
must have isotropy {1, κ}. Moreover, we will obviously find points
xj ∈ Aj ∩ D converging to x. If we additionally let yj = κxj , then
we have satisfied (C2) (R) as well. Property (C3) is obvious, since
each of the Aj ’s consists of precisely p connected components. Finally,
we have taken care of the property (C4) in Lemma 4.17, respectively,
4.19. This shows that indeed the mapping f undergoes a symmetry
increasing bifurcation via a collision of attractors.

4.3. κ is not a reflection. In this section we are going to construct
symmetry increasing bifurcations for the case when κ is not a reflection.
As described in Section 2.3, the collision should then take place inside
the connected component D. In Proposition 3.2 we have found a
necessary condition for such collisions. Now we are going to show that
this condition is sufficient as well.

Theorem 4.21. Assume the Notations 2.8, and suppose that κ ∈
Γ\Σ is not a reflection. Then the triple (Σ, ∆, κ) is admissible if and
only if

(4.8) σ−1κσD ∩ D = ∅,
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for all σ ∈ Σ.

The proofs of Theorems 4.10 and 4.21 are quite similar. In this section
we therefore restrict ourselves to pointing out the differences between
the two proofs instead of going through all of the proof of Theorem 4.10.

As in the preceding section, assume n ≥ 3. The lower dimensions will
be treated in Section 4.4. The case n = 2 is an exception and, even
though the theorem is valid in this case, we ask the reader to take a
look at Proposition 4.32 and the remarks preceding this proposition.

The main difference between the two proofs will be that, instead of a
collision at a reflection hyperplane, we are going to construct a collision
at a point with trivial isotropy lying inside of D. As a consequence of
the trivial isotropy, we will have to make two embedded edges collide
which are not conjugate to each other, instead of just moving one
embedded edge towards a fixed point space and then obtaining the
collision of two edges by equivariance. Due to this procedure we require
a graph with a larger fundamental subgraph than previously.

Lemma 4.22. There exists a finite Eulerian ∆-graph G(∆). This
graph is extendable and embeddable in D, possesses a fundamental
subgraph with at least (4p + 1) edges and the degree of all vertices is at
least four.

The proof is essentially the same as that of Lemma 4.11, the only
difference being that we need a larger number of edges in the funda-
mental subgraph. Now let G(∆) be a graph satisfying the properties
of Lemma 4.22. The next step is to choose an embedding and to in-
troduce a parameter into this embedding. In this fashion we are going
to move certain embedded edges of the graph towards other embedded
edges of some conjugate graph. The following lemma corresponds to
Lemma 4.12.

Lemma 4.23. There exists a continuous mapping e : G(∆)×[0, 1] →
Rn with the following properties.

(a) For each λ ∈ [0, 1), the mapping e(·, λ) is a ∆-equivariant
embedding of G(∆) into D.
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(b) e(·, 1) is a ∆-equivariant one-to-one mapping into D and, for each
i ∈ {0, . . . , p−1}, there exist edges Ki and K̂i in G(∆) with midpoints
xi, respectively x̂i, such that

(i) yi
def= e(xi, 1) = ρ−iκρie(x̂i, 1) ∈ e(G(∆), 1) ∩ ρ−iκρie(G(∆), 1),

(ii) the Γ-group orbits of the yi are pairwise disjoint and do not
coincide with the group orbits of the embedded vertices of G(∆),

(iii) the edges Ki and K̂j are pairwise conjugate to different edges of
the fundamental subgraph J of G(∆) and

(iv) each yi possesses trivial isotropy.

Proof. Let e(·, 0) : G(∆) → Rn denote a ∆-equivariant embedding
of G(∆) into D. First we need to show that, for all i ∈ {0, . . . , p − 1},
parts of the sets ρ−iκρie(G(∆), 0) are indeed contained inside of D,
since we want to move edges of the embedded graph towards these
conjugate graphs without leaving D.

Suppose first that ∆ contains reflections and denote the subgroup
of ∆ generated by its reflections by ∆R. As stated in Remark 4.9,
the corresponding reflection hyperplanes separate D into fundamental
domains. Similarly, κD is separated into fundamental domains by
the hyperplanes of the reflections in the group κ∆Rκ−1. Because of
κD ∩ D = ∅ and since κ maps reflection hyperplanes onto reflection
hyperplanes, there has to be at least one fundamental domain F0 which
D and κD have in common. Because of (4.8), we conclude the same
for any σ−1κσD. In particular, for any i ∈ {0, . . . , p − 1} we may find
a fundamental domain Fi ⊂ ρ−iκρiD ∩ D. Since the elements of ∆R,
respectively ρ−i∆Rρi, act transitively on these fundamental domains,
in each Fi we may find a whole fundamental subgraph of e(G(∆), 0),
respectively of ρ−iκρie(G(∆), 0).

If ∆ does not contain any reflections, by similar considerations as
above, we must even have σ−1κσD = D for all σ ∈ Σ. This
implies that, for each i ∈ {0, . . . , p − 1}, the whole embedded graph
ρ−iκρie(G(∆), 0) is fully contained in D.

We proceed by describing the construction in the case when ∆
contains reflections. For each i ∈ {0, . . . , p − 1} we choose an edge
Ki ∈ G(∆), such that its embedding is contained in Fi. The Fi contain
a fundamental subgraph of the embedded graph ρ−iκρie(G(∆), 0) as
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well. Hence, for each i ∈ {0, . . . , p − 1} we choose an additional edge
K̂i ∈ G(∆) with midpoint x̂i such that ρ−iκρie(K̂i, 0) ⊂ Fi holds. By
Lemma 4.22 and, since each Fi contains a fundamental subgraph of
e(G(∆), 0), we may choose these edges such that the Ki and K̂j are
pairwise not conjugate to each other. We have satisfied (iii) of the
lemma.

Since we have n ≥ 3, we may connect the embedded midpoints e(xi, 0)
with the points ρ−iκρie(x̂i, 0) without intersecting fixed point spaces
or other embedded edges. Hence, we are now able to move the em-
bedded edges Ki continuously towards the edges ρ−iκρie(K̂i, 0). The
latter edges remain fixed in this process, just as all other edges of the
fundamental subgraph. While varying λ, we keep the embedded ver-
tices fixed and move e(xi, λ) towards ρ−iκρie(x̂i, λ) = ρ−iκρie(x̂i, 0)
such that we touch this embedded edge for λ = 1. As noted previously,
we may do this without intersecting fixed point spaces or other em-
bedded edges. We may also avoid that the embedded edges intersect
themselves in orbit space. The homotopy obtained in this fashion is
denoted by e : J × [0, 1] → Rn. For λ = 1, all embedded edges Ki

simultaneously touch the corresponding edges in precisely one point
yi = e(xi, 1) = ρ−iκρie(x̂i, 1), as stated in (i). By construction this
point has trivial isotropy, which proves (iv). Obviously we may also
satisfy (ii). Using Lemma 4.1, for each fixed λ ∈ [0, 1] the mapping
e(·, λ) can be extended equivariantly onto G(∆). Just as in the proof
of Lemma 4.12 we see that e is one-to-one.

If ∆ does not contain any reflections, we do not have to concern
ourselves with obstructions posed by reflection hyperplanes inside of
D. As mentioned above we then even have σ−1κσD = D for all
σ ∈ Σ. Hence we may choose the Ki and K̂i with less restrictions,
but nevertheless proceed in a similar fashion as above.

Now, for Σ = ∆, let

G(Σ) = G(∆)∪̇ρG(∆)∪̇ · · · ∪̇ρp−1G(∆).

Using Lemma 4.1 we extend e to a Σ-equivariant mapping e : G(Σ) ×
[0, 1] → Rn. For each λ < 1, the mapping e(·, λ) is a Σ-equivariant
embedding of G(Σ). Since κ /∈ Σ, the mapping e(·, 1) is at least one-
to-one if not a Σ-equivariant embedding.

Now we construct the dynamical system on the graph. We again use
Theorem 4.4 to obtain a mapping g∆ on G(∆), satisfying the properties



SYMMETRY INCREASING BIFURCATIONS 595

(i) (v) of the theorem. In Lemma 4.23 we have constructed G(∆) such
that we may apply this theorem. However, we again need a special
choice of the function F mentioned in (v) of this theorem.

Case 1. Σ = ∆. We define F by F (K0) = K0 and F (K̂0) = K̂0

and choose arbitrary values for F on all other edges of the fundamental
subgraph. Hence, the mapping g∆ obtained by applying Theorem 4.4
satisfies g∆(x0) = x0 and g∆(x̂0) = x̂0. We let

f(z, λ) = e(g∆(e−1(z, λ)), λ)

for all λ ∈ [0, 1] and z ∈ e(G(∆), λ).

Case 2. Σ = ∆. By Lemma 4.22 there exists a ρ-extension
h : G(∆) → ρG(∆). Since ρxi is contained in ρG(∆) for each i, there
exists ui ∈ G(∆) satisfying h(ui) = ρxi. Similarly, for x̂i there exists
ûi satisfying h(ûi) = ρx̂i. Now h is an isometry and hence the ui and
ûi are midpoints of certain edges Li, respectively L̂i, in G(∆).

We define the function F mentioned in (v) of Theorem 4.4 on
the subset J̃ = {K0, . . . , Kp−1} ∪ {K̂0, . . . , K̂p−1} of a fundamental
subgraph of G(∆) by letting F (Ki) = L(i+1)modp and F (K̂i) =
L̂(i+1)modp. We extend J̃ to a fundamental subgraph J and define
F arbitrarily on the remaining edges of this graph. However, for later
use we again need a certain property of F stated in the next lemma.

Lemma 4.24. There exists an edge Kp of the fundamental subgraph
J , Kp = Ki for all i ∈ {0, . . . , p−1}, and the function F can be chosen
such that all edges K ∈ J satisfy

F (K) = δKp for all δ ∈ ∆.

Proof. By Lemma 4.22, J contains at least (4p + 1) edges. Of these
edges, 2p are the Ki and K̂i, i = 0, . . . , p−1, and at most 2p additional
edges are conjugate to the edges Li and L̂i, i = 0, . . . , p − 1. Hence,
there remains at least one other edge Kp in J . Since we had defined
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F (Ki) = L(i+1)modp and F (K̂i) = L̂(i+1)modp and since F may be
chosen arbitrarily on all other edges, we can satisfy the lemma with an
appropriate choice for F . The argument remains true if Σ = ∆.

Now choose a dynamical system g∆ : G(∆) → G(∆) using The-
orem 4.4. With our particular choice of F , this mapping satisfies
g∆(xi) = u(i+1)modp and g∆(x̂i) = û(i+1)modp for all i ∈ {0, . . . , p− 1}.
We give a graphical overview of the definitions of the xi, x̂i, ui and ûi,
for simplicity we write (i + 1) instead of ((i + 1) mod p),

(4.9)

e(G(∆), 1) e−1

−→ G(∆)
g∆−→ G(∆) h−→ ρG(∆) e−→ ρe(G(∆), 1)

yi �−→ xi �−→ ui+1 �−→ ρxi+1 �−→ ρyi+1

ρ−iκ−1ρiyi �−→ x̂i �−→ ûi+1 �−→ ρx̂i+1 �−→ρ−iκ−1ρi+1yi+1.

Using Lemma 4.1 we extend the mapping h ◦ g∆ Σ-equivariantly to
a mapping gΣ : G(Σ) → G(Σ) and define

f(z, λ) = e(gΣ(e−1(z, λ)), λ)

for all λ ∈ [0, 1] and all z ∈ e(G(Σ), λ). This mapping is well defined
since e is one-to-one. We now aim to extend f Γ-equivariantly. Let

B
def= {(x, λ) | λ ∈ [0, 1], x ∈ Γe(G(∆), λ)}.

Then, analogously to Lemma 4.16, we obtain

Lemma 4.25. The mapping f can be extended to a continuous,
Γ-equivariant mapping f : B → Rn.

Proof. The idea, once again, is to apply Lemma 4.1 to extend f
Γ-equivariantly. The difficulties lie once more in the case λ = 1,
for all λ < 1 there are no obstructions. We have to show that
f(γz, 1) = γf(z, 1) whenever there is γ ∈ Γ and z, γz ∈ ΣU1.

Suppose first that Σ is not strongly admissible. The mapping f(·, 1) is
Σ-equivariant and contained in the set e(G(Σ), 1) ⊂ ΣD. Hence we only
have to consider the cases z = σyi for σ ∈ Σ and i ∈ {0, . . . , p−1} since
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in precisely these points the embedded graph touches conjugate graphs.
Moreover, we may restrict to γ ∈ Γ\Σ because f is Σ-equivariant.
Suppose γz = γσyi is contained in e(G(Σ), 1). By Lemma 4.12 we
have

e(xi, 1) = yi and
e(x̂i, 1) = ρ−iκ−1ρiyi.

Now γσyi is contained in e(G(Σ), 1) if and only if the preimage of
γσyi under e(·, 1) is defined and hence contained in G(Σ). The first
equation yields γσxi ∈ G(Σ) implying γ ∈ Σ, which we had excluded
previously. Hence, only the second equation remains and here we find
that γσyi ∈ e(G(Σ), 1) if we have γσρ−iκρix̂i ∈ G(Σ) or, equivalently,
γσρ−iκρi = σ̃ ∈ Σ.

With these considerations in mind we check the equation f(γz, 1) =
γf(z, 1). Using the definitions of xi, x̂i, ui and ûi as shown in (4.9), we
obtain

f(z, 1) = f(σyi, 1) = σf(yi, 1) = σe(h ◦ g∆(xi), 1)
= σe(h(u(i+1)modp), 1) = σe(ρx(i+1)modp, 1)
= σρy(i+1)modp,

and hence

f(γz, 1) = f(γσyi, 1) = f(σ̃ρ−iκ−1ρiyi, 1)
= σ̃f(ρ−iκ−1ρiyi, 1) = σ̃e(h ◦ g∆(x̂i), 1)
= σ̃e(h(û(i+1)modp), 1) = σ̃e(ρx̂(i+1)modp, 1)

= σ̃ρρ−(i+1)κ−1ρ(i+1)y(i+1)modp

= σ̃ρ−iκ−1ρiρy(i+1)modp

= γσρy(i+1)modp = γf(z, 1).

Thus, for Σ = ∆, we may, by the above calculation, extend the map f
Γ-equivariantly using Lemma 4.1. For Σ = ∆, we only need to consider
z = σy0. Using

e(x0, 1) = y0

e(x̂0, 1) = κ−1y0,

we obtain, applying similar arguments as above, γσκ = σ̃ for some
σ̃ ∈ Σ. Analogously, we compute

f(z, 1) = f(σy0, 1) = σf(y0, 1) = σe(g∆(x0), 1) = σe(x0, 1) = σy0
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and hence, for γz,

f(γz, 1) = f(γσy0, 1) = f(σ̃κ−1y0, 1) = σ̃f(κ−1y0, 1)
= σ̃e(g∆(x̂0), 1) = σ̃e(x̂0, 1)
= σ̃κ−1y0 = γσy0 = γf(z, 1).

This shows that in the strongly admissible case as well we can apply
Lemma 4.1 to obtain a Γ-equivariant mapping f on B.

Finally, for λ > 1 the mapping f has to be extended such that we
can observe a Σ̃ = 〈Σ ∪ {κ}〉-symmetric attractor. The construction
of these attractors can be carried out using almost precisely the same
arguments as in the preceding section. Hence we refrain from stating
all the arguments again and restrict ourselves to citing the final result.
The proof can be done by showing lemmas analogous to Lemmas 4.18,
4.19 and 4.20. In the verification of the first one of these lemmas, we
have to use Lemma 4.24 instead of Lemma 4.14. For a more detailed
argument we refer the reader to [12]. Using this procedure we arrive
at

Lemma 4.26. The mapping f : B → Rn can be extended to a Γ-
equivariant mapping f : Rn × [0, 2] → Rn such that, for all λ < 1,
f possesses Σ-symmetric attractors and for all λ = 1 + 1/l, l ∈ N,
Σ̃-symmetric ones.

Finally we are in the position to prove the main result of this section.

Proof of Theorem 4.21. Given any sequence λj ↗ 1, λ > 0,
the mapping f satisfies (C1) in Definition 2.9 when choosing Aj =
e(G(Σ), λj). The set e(G(∆), 1) ∩ κe(G(∆), 1) contains only finitely
many points. Since fp(·, 1) fixes this set, it must contain a periodic
point x which, by construction, is lying inside D ∩ κD. Obviously, we
may also find sequences xj ∈ Aj ∩ D and yj ∈ κAj ∩ D converging
towards x. This proves (C2) (NR). Since the Aj each consist of
precisely p connected components, (C3) is also true. Finally, (C4) has
been shown in Lemma 4.26, at least for a sequence of parameter values
λ = 1 + 1/l converging towards the critical value λc = 1. This proves
that indeed the triple (Σ, ∆, κ) is admissible.
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Both Theorems 4.10 and 4.21, respectively their conditions (4.5) and
(4.8), can be reduced in particular cases. Suppose that κ commutes
with all σ ∈ Σ. Then these conditions reduce to

dim (Fix (κ) ∩ ∂D) = n − 1

if κ is a reflection and

κD ∩ D = ∅

otherwise. We have already stated these assumptions in Notations 2.8.
Hence we obtain the following corollary, see Theorem 5.2 in [8].

Corollary 4.27. Suppose κ commutes with all σ ∈ Σ. Then the
triple (Σ, ∆, κ) is admissible.

In particular, for κ ∈ Σ, according to Lemma 3.2 in [8], κ always
commutes with the elements of Σ. Hence, a triple (Σ, ∆, κ) for κ ∈ Σ
is always admissible.

If Σ is strongly admissible, the conditions of the theorems can be
reduced in the same manner. This is due to the fact that a strongly
admissible subgroup Σ = ∆ fixes D and hence its boundary as well.
We obtain, see Corollary 5.9 in [8],

Corollary 4.28. Suppose Σ is strongly admissible. Then the triple
(Σ, Σ, κ) is admissible.

4.4. Dimensions one and two. For a full proof of Theorems 4.10
and 4.21, we have to deliver constructions for the admissible triples in
the dimensions one and two. These will be treated now on a case-by-
case basis.

To begin with, consider a one-dimensional mapping f : R×R → R.
We denote the elements of O(1) by 1 and κ. The strongly admissible
subgroups are 1 and Z2, and there are precisely two admissible triples.

Proposition 4.29. Let n = 1. Then both triples (1,1, κ) and
(Z2,1, κ) are admissible.
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V0 V1 V2

E1 E2

Proof. We only give a sketch of the proof; for details the reader is
referred to [12]. Generally, the methods of Theorem 4.10 can be applied
in this case as well; we only have to consider the special geometry of R.
Note, for example, that a graph embedded in R can never by Eulerian.
We therefore choose a graph G(1) consisting of two edges E1 and E2

and three vertices V0, V1 and V2, see the figure above.

We let the dynamics g : G(1) → G(1) on this graph be given as
follows: Let the edge E1 be mapped onto all of the graph G(1) and
similarly for the edge E2, only here we change the direction of the
path. In particular, for the vertices of the graph we have g(V0) = V0,
g(V1) = V2 and g(V2) = V0. Note that V0 is the only vertex of G(1)
which is fixed by g. The assumptions of Proposition 4.3 apply to g with
q = p = 1.

We embed G(1) on the positive real axis and then move the embedded
vertex V0 towards zero. Using methods from the proof of Theorem 4.10,
we are able to construct the desired equivariant mapping f up to
the point of collision. At this point there are no obstructions to
equivariance, since the embedded vertex V0 is a fixed point of g.

For λ ≥ 1, we introduce a new embedded vertex z(λ) satisfying
z(1) = e(V2, 1) for λ = 1 and then increasing monotonically. An
additional vertex z̃(λ) satisfying z̃(1) = 0 is introduced close to zero,
see the following figure.

We define f(·, λ) for λ > 1 in the following way. If Zi = e(Vi, 1)

z

V2 V1 V0 V2V1

z z̃ z̃
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denote the embedded vertices, we choose f such that the vertices are
being mapped as follows:

f(Z0, λ) = Z0 = 0
f(Z1, λ) = z(λ)
f(Z2, λ) = Z0 = 0

f(z(λ), λ) = −z̃(λ).
Since we have z(1) = Z2 and z̃(1) = Z0, we may extend f continuously
and equivariantly. Using an appropriate parametrization we can show,
in a similar fashion as in the proof of Lemma 4.19 that, for a sequence
of parameter values λj ↘ 1 the mapping f defined in this way possesses
a Z2-symmetric ω-limit set [−z(λ), z(λ)]. Note, however, that on
the interval [Z2, z(λ)] the mapping f is not expanding and hence in
Proposition 4.3 we have to use q = 2. Finally, we may extend f
equivariantly to a mapping f : R × [0, 2] → R as in the proof of
Lemma 4.20 such that the set [e(V0, λ), e(V2, λ)] for λ < 1, respectively
[−z(λ), z(λ)] for λ = λj > 1, become attractors. This shows that the
triple (1,1, κ) is admissible.

To verify admissibility of the triple (Z2,1, κ) we merely multiply the
mapping f constructed above with −1.

We can now prove Theorems 4.10 and 4.21 for n = 1 using the
preceding result: since κ is a reflection, there is nothing to show for
Theorem 4.21, and Theorem 4.10 states that both triples (1,1, κ) and
(Z2,1, κ) are admissible. For an example of such a one-dimensional
symmetry increasing bifurcation, see the odd logistic mapping as dis-
cussed in [6].

Now we turn to dimension two. The finite subgroups of O(2) up to
conjugacy are Zm and Dm for m ∈ N. We begin by verifying Theorem
4.10. In this case we only need to consider Dm since Zm does not
contain any reflections. The strongly admissible subgroups of Dm are
Dm, D1 and 1, the weakly admissible are Zk, 2 ≤ k | m and D2 if m
is even, see Theorem 7.2 in [3]. We note that we distinguish between
D1 and Z2. The first group is generated by a reflection, the last one
by a rotation. Only the first one is strongly admissible. The following
proposition yields the classification of the two-dimensional case when
κ is a reflection. It can easily be checked that the proposition agrees
with the contents of Theorem 4.10.
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Proposition 4.30. Let n = 2, and let κ ∈ Γ\∆ be a reflection in
Dm. Then the triples

Admissible Triple Symmetry Group after the Collision
(1,1, κ) D1

(D1,1, κ) D1

(D1,D1, κ) Dm

are admissible. If m is even, additionally the triples

Admissible Triple Symmetry Group after the Collision
(Z2,1, κ) D2

(D1,1, κ) D2

(D2,D1, κ) Dm

are admissible. The triples (Zk,1, κ) for 2 < k ≤ m are not admissible,
as well as (D1,1, κ) if the symmetry group after the collision is Dm,
that is, if we have 〈D1 ∪ {κ}〉 = Dm.

Remark 4.31. We take a closer look at the group D1. A transition
from D1 to Dm-symmetry is possible only if D1 itself is the associated
group of the attractor. In other words, the attractor has to intersect the
reflection hyperplane corresponding to the reflection in D1. If this is
not the case, that is, if 1 is the associated group, then the attractor may
first collide with itself at this reflection hyperplane, and only afterwards
a transition to full Dm-symmetry becomes possible. This is the reason
why we have admitted the case κ ∈ Σ if κ is a reflection.

Proof. We do not need to show that (Zk,1, κ) for k > 2 and (D1,1, κ),
κ /∈ D1, are not admissible. This follows from Proposition 3.1 where
we have made no restriction to the dimension n.

To show admissibility of the remaining triples, we may even apply
the methods of Theorem 4.10 directly. We only have to make sure
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that appropriate graphs exist, can be embedded in R2 and can then
be deformed such that certain edges collide with reflection hyperplanes
without intersecting other edges. This may easily be seen using a sketch
for each of the triples.

Now we turn to the case when κ is not a reflection. Then we need
not consider Dm, since in this group there does not exist any triple
(Σ, ∆, κ) where κ is not a reflection and satisfies κD ∩ D = ∅.

Hence we turn our attention to Zm. This group is an exception con-
cerning admissibility. From [3] we know that Zm and 1 are strongly
admissible and Zk, 1 < k < m divides m, weakly admissible. If we ap-
plied the criterion for strongly admissible subgroups as in Theorem 2.4,
then we would obtain that all subgroups must be strongly admissible
since Zm does not contain any reflections. However, any connected Zk-
symmetric attractor, k > 1, has to contain a closed curve around zero or
zero itself, which already makes it fully symmetric by Proposition 2.2.

This special property of Zm affects our problem as well. First note
that the construction of the associated group does not work in this
case, since it always yields the full symmetry group of the attractor
which may not be strongly admissible. However, we may always choose
∆ = 1.

If we apply Theorem 4.21 to the triples (Σ,1, κ), Σ < Zm, we
conclude that all triples must be admissible, since Zm does not contain
reflections and we therefore have D = R2. The following proposition
shows that indeed this statement is true. In the proof, however, we have
to pay special attention to the structure of the group. Suppose we look
at Γ = Z4 and want to observe a transition from trivial to Z2-symmetry.
Then a connected attractor with trivial symmetry would first collide
with its direct neighbor yielding Z4-symmetry instead of merely Z2.
We may circumvent this problem by choosing an attractor with two
connected components. Hence, to prove the following proposition
we have to construct attractors with a larger number of connected
components than usually.

Proposition 4.32. Let Γ = Zm, m ∈ N, then all triples (Zk,1, κ)
where k < m divides m and κ ∈ Zm\Zk are admissible.
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Proof. Again we restrict to a sketch of the proof. The full proof can
be found in [12]. Let ρ be a generator of Zm, and let Zl, l = kp, be
the group generated by Zk and κ. Without loss of generality we may
assume κ = ρm/l, since this element generates Zl.

We choose some half line T emanating from zero and consider the
set ZmT . This set separates R2 into connected components, which
can be seen as “fundamental domains” for the group Zm. We take
one of these components, F say, and some appropriate 1-graph G(1).
Now we embed this graph p times into F using the embeddings
ei(·, 0) : G(1) → F , i = 0, . . . , p − 1, such that the images of the
embeddings do not intersect. We denote the embedded graphs by
Ei

def= ei(G(1), 0) and let E = ∪p−1
i=0 Ei.

Now choose a dynamical system g : G(1) → G(1) with the properties
of Theorem 4.4. Define f(·, 0) for z ∈ Ei by

f(z, 0) def= κe(i+1)modp(g(e−1
i (z, 0)), 0)

for all i = 0, . . . , p − 1 and extend Zm-equivariantly onto ZmE. Then
one can check that the set

A =
l−1⋃
j=0

f j(E0, 0)

becomes an f -invariant Zk-symmetric ω-limit set of f(·, 0) and f
satisfies the properties (i) (iv) of Proposition 4.3.

We proceed by introducing a parameter into the embeddings, such
that the set A collides with its conjugate sets κiA for i = 1, . . . , l − 1
(without intersecting any other conjugate limit sets). To this end, we
deform the embeddings such that for λ = 1, some arbitrary chosen
vertex V ∈ G(1) is mapped onto some fixed y ∈ F by all ei(·, 1).
Without loss of generality we may assume that the embeddings of
G(1) have been chosen such that such a collision is possible without
intersecting other edges during the deformation process. We extend f
by defining

f(z, λ) def= κe(i+1)modp(g(e−1
i (z, λ)), λ)

for all z ∈ ei(G(1), λ), i = 0, . . . , p − 1, and extend f equivariantly.
The mapping f(·, 1) is well defined in y, since V is a fixed point of g.
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FIGURE 4. A symmetry increasing bifurcation.

After the collision we extend f in much the same way as in the proof
of Lemma 4.19. Then we may construct attractors and finally obtain
the desired mapping f : R2 × [0, 2] → R2 just as in Lemma 4.26.

Example 4.33. Figure 4 shows a symmetry increasing bifurcation
for a cyclic symmetry group.

In this example we have Γ = Z4, and the corresponding admissible
triple is (Z2,1, κ) with 〈Z2 ∪ {κ}〉 = Z4. As a dynamical system, we
have chosen the mapping

f(z, λ) = (αu + βv + λ + iω)z + γz̄m−1,

the parameters are m = 4, α = 2.0, β = 0.0, γ = 1.0, ω = 0.1, and the
collision takes place between λ = −1.78 and λ = −1.79. For additional
numerical examples in R2, we refer the reader to [8].

4.5. An example: The tetrahedral group. In this section
we apply our results by classifying all admissible triples of the group
T ⊕ Zc

2 < O(3), which is the symmetry group of the tetrahedron
(T) plus the group Zc

2 generated by −id. This example was already
discussed in [8], Example 5.10. Now, however, we are able to give a
full classification using both Theorems 4.10 and 4.21.

We use the notation as in [10]. Then, by Table 1 in [3] we have the
following list of admissible subgroups of T⊕ Zc

2.
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strongly admissible T ⊕ Zc
2, D2 ⊕ Z2

2, Z3, Dz
2, Z−

2 , 1

weakly admissible Z3 ⊕ Zc
2, Z2 ⊕ Zc

2, Zc
2, Z2

inadmissible T,D2

We also add a list of inclusions between the different subgroups, see
[3, Proposition 8.3].

T⊕ Zc
2 ⊃ T,D2 ⊕ Zc

2,Z3 ⊕ Zc
2

T ⊃ Z3,D2

D2 ⊕ Zc
2 ⊃ D2,Z2 ⊕ Zc

2,D
z
2

Z3 ⊕ Zc
2 ⊃ Z3,Zc

2

D2 ⊃ Z2

Z2 ⊕ Zc
2 ⊃ Z2,Zc

2,Z
−
2

Dz
2 ⊃ Z2,Z−

2

Z2,Zc
2,Z

−
2 ,Z3 ⊃ 1.

Applying Theorem 4.10 we can conclude, as in [8], which of the triples
are admissible when κ is a reflection. The admissible triples are listed
in Table 1.

TABLE 1. Admissible triples by Theorem 4.10.

Admissible Triple (Σ, ∆, κ) Resulting Group
1. (1,1, κ) Z−

2

2. (Z−
2 ,1, k) Dz

2

3. (Z−
2 ,Z−

2 , κ) Dz
2

4. (Z2,1, κ) Dz
2

5. (Z2,1, κ) Z2 ⊕ Zc
2

6. (Zc
2,1, κ) Z2 ⊕ Zc

2

7. (Dz
2,Z

−
2 , κ) D2 ⊕ Zc

2

8. (Dz
2,D

z
2, κ) D2 ⊕ Zc

2

9. (Z2 ⊕ Zc
2,Z

−
2 , κ) D2 ⊕ Zc

2

10. (Z3,Z3, κ) T⊕ Zc
2

11. (Z3 ⊕ Zc
2,Z3, κ) T⊕ Zc

2
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If κ is contained in Σ, then the following triples are admissible:

(Z−1
2 ,1, κ), (Dz

2,Z
−
2 , κ) and (D2 ⊕ Zc

2,D
z
2, κ).

Now we apply Theorem 4.21 to look at the cases where κ is not a
reflection. Then we compute that the triples in Table 2 are admissible.
Note that in 1, 2 and 5 we even have σ−1κσD = D, whereas for 3 and
4 only σ−1κσD ∩ D = ∅ is true.

TABLE 2. Admissible triples by Theorem 4.21.

Admissible Triple (Σ, ∆, κ) Resulting Group
1. (1,1, κ) Z3

2. (Zc
2,1, κ) Z3 ⊕ Zc

2

3. (Z−
2 ,Z−

2 , κ) T ⊕ Zc
2

4. (D2 ⊕ Z2
2,D

z
2, κ) T ⊕ Zc

2

5. (D2 ⊕ Zc
2,D2 ⊕ Zc

2, κ) T ⊕ Zc
2
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