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SOME ASPECTS OF DENTABILITY IN
BITOPOLOGICAL AND LOCALLY CONVEX SPACES

MISHEL FUNDO

ABSTRACT. This paper is a continuation of the study we
presented in [6]. A modified version of Namioka’s argument is
reconsidered to obtain an extended form of a result of Namika-
Asplund; this leads to the improvement of several theorems
and to a generalized version of the Dunford Pettis theorem
[2]. Moreover, two versions of Rieffel’s converse theorem
are discussed. It is shown that the first one holds true in
locally convex spaces, but not generally in the spaces with
two topologies; the second leads to a new characterization of
the Radon-Nikodym property in real Banach spaces and in
their duals.

1. Introduction. The main results are contained in Sections
2 and 3. Section 2 deals with sufficient conditions of 7-dentability
in bitopological spaces [13]. Corollaries in locally convex spaces are
obtained. Analogous questions have been treated in a different context
by Rieffel [15], Maynard [12], Lindenstrauss [11], Troyanski [17],
Bourgain [1], Namioka [13], etc.

Section 3 deals with the problem of equivalence between the dentabil-
ity of a bounded set and the dentabilities of its closed convex hull and
its closed equilibrated convex hull; the aim is to find the possibly larger
extension of such an equivalence. This is an important tool in the study
of the geometric aspects of the Radon-Nikodym property.

In this paper the same notations and definition as in [6] are used.
Thus we recall some of them by paying special attention to the notion
of bitopological spaces introduced by Namioka [13].

We consider a real vector space E with two topologies rq and r such
that r < rg, and we suppose that the pairs (E,r¢) = E and (E,r) = E,
are Hausdorff locally convex spaces (hlcs); their topological duals are
denoted by E’ and EJ, respectively, and the system of neighborhoods
of the origin in E by 7(0). The weak-compact sets in E, will be called

Received by the editors on February 5, 1996, and in revised form on April 8,
1997.

Copyright ©1999 Rocky Mountain Mathematics Consortium

505



506 M. FUNDO

—=T

r-weak-compacts, while by (C"* (A4))C" (A) will be denoted the (weak)
closed convex hull of a set A in the space E,. By A"™ is denoted the
weak-closure of the set A in the space E,.. A bounded set in the space
E,.(E) will be called an r-bounded (bounded) set and analogously if we
replace here bounded by closed. All the locally convex spaces (lcs) in
the paper over the real vector space E.

Definition 1. An r-bounded set B C E is called r-dentable in the
space E if B
(VV e4(0)(3z € B)(z ¢ C (B\z+ V).

If, instead of =, we have rg, it will be called a dentable set. It is clear
that each bounded r-dentable set is dentable.

Definition 2. A set A C E has the Radon-Nikodym property (RNP)
if each bounded subset of it is dentable.

The topological dual E’ of an hlcs is called w*-dentable if each
equicontinuous subset of it is w*-dentable.

Definition 3. The triple (E,ro,r) is a bitopological space if there is
a local base of the origin for the space E consisting of r-closed sets.

For this definition it is not necessary that r < rg, see [13]. Here we
consider only the case r < ry.

Two classical examples of bitopological spaces are the triples (E, T,
o(E,E")) and (E',B(E',E),W*), in which (E,T) is an hlcs with
o(E, E') for its weak topology, while S(E’, E) and W* are the strong
and the weak-star topologies in the topological dual, respectively.

2. The main theorem and other results. Theorem 1 below is
the main result. It is the extension to the class of r-weak compact
convex sets of a Namioka-Asplund result, see [7] or Corollary 2. Its
proof follows the method of the proofs of Namioka’s Proposition 2.2 in
[13], or of the lemma in [14], and of the similar propositions of Maynard
[12] and of Bourgain [1] in Banach-spaces.

Theorem 1. If the triple (E,rg,r) is a bitopological space, with
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r < rg, then each r-weak compact convex set', bounded and separable
in the space E, is r-dentable.

Proof. Let Vy € v(0) be an arbitrary neighborhood of the origin in the
space E and K an r-weak compact convex set, bounded and separable
in E. We denote by {z,}ncn a countable set, in E or in K, which
is dense in K, for the topology vy : K C {z,}. By the bitopological
property of the triple (E, rg, ), there is an r-closed convex equilibrated
neighborhood V' of the origin in F for which V4V +V +V =4V C V.
Let A be the set of extreme points of K; then A"™ is an r-weak compact
set which is, for this reason, a Baire-space for the weak topology of E,
induced on A"*. On the other side the inclusion K C {x,,} implies the
equality:

A = A" N (@0 + V)]
n=1
The set V is a weakly closed set in E, since it is an r-closed convex
one. Thus all the sets A “ N (z, + V) are weakly closed sets in E,,
hence in A . Consequently, for some m € N, the corresponding set
B, = A" N (2m + V) has nonempty interior; thus, we can suppose the
existence of a weakly open set IV in the space E, with its complement
N¢ a finite union of some r-weakly closed convex sets, such that
NNA™ C B, In this case the set K\N = K N N° is a finite union
of r-weakly compact convex sets and its convex hull K3 = C(K\N)
equals C'* (K\N) = C(K\N) is an r-weakly compact convex. By the
fact that NN A" # @ and the fact that N is a weakly open set in
the space F,., there exists the point € E such that x € N N A. From
the inclusion NN A C z,, + V, it follows that the r-weakly compact
convex set Ko = C “(NNA)=C (NNA)is 2V-small. It is clear that
K,,Ky CK, AC Ky UK, and z € K», but = ¢ K; because the point
x is an extreme point of the set K. By the Krein-Milman theorem, we
have .
K=C"(KiUK,)=C(KyUKj)
={Az1+(1-Nzz:2; € K;,0 <A< 1},

where C(K; U K3) is the convex hull of K; U Ky. As the set K is
bounded in the space E, there exists an « > 1 such that K/a C V/2.
It is very easy to verify that the set:

C:{)\xl—i-(l—)\)xg:miEKi,l/O(S)\Sl}
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is an r-weakly compact convex set; furthermore, = ¢ C because z ¢ K;
and the point x is an extreme point for the set K.

So z € N\C = N; where N; is weakly open in the space E.. By
the choice of the set C' and of the number o and by the fact that the
set Ko is 2V-small, it is easy to verify that the set K/C is 4V-small,
or yet Vp-small, and so is the set Ny N K because of the inclusion
N,NK c K\C.

As above with the set IV, we can choose the neighborhood N7 of x
smaller and such that its complement Ny is a finite union of r-weak
closed convex sets. Consequently,

C(K NNY) = C(K\N,) = C"*(K\N,) = C" (K\Ny).

But Ny NK C 2+ Vy and = ¢ C(K\N;) because x € Ny and z is an
extreme point of K. Thus

z ¢ O (K\N) 2 C" (K \(z + Vp)),
and accordingly the set K is r-dentable, Definition 1. u]

Corollary 1. In the bitopological space (E,rg,r) each bounded subset
of an r-weakly compact, convex and separable for the topology ro set A,
is r-dentable; furthermore, the set A has the (RNP).

Proof. Let B be an arbitrary bounded subset of A. By Proposition 1
in [6], to show that B is r-dentable, we show that its r-closed convex
hull C" (B) has the same property. Since C' (B) = C'*(B) C A, the set
C"(B) is an r-weakly compact convex, bounded (by the bitopological
property) and separable in the space E set. Therefore 6T(B) is r-
dentable by Theorem 1. As an r-dentable set, B is dentable, too. |

Remark 1. As an r-compact set is an r-weak compact one, from
Corollary 1 it follows that an r-compact convex and separable for the
topology 7 set in the bitopological space (E,rg,r) has the (RNP). For
the same reason Theorem 1 holds if we replace the r-weak compact
convex set by an r-compact convex one.

Corollary 2 (Asplund-Namioka [7]). Fach separable weak-compact
convez set in an hlcs is a dentable set and has the (RNP).
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Proof. Corollary 1 is applied for r = ry where 7y is the topology of
the given hlcs E; in this case, the r-weak topology is the weak topology
o(E, E") so each weak compact is bounded. O

Corollary 3. Each w*-compact convez and separable (for the strong
topology) set in the dual E' of an hlcs has the (RNP). If E' is the dual
of a real Banach space, then Corollary 4 in [3] follows, which states: A
w*-compact convez set in E', for which the set of its extreme points is
norm separable, has the (RNP).

Proof. For the first part of the theorem, Remark 1 is applied for
r = w* and ro = B(E’, E). The second part is an immediate corollary
of the first part and of Haydon’s theorem [9]. O

The next corollary is an improvement of Theorem 3.5 of [7]. Here
we do not need the dual E’ to be a Frechet-space; also its proof is
easier and it is neither based on Theorem 2.3 in [13] nor on Choquet’s
theorem in [10].

We remember that an lcs is called a quasiseparable space if each
bounded subset of it is separable.

Corollary 4. If the topological dual E’ of an hlcs E is quasiseparable
(for the strong topology), then it is w*-dentable.

Proof. Theorem 1 is applied and the second part of Remark 1 to
the bitopological space (E',B(E’, E),w*) where ro = B(E',E) and
r = w*. The w*-closed convex hull of an equicontinuous set in E’ is
a w*-compact convex equicontinuous one. Consequently, it is bounded
and separable for the strong topology in E’ and hence w*-dentable.
[}

Remark 2. The classes of w*-weak compact and of w*-compact sets
are the same, because (E',w*)* = E.

Corollary 5 below is an improved form of Corollary 8.3 in [7] because
here it is proved without needing the dual E’ to be a Frechet space.
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This form is also a good generalization of the Dunford-Pettis theorem
[2, 4] and in another direction in comparison to the interesting one
given by Bourgin in [3].

We remember that an hlcs is called a quasibarreled space if each
closed convex equilibrated subset of it, which absorbs all the bounded
sets, is a neighborhood of the origin.

An hlcs is a quasibarreled space if and only if each (strong) bounded
set in its topological dual is an equicontinuous set.

Corollary 5. Let (E,T) be an hlcs with its topological dual E' a
quasiseparable space (for the strong topology). If each bounded set in
the hlcs (E',B(E', E)) is a relatively w*-compact one (or, especially, if
the hles (E,T) is a quasibarreled space), then the space (E',(E', E))
has the (RNP).

Proof. Let A’ be an arbitrary bounded set in the space (E', B(E’, E))

and K = C" (A") its w*-closed convex hull. By the bitopological
property of the triple (E', 3(E’, E), w*), the set K is bounded. Con-
sequently, it is separable in (F, B(E’, E)) and w*-compact by the con-
ditions of the theorem. It follows from Theorem 1 and Remark 1 that
the set K is w*-dentable; thus, the set A’ is w*-dentable, therefore
dentable. u]

Corollary 6 (The Dunford-Pettis theorem). The separable dual of a
real Banach space has the (RNP).

Proof. Each Banach-space is quasibarreled (barreled) and each sepa-
rable space is a quasiseparable one. Corollary 5 is applied. ]

2.2. Based on the above and on that of [6], we will give by Theorems
2 and 3 below the direct and easier proofs of Theorems 3.6 and 2.9
in [7], respectively; furthermore, Theorem 2 is an improved form of
Theorem 3.6 in [7], because we replace “the dual Frechet space” by a
“quasimetrizable dual space.” The basic tool in the proofs of Theorems
2 and 3 is the known proposition which states: “The weak-compact
convex sets in a quasimetrizable l.c.s. have the (R.N.P.).” This
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proposition is an easy corollary of Corollary 2 and of the generalized
form of Maynard’s lemma as it is stated in [7, 8|].

Theorem 2. If the topological dual E' of a semi-reflexive hlcs E is
quasimetrizable (for the strong topology), then it is w*-dentable.

Proof. By the semi-reflexivity of E we have that E"” =(E’, B(E', E))' =
E, thus the weak-star and the weak topologies in E’ are the same. For
each equicontinuous set A’ in E’, its w*-closed convex hull C* (4’) is
a w*-compact convex set, and hence it is dentable as a weak-compact
convex set in the quasimetrizable lcs (E', B(E’, E)). Since in this case
C" (M"Y =C"(M'")=C(M') for each set M’ C E', the set C" (A’) is
w*-dentable (Definition 1) and therefore the set A’ is w*-dentable too
(Rieffel’s Proposition 1 in [6]). O

Theorem 3. Fach weak-compact convex set in a quasimetrizable lcs
1s the closed convex hull of its denting points.

Proof. Let B be a weakly compact convex set in the quasimetrizable
Ics E, and let us suppose that 0 € B; otherwise, we take By = B —a
where a € B. Considering the hlcs (E, o(E, E')) and the continuity of
the maps ¢ — —z and (z,y) — z+y, we conclude that the equilibrated
convex set A = B — B is a weak compact set. This set contains the set
B(0 € B). Therefore, the set A is subset-dentable and consequently
subset o(E, E')-dentable, Definition 1. As the weak compact set B
is complete in the uniform structure of the space (E,o(E,E")), by
Theorem 1 in [6] and by Proposition 2 in [6], which in this case states
that the E;(EvE,)—strongly exposed points are o(E, E')-denting points
and hence denting ones, we conclude that set B is the weak closed,
equivalently closed, convex hull of its denting points. O

Remark 3. The method of the proof for Theorem 3 cannot be applied
for the more general Theorem 2.2 in [8], in which is replaced the weakly
compact convex set B by a complete convex set C' with the (RNP)
because, in the last case, the difference set C'— C may not be a Radon-
Nikodym set, see [16].
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3. The converse of Rieffel’s theorem?. In [6] the next (extended)
version of Rieffel’s theorem, [2, Corollary 2.3.3], is given.

Proposition 1. If the r-closed convex hull C' (A) of the r-bounded
set A is r-dentable, then so is A.

It is not difficult to also see the validity of the similar proposition for
the “equilibrated” case as follows:

_ Proposition 1. If the r-closed conver equilibrated hull, denoted by
Cr—equil (A), of the r-bounded set A is r-dentable, then A has the same
property.

In the real Banach spaces, the converse of Rieffel’s theorem is true,
see the note in Corollary 2.3.3 in [2], but generally this is not true in
spaces with two topologies. For this reason in point i) the possibilities
of the validity of the converse of Proposition 1 are studied, and the
same for Proposition 1’ in ii).

i) It will be shown now by Counterexample 1 that the converse
of Proposition 1 does not hold true in spaces with two topologies.
By Theorem 4 and its corresponding Lemma 1, the validity of such
a converse in Ics is proved.

Counterexample 1. An r-bounded and r-dentable set with its r-
closed convex hull which is not r-dentable.

Let A= {(z,y) € R?: 2% + y? < 1} be the unit ball in the Hilbert
Euclidean space R2. We denote by ry its norm-topology and by r
the locally convex topology defined by the semi-norm p : R? — R™,
p((z,y)) = |f(z,y)|, where f(z,y) = x —y. Then r < ry and A has
the (RNP) as a subset of a reflexive Banach-space. In the space E,
the sets V. = {(z,y) € R* : —e < 2 —y < &} are a fundamental
system of neighborhoods of the origin, so that the set A is r-bounded.
We will prove that the set A is r-dentable. For each neighborhood V'
of the origin in (R?,7g) there exists 0 < € < 1/2 such that the ball
B(0,¢) C A. Let M be the point (—1/v/2,1/v/2) of the boundary of
A; then A\(M + V) Cc A\B(M,¢), where B(M,e) = M + B(0,¢).
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The convex hull C(A\B(M,¢)) is contained in the r-closed set D =
{(z,y) e R?* : a <z —y < 2}, where  — y = a is the line defined
by the points of the intersection of the boundaries of the sets A and
B(M, E). Consequently, C' (A\B(M, E)) C D and since M ¢ D, then
M ¢ C"(A\B(M, E)). Thus,

(VV € 4(0)(IM € A)(M ¢ C (A\M +V))

which means the set A is r-dentable.

Let us show now that the r-closed convex hull C' (A) is not r-dentable.
The r-closed set F = {(z,y) € R?: —/2 < x — y < v/2} contains the
set A, so C' (A) C F; in fact, C' (A) = F. Indeed, for each € > 0 and
each Ne F, (N+V.)NA#@, foralle >0,s0 Ne A cC (A).

Let B(0,1/2) be the open ball with the ray 1/2 in the space (R?, 7).
For each N € F = C' (A), we have C' (F\B(N,1/2)) = F, so
(VN € F)(N € C'(F\B(N,1/2)),

which shows that the set F = C' (A) is not r-dentable. u]

To prove Theorem 4 we need first to extend Asplund-Namioka-
Bourgain’s Theorem 3.4.1 of [2] in the Ics as follows:

Lemma 1. Let (E,T) be an lcs, V a convex equilibrated neighborhood
of its origin and J, Ko, K1 three bounded-closed convex sets, such that

1) J C C(KyUKjy),
2) Ky C J, Ky— Ky C V/2,
3) J\K; # &, (&, the empty set).

Then there exists a V -small slice, which contains some point of the set
K.

Proof. As in the proof of Theorem 3.4.1 [2], consider the convex set
Cr={ze€FE:z=(1-XNzo+ Ax1,(20,21,\) € Ky x K1 x [r,1]),

where 7 € [0,1]. Then C; = K; and J C C.
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From condition 3) and the separation theorem, there exists an z' € E’
such that 2’ (K1) < sup’(J). As in Theorem 3.4.1 in [2], we find that
Ko\C, # @. The set Cy\C, is dense in the sets Co\C, O J\C,.
There also exists r € (0;1) such that r(K; — Ky) C V/8, because the
set K1 — Ky is bounded. For this r, the set J\UT is a V-small set.
Indeed, for w € J\C, there is an = € Cy\C, for which z € w + V/8
orw—z € V/8 If zg € Ky and z; € K; are two points such that
z=(1—X)zo+ Az, then 0 < XA < r and

w—zg=w—-—c+z—z=(w—21z)+ Az —20) € V/4

Consequently, if w,w’ € J\C, denoting by zy and =}, their correspond-
ing points as above, we find:

w—w =w-—zy— (W — () + () — T
CV/4+V/4+K07K0CV

Let yo be an arbitrary point of the set Ko\C, C J\C,. By the
separation theorem there exists ' € E’ and a real number 3 for which
z'(yo) > B and supx’(C,) < B. Then the slice T = T(z',a,J), the
definition in [6, page 1], with & = sup 2’(J) — 8 > 0 contains the point
Yo € Koy and is a V-small set because it is contained in the set J \6,,.
[}

In the proof of the theorem below, we apply Definition 1 of the
dentability given in [6].

Theorem 4. In a locally convex space the dentability of a bounded
set A implies the dentability of its closed convex hull.

Proof. For each arbitrary neighborhood V} of the origin in the given
Ics E, there is a closed convex equilibrated neighborhood V of the origin
such that V' C Vp. Supposing that A is dentable, we can find a V/4
small slice Ty = To(xf, g, A) of A : Ty — Ty C V/4. Let 29 be a point
of Ty; then Ty C xo+ V/4 and consequently Ky = C(Ty) C x¢+ V/4, or
Ky — K, C V/2. We also have Ky C C(A) because Ty C A. Denoting
K, = C(A\Tp) and J = C(A), we have that J C C(K U K;). On the
other hand, from Ty = {z € A : zj(x) > sup zy(A) — a = B}, it follows
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that A\Ty = {z € A: z{(z) < B} C {z € E: zj(z) < B} = B, where
B is a closed convex set. Consequently, K; = C(A\Ty) C B, so for each
y € Ty, y ¢ K because z((y) > (. For such a point y,y € Ky C J, so
J\K; # @. By Lemma 1 applied to the sets Ky, Ky and J, there exists
a V-small slice T'(z, a, J) of J which is also a Vp-small one. Thus the
set J = C(A) is a dentable set. O

Based on a similar lemma to Lemma 1 and on the bitopological nature
of the triple (E', B(E', E), w*), the same proof as in the above theorem
leads us to the following version of the converse of Rieffel’s theorem for
the case of w*-dentability:

Theorem 5. If the equicontinuous set A’ in the topological dual E’
of an hlcs (E,T) is w*-dentable, then its w*-closed convex hull has the
same property.

In a barreled hlcs this theorem gives us, as a corollary, a more
“proper” form of the converse Rieffel’s theorem for the case of w*-
dentability:

Proposition 2. In the topological dual E' of a barreled hlcs, the
w*-closed convexr hull of a w*-bounded and a w*-dentable set is also
w*-dentable.

Proof. We apply Theorem 5 observing that, in a barreled hlcs, each
w*-bounded subset of its topological dual is an equicontinuous set and
vice versa. ]

ii) It is important to observe that such extensions as in i) are not
possible for the converse of Proposition 1’; in this case, we have the
following characterization:

Proposition 3. In a real Banach space E the two following facts
are equivalent:

1) The space E has the (RNP).
2) The closed convez equilibrated hull of each bounded dentable set in
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FE is dentable.

Proof. We need to prove only implication 2) = 1). If this is not
true, then there exists a real Banach space E with property 2) which
does not have the (RNP). Let A be a bounded, not dentable subset
of E. The closed convex hull B = C(A) of A is also not dentable
by Rieffel’s theorem. We can suppose that 0 ¢ B, otherwise we
consider the no dentable bounded closed convex set a + B, in which
lla|| > sup{||z|]| : # € B}. The closed convex equilibrated hull D of
the set B is not dentable by Rieffel’s theorem for the equilibrated case,
Proposition 1’. On the other hand, the set By = B U {0} is dentable
(because the origin 0 is a strongly exposed point of it) and its closed
convex equilibrated hull C-equil (Bj) is the set D. This leads to a
contradiction with property 2). Thus 2) = 1). O

Remark 4. Instead of the set B in the proof of the above proposition,
we can take its closed convex hull B; which also has the origin 0 as a
strongly exposed point.

In the dual Banach spaces, corresponding to Proposition 3 is the
following

Proposition 4. In the dual E' of a real Banach space E the two
following facts are equivalent:

1) the space E' has the (RNP).

2) The w*-closed convex equilibrated hull of each w*-bounded and w*-
dentable set in E' is also w*-dentable.

Proof. We have that 1) = 2). Indeed, if A’ C E’ is a w*-bounded

and w*-dentable set, then its w*-closed convex equilibrated hull c" -
equil (A’) = D’ is a bounded, equivalently w*-bounded, set and,
consequently, a dentable one by the (RNP) of the dual space E’. Then
the set D’ is w*-dentable by Proposition 3.4 in [5].

The implication 2 = 1) is proved similarly as the corresponding one
to Proposition 3. We only observe that if property 2) is true and 1) fails,
then there exists a bounded, equivalently w*-bounded, not dentable set
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A’ C E', which also is not w*-dentable; the origin 0 is a w*-strongly
exposed point for the set B} = B’ U {0}, where B’ = C"(A’) and
0¢ B. o

Remark 5. In the proof of 2) = 1), we have applied Propositions 1
and 1’ for r = w*.

Remark 6. r and rg, 7 < 79, dentabilities are the same in the cases
when 7 is the weak topology in the lc space (E,rg) or when r is the
weak-star topology and ry the strong topology in a real dual Banach
space E’, Proposition 3.4 in [5]; but this is not true in the general case.
For example, the square K = {(z,y) € R?: |z| + |y| < 1} in the triple
(R?, 7o, 7) of Counterexample 1 is dentable and r-bounded as a bounded
set in the space (R?,7g), but it is not r-dentable. Indeed, denoting by
B(0,1/4) the open 1/4-ball in (R?,7¢) and B(M,1/4) = M+ B(0,1/4),
M € R?, it is easy to see that

(VM € K)(M € C"(K\B(M,1/4))).

ENDNOTES

1. Here and in all other theorems and propositions we consider that the sets are
nonempty.

2. In this section the triple (E,ro,r) is not generally a bitopological space.
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