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ON THE ELEMENTARY PROOF
OF THE PRIME NUMBER THEOREM
WITH A REMAINDER TERM

WEN CHAO LU

ABSTRACT. In this paper we have improve the remainder
term of the prime number theorem by using the elementary
method, Selberg’s method, and obtained

7(z) = liz + Of{x exp(—logM /P ¢ z)},

where € > 0 is an arbitrarily small constant, and the O is
dependent on €.

1. Introduction. Let m(x) denote the number of prime numbers
not exceeding x. The elementary proof of the prime number theorem
was obtained by Selberg in 1949 and his method was modified by
several mathematicians. In 1962 and 1964, Bombieri [2] and Wirsing
[6] respectively and independently proved

7r(w):1iw+0< ? >

logA T

where A is an arbitrary positive constant. In 1970, Diamond and
Steinig [3] proved

7(z) = liz + O{x exp(—(log z)'/" (log log z) ~2)}.
In 1973, A.®. JlaBpuk and A.IIl. Cobupos [5] proved
7(z) = liz + O{x exp(—(log )/ (log log ) ~%)}.
In this paper we have modified Selberg’s method again and obtained

7(x) = liz + O(w exp(— log"/? = 1)),
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where € > 0 is an arbitrarily small constant and the O is dependent on
€.

2. The path of the proof. In this paper n,m,t,j and k always
denote positive integral numbers and the rest denote positive real
numbers (except where otherwise noted).

In this paper the integral part of z is denoted by [z] and the
convolution of f and g is defined by

(7)) = 3 flma( 2):

m|n

Let p be the M&bius function and A the Mangoldt function. Define

(1) A = prlog’, i>1,
(2) R(z) = Z{A(n) —1} 42y, >0,

where v is Euler’s constant.

The proof of the paper is based on the application of Balog’s identity
, k T T
3) R(z)log" ) Ai(n)log"  ZR( =
@ Reeste () X nmos 1r(7)
=3 unytog* Z( ),
n \n

n<x

where

R(z) = Zzz(%).

n<x

The difficulty existing in (3) is how to deal with the coefficient A;(n)
in the second term on the left side; here the estimated result of A;(n) in
short intervals will determine the main result researched in the paper.

Define
(4) mi(z) = Z @ log’ Loixo.

)
n
n<x
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Via simple calculation we can obtain

(5) Y {Ai(n) —mi(n)} < 3(z — y)(logy)” Y,

y<n<z

when (y/2)exp(—log”y) < & —y < yexp(—log’y) and 2 < ¢ <
(loglog z) 'log” y, where o is an arbitrary constant, 0 < o < 1 and
the < depends on o.

Now (5) is effective only when the exponent of logy is less than i — 1,
namely, o(i+1)<i—1loro < (i—1)/(i+1) =1-2/(i +1). From
this we see that, when ¢ = 1, (5) is not effective, and, when ¢ > 2, the
smaller ¢ is, the more o is restricted. On the other hand, the more o is
restricted, the poorer the result is. And, hence, the result is determined
by whether we can get a better estimate than (5) when i is small.

In this paper we have used a recursive method to estimate A;(n) in
short intervals when i is small and obtained a more refined result than

(5)-

Let us define

R, (z) = R(z);
(6) Ri(z) = Z{Al(n) —ilog' tn}, i>2.
n<x

If i is a constant, then m;(n) = ilog' ' n+O(log' 2n), i > 1, so that
the estimate of ) {Ai(n) —m;(n)} is equivalent to the estimate
of Ri(x) — Ri(y).

We first derive a recurrence formula

Ri(z) — Ri(y) ={Ri-1(z) — Ri—1(y)} logz
T e

logifla:
+ O{|Ri—1(w) —Ri_1(y)| + (z — y)w}

y<n<z

from the identity A; = A; 1 log+A % A; 1, i > 2, under the conditions
i>2,y> (2/2) and z — y > z exp(—log' 7 z) where o is an arbitrary
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constant, 0 < o < 1, b = zexp(— log z/(loglogz)) and the O depends
on o and i.

Next let ¢ > 2. By applying (7) we can prove that if, when
zexp(—(logz)!~*(loglogz)~™") < z —y < wexp(—+/log ), the inequal-
ity

N , logix
) _n. < ——(z — v)log" -
|Ri+1(2) — Riv1(y)| < M(m y) log $+O{(I y)loglogﬂﬁ}

holds, then when zexp(—(logz)'=?(loglogz)~("+M) < z — ¢y <
z exp(—+/log z), the inequality

HM@RMMS%g@wbg*x+0%wmbﬁ_x}

holds too, where p is an arbitrary constant, 0 < p < (1/2), h is an
integer, h > i, M and N are arbitrary integers satisfying M > N > 1
and both O’s depend on p, ¢ and M.

That is to say, if we can get a good estimate of R;(z) — R;(y) when
i is greater, then we can also get a good estimate when ¢ is smaller.

By induction we finally obtain, when i > 2 and z exp(—log' ™%’ z) <

z —y < zexp(—ylogz),

1

' logi—1
< je-piog tarof@-nE L],

|Ri(z) — Ri(y)] loglog

where p is the same as above and A is an arbitrarily large constant and

the O depends on p, i and A.

In the case i = 2, we take p = (6/4) in the last inequality and
o = (6/2) in (7), then substitute the last inequality in (7); we get

{R(z) — R(y)}logz = — ZA("){R<%> - R<%> }

n<b

0 log x
Ze — )1 _
+ 4@ -y 0gw+0{(w y)loglogx},
where 6 satisfies |#] < 1 and z,y satisfy y > (z/2), z —y >
zexp(—log'~®/? ), § being an arbitrary constant, 0 < § < 1 and
the O depends on § and A.
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We can use this formula to estimate R(x)—R(y) and we see that its re-
sult is mainly determined by the condition z—y > z exp(— logl_(‘;/z) x).
Transforming the last formula into a suitable form and applying Wirs-
ing’s lemma found in the proof of [6, Lemma 1], we get a very good
estimate of R(z) — R(y). When z —y > xexp(—log ° z),

19 T—y
R(z) — R —(x — O ————
Re) - RO < (o0 +0 (o),
where § is an arbitrary constant, 0 < § < 1, and the O depends on §.

Thus we obtain a good estimate of A;(n) in short intervals for ¢ > 1,
so that we can obtain the main theorem in the paper.

3. A recurrence formula of A;(n). In this section we shall give a
recurrence formula for A;(n) as the base for estimating A;(n) in short
intervals.

The function A; given by (1) has the following recurrence relation,
see [1, p. 288].

Ai = Ai,110g+A * Aifl, for ¢ 2 2.

It follows that, for 0 < y <  and i > 2,

® 3 A= 3 A@lognt Y A@Ai(m).

y<n<lz y<n<z y<nm<z

Defining ¥,;, ¥ by

(10) U(z) =Y An),

and substituting logn = logz — log(z/n) = logz + O(log(z/y)) =
logz + O(1)((x/2) < y < 3y < n < z) in (8), we have, when
(z/2) <y <zandi>2,

Vi(z) — Wi(y) = {¥i-1(z) — Yi_1(y)}logz
(11) 2of ¥ i+ X A,

y<n<z y<nm<z
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and the O is absolute.
Write

log x
12 = - )
(12) b=wexp < log log x )

Considering the last term of (11) and using (9) again we get, when
z/2<y<zandi>2,

i(z) = ¥i(y) = {¥; 1(z) — ¥; 1(y)} logz + O{ Z |Ai1(n)|}

y<n<z

(13) +T§A(n){\h~1<%> —@1(%>}

+ > Aisi(m) > A(n),

m< (a/b) max((y/m),b)<n<(z/m)

and the O is absolute.

Now we shall give several formulae which will be used for the estimate
of the last term of (13).

By Balog [1, p. 288],
(14) Ai(n) >0 for i>1, n>1,
and by [1, p. 290],
(15) ;(z) < zlog ta fori>2,

and the < depends on 3.

In fact, Balog has proved that ¥;(z) = izlog x4+ O(i(i —
1):1:10g’72 z) for 2 < i < logz in [1, p. 290], but in this paper we
do not need this strong result and only need (15).

From (9), (10) and (1), we see that ¥y(z) = Y, ., Mi(n) =
Y n<a A(n) = ¥(z) < z, that is to say, inequality (15) is also valid
when ¢ = 1, and, therefore, we can get from (15) via partial summation

A .
(16) Z Ai(n) < log'z fori>1,
n

n<zx
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and the < depends on i.

Finally we give a well-known formula

(17) A+ M) —n(4) < lfgw{uo

loglog M
log M ’
and the O is independent of A and M. This formula is obtained by

Selberg’s sieve, see Geng [4].
Using (17) with A =y and M =z — y, we get
U(x)-T(y)= > Aln)= > logp+ Y logp

y<n<z y<p<z y<p" <z
m>2

{r(z) = 7(y)} log z + O(Vzlog” z)
2(z — y)logx log log =

log(z — y) {1 i O<10g(m - y)> }
+0(Vzlog?z),

where p denotes prime number and both O’s are absolute.

When z — y > 2%/3, we have from (18),

IN

(18)

IN

(19) U(z) —¥(y) <z —y,

and the < is absolute.

When y > (2/2) and  — y > zexp(—log” ), where ¢ is a constant,
0 < o < 1, we have from (18) again

U(z) — U(y) < 2(z —y){1 +Olog "7 2)},
and this gives
(20) |R(z) — R(y)| < (z — y){1+ O(log™ " 2)},

and the O depends on o.
Let x be suitably large, such that when m < (z/b),

I
m < (2/b) = exp (lgf;’ ) <o/t
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the second step following from (12); then, if z—y > 2%/6 and m < (z/b),

v

Y
m

3l&

2\ 23
2(5/6)-(1/6) _ ,2/3 5 <_> ’
m

that is to say, in this case the condition of (19) is satisfied by z/m
and y/m, and so we can apply (19) and get, when z — y > 2%/¢ and

m < (z/b),
o()-+(2)

and the < is absolute.

Now we estimate the last term of (13). Using the last inequality and
inequalities (14) and (16), we have, when = — y > 2%/6, i > 2 and z is
suitably large,

> Aisa(m) > A(n)

m<(x/b) max((y/m),b) <n<(z/m)

- m%/b) Ai_l(m){q,(%) - W<%> }

<@-y) ) A%(m)

m<(z/b)
(21) < (z—y)log! %
—(w—y) log x ot
N Y loglog x
log’;1 T
< —
<( y)loglog:v’

and the latter < depends on i.

We shall next discuss the third term on the righthand side of (13).
We first give the following.
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If1<y<ua, then

log"™*t &t

t

i—1
og'

Y

logixflogiy:i/
y

T

—

(22) <i dt

T~

x_ylog"flx for i>1.

=1

Furthermore we shall use Balog’s result, see [1, p. 290]:

A(n i T 1 i i .
(23) Z%log ﬁ=Z+llog+1m+O(log z) fori>0,

n<lzx

and the O is i-uniform.

By (23) and (12) we have, when ¢ > 1 and x is suitably large,

Afn). gz Aln), a1z Aln), iz
7 ? — N7/ 1 T - =\ 1 2 d
Z n log n Z n % n Z n % n

n<b n<x b<n<lzx
1, i A(n)
— ~ logt i—1
7 log a:—i—O{log :c(1+ Z ¥ }
b<n<lz
L. i1 z
(24) = ;log x4+ O0S log" "z 1+10g3
1, log’
- _,longO(ﬂ),
i loglog x

and the O is i-uniform.
By (22), writing ¢ — 1 for ¢ and y = n, we have, when (z/2) <n <z
and 7 > 2,

“lp=log tz — (log" 'z —log" tn)

=log tz+0 <m —n log' 2 x)
n

2

log

L2+ O(log™

- 1Ogi7 l’),
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and the O depends on i. It is obvious that this formula is also valid
when ¢ = 1. Using this formula we get from the definitions of ¥; and
Ria see (9)7 (10)7 (6) and (2)7

Ui(x) - Ui(y) = Ri(x) — Ri(y) + Y ilog" 'n

y<n<lz
= Ri(z) — Ri(y) + (z — y)ilog' '@
+ O{(z — y)log' *z},

(25)

when i > 1, y > (z/2) and z — y > log z, and the O depends on .

If y > (x/2), then (y/n) > x/(2n) for n > 1, and if  —y > blog z,
then (z/n) — (y/n) > (b/n)logz > logz > log(z/n) for 1 < n < b.
That is to say, when y > (z/2), z —y > blogz and 1 < n < b, the
condition of (25) is satisfied by (z/n) and (y/n) and so, in this case,
we can apply (25) and get

n n n n n o n
+O{<£g> logi_2x} for i > 1,
n o n

Finally, using the last formula and (24), we obtain, when y > (z/2),
x—y >blogz,i>1 and x is suitably large,
(26)

Sam{e () u(2) =S am{a () -w(2)}

+ ZA(n)x — yilogi*1 d

n n
n<b

+O0{(z—vy) log' ! x}

“Srofn ()= ()

+(z —y)log'
+0{(w—y) g }

loglog x

SR

and the O depends on <.
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and the O depends on <.

l1-0o

Lemma 1. Ify > (x/2) and x —y > xexp(—log 7 ), where o is
a constant, 0 < o < 1, then, when x is suitably large, we have

Ri(x) — Ri(y) = {Ri-1(%) — Ri—1(y)} log @

gofe()-n-()

+ O{|Ri-1(z) — Ri 1(y)

+(z—y) x} for i > 2,

loglog x

and the O depends on ¢ and i.

Proof. We first consider the remainder term of (13). From (14) and
the definitions of R;, R and A;, see (6), (2) and (1), we have

Y Aicam) = D Aisa(n)
::Ih_l(m)gffﬁ_l(y)+- EE: (iAfl)logi_Qn

y<n<z
= Of|Ri-1(2) = Ri-1(y)| + (= — y) log' 2},

when y > (z/2), x — y > zexp(—log' ™7 z), i > 2, and the O depends
on 1.

Now we consider the other terms of (13). Noticing (12), we see
that there exists a constant oy depending only on ¢ such that, for
x> 0o, zexp(—log' ™7 z) > zexp(—logz/loglog x) log z = blog = and
z exp(—log' ™% ) > z5/6, and so, if « and y satisfy the given condition
x —y > zexp(—log' ™" z) in the lemma, then, when z > o¢, z and y
satisfy z —y > blog x and z —y > 2°/6. That is to say, if « and y satisfy
the conditions of the lemma, then, when x > o0¢, x and y also satisfy
the conditions of (21), (25) and (26). Hence we can substitute (21),
(25) and (26) in (13); doing so and then reducing, the lemma follows.

4. The estimate of A(n) — 1 in short intervals. The purpose of
this section is to prove
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Lemma 2. Let § be an arbitrary constant, 0 < § < 1, and let x be
suitably large. If, for an arbitrary constant A, A > 1, the inequality

@) Ialo) - Rl < o= n)loga + 0f 0~ poes |

loglog x
holds when
(28) z—y > zexp(— logt~(%/2) z) and y> g,
then
(29) Rle) - R < (e —0)+ 01 L)
holds when
(30) z—y > zexp(—log' ’z),

and the O in (27) depends on § and A while the last O depends only
on §.

In Lemma 2 we obtain an estimate of A(n)—1 in short intervals under
the condition (27) which will be proved in the next section.

From (30) we see that the estimate of R(z) — R(y) in Lemma 2 is
very refined. Since (30) is determined by (28), the estimated result of
R(z) — R(y) in this section is in fact determined by the estimated result
of Ra(z) — Ra(y) in the next section.

We write condition (27) in another form. Taking i = 2, o = (6/2)
and substituting (27) in Lemma 1, we get, when y > (z/2), z —y >
x exp(— log'—%/2) z) and z is suitably large,

{Ri(2) — Ra(y)}logz + > A(”){Rl (%) ~fa (%> }

n<b
(31) L O{|Ri(x) - Rl(y)u\

1

log x
< —(xz—1)l _
< je-pioge+0of@- %L,
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where b is defined by (12), and the first O depends on § while the
latter O depends on ¢ and A. Since Ry (z) — Ri(y) = R(z) — R(y) and
Ri(z) — R1(y) < = — y by the definition of Ry, see (6) and (20), we
can write (31) in the form

{Ruﬁ—fﬂw}ngZ'—E:A“”{R<%>'_R<%>}

(32) n<b
0 log x
RN Re (e

where 6 satisfies |§] < 1, z and y satisfy the conditions of (31), and the
O depends on § and A.

Thus, Lemma 2 can be proved if we can derive (29) from (32).
We prepare for proving Lemma 2 from Lemma 3-Lemma 11 below.

The following lemma is significant for proving Lemma 2.

Lemma 3. Let X,Y be arbitrarily large positive numbers, X > 2Y,
and let f,g be real L-measurable functions defined on [0, X] satisfying

1 [* 1 [*
33 - 2(y)dy < F, - 2(y)dy < G,
(33) /Of(y)yé /Og<y)yg

x T

for 0 < x < X, where F,G are positive constants. Define
1 x
(34) hz)=— [ fle-y)gly)dy, 0<z<X.
0
If h(z) satisfies

(35) .

z 1
/ h(y)dy| < ZE3VFG forY <z <X,
0

where € is the reciprocal of an arbitrarily large natural number, then we
have

/YX R2(y) dy < (% + Ks) FG(X ~Y),

where K 1is a positive constant independent of e, X, Y, F and G.
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Proof. We prove the lemma only when F' = G = 1, or we can write
f(2)VF, g(x)vVG and h(z)VFG for f(x), g(x) and h(z), respectively,

to transform the formulae into the case F'= G = 1.

Let € = (1/N), N being an arbitrarily large natural number, and let
z,=14+e)", n=12....

If, for arbitrary n, when z,, > Y and z,; < X, the inequality

(36) [ Ry < (54 Kie) @ - 20)

n

holds, where K is a constant independent of ¢, X, Y, x,, and =41, then
we can at once prove the lemma when F = G = 1.

Inequality (36) is implicit in the proof of Lemma 1 of [6, pp. 2-6].
We cannot obtain (36) from [6, Lemma 1] directly. But, in the course
of proving Lemma 1 of [6], Wirsing has proved the result the same as
(36) of our paper by using only the conditions:

/fz(y)dyéx, /gZ(wdygx,
0 0

for 0 <z < xpy1,

‘ / h(z) dz
Tn(v-1)

v
N(mn+1_xn)+mna ’UZO,].,...,N.

and

S E(xnv - xn(u—l))a

where

Tny =

When z,, > Y and z,4+1 < X, these conditions can easily be deduced
from (33) and (35) in our paper. And, hence, we can obtain (36) from
the proof of Lemma 1 of [6]. The lemma is thus proved.

The following argument is how to transform (32) into another form
similar to (34), for which Lemma 3 can be applied.

Write

(37) a = exp <M>

loglog x
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Lemma 4. If z and y satisfy the conditions of (31), then

;;;A("){R@ B R(%)} = > {Am) - 1}{R<%> _ R<%>}

a<n<b

)

loglog x

and the O depends on 6.

Proof. From the definitions of R and ¥, see (2), (10), we have
x x x
R(Z)=Nw(2)- )
()= G) - bl

(symbol [z] denoting the integral part of z, see Section 2). Using a
familiar formula

T
Z) = = — >
Z\Il<n> Zlogn zlogzr —z+ O(Wz), =>1,
n<lx n<x
and the well-known formula of Dirichlet

3 [ﬂ =zlogz + (27 -1z +O0(Vz), z2>1,

n<x

we get
x
38 R| — fi > 1.
(38) 7;0 <n> <z forz>
Furthermore, when z,y satisfy the conditions of (31),

=) ale T, 5, e

b<n<z b<n<z (y/n)<m<(z/n)

< > {Am+1p > 1

m<(a/b) (y/m)<n<(z/m)
Alm)+1
(39) -y Y AW
m<(z/b)
< (x —y) log(z/b)
log x
— (2 —y)—o

loglog z’
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the last step following from (12) and the <’s depending on 0.
Using (39) and (38), we have, when z, y satisfy the conditions of (31),

nng{R@) r(U)f = {r(%) &(Y)}

n<z

—i—O{(x _y)loz)izm}
— z Y
-2 4(3) -Z()

—i—O{(ac _y)loz)izw}

( ) log x
= T —
Y loglogz |’

this gives
;,A(n){R(%) B R(%)} = ;b{f\(n) —~ 1}{3(%) , R<%>}
(10) +of@-n 2|,

and the O depends on §.

Applying (20) and noticing (37), we have, when z,y satisfy the
conditions of (31),

> {A(n) - l}{R(%) - R(%) } <@y %

n<a n<a
< (z —y)loga
log x
N (miy)loglogm’

and the <’s depend on §. On substitution in (40), we get the lemma.

Now we smooth the coefficient A(n) — 1 in the expression

2acn<oiM(n) — IH{R(z/n) — R(y/n)}.
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First we give a sequence a,, defined by
(41)
ap =3; apy1 = an + [an exp(— log!~ (/%) ap)l, n=0,1,2,....

Next we define a function S by
S(an) = R(ap), n=0,1,2,...,
(42) S(z) = kn(z — an) + R(a,) for z € [an, ant1],
n=0,12,...,
where

(43) k, = R(ant1) — R(an)'

Ap4+1 — Qn

By (42), the derivative of S(z) is k, when a, < = < apt1, le.,
S'(z) = ky, for z € (an,ant1). Now we define S’(z) at the points
ai,az,... by S’'(ap+1) = kn, n=0,1,2,... . Thus we have S'(z) = k,
for x € (ap,an+1)- Hence, by (43),

(44) §'(z) = by = Fons1) = Flan)

Ap41 — An

for z € (an,ant1], n=0,1,2,....

Lemma 5. When x is suitably large, we have
|1S"(z)| < 14 O(log™* z),
and the O depends on §.
Proof. Given any x, x being suitably large, we can find a correspond-
ing integer n such that a, < < ap1. Therefore, by (44),

(45) ‘S’($)| _ |R(an+1) — R(an)|’

Ap4+1 — Ap

for given z. Further, from (41), we see that there exists a constant dy
depending only on 4 such that, when a,, > dg,

Apt1 — Ap, = [an exp(— log17(5/3) an)] > api1exp(— log17(5/4) Ant1);
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thus, when a,, > §y, we can apply (20) to (45) and get, for given z,
18" (x)] <1+ 0(log™** a,11) = 1+ O(log™/* z),

(for the latter step noticing that z < an41 for given z) and the O
depends on §. Because x is arbitrary when z is suitably large, we
establish the lemma.

Lemma 6.

S'(m) =S(m)—S(m—1), m=4,56,....

Proof. Noting that symbol [z], given in Section 2, denotes the integral
part of z, we see from (41) that ag, a1, ao,... are integers. Therefore,
given any integer m, m > 4, we can find a corresponding integer n such
that ap, +1 < m < apy1, that is, m € [an,ant1] and m—1 € [an, ant1];
thus, taking x = m and £ = m — 1 in (42), respectively, we can get, for
given m,

(46) S(m) = kn(m — ay) + R(ay),
and
(47) S(m—1)=k,(m —1—a,)+ R(ay,).

Subtracting (47) from (46) we get, for given m,

(48) S(m) —S(m —1) = k.

On the other hand, since a, +1 < m < a,41 for given m, we can get
from (44)
S'(m) = knp,

for given m. Combining this with (48), we get
§'(m) = §(m) = S(m - 1),

for given m. Because m (> 4) is arbitrary, we establish the lemma.
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From Lemma 6 we get, for arbitrary positive integers m,n, n < m,

(49) .Z S'(i) = S(m) — S(n).

Lemma 7. For arbitrary integer m, m > 4, we have

S'(z)=8"(m) form—1<z<m.

Proof. In the proof of Lemma 6 we have proved that, corresponding
to any given integer m, m > 4, we can find an integer n such
that a,, + 1 < m < ap41. Now m and n are thus fixed. So, if
m — 1 < x <m, we have ¢ € (ay, @n+1] so that, from (44), S’(z) =k,
for m—1 < z < m. Taking = m in this equality we have S'(m) = k.
Comparing both equalities we have S’(z) = S'(m) for m —1 <z < m.
Because m (> 4) is arbitrary, we establish the lemma.

Lemma 8. For z > 3,

S(z) — R(z) < zexp (— log!~(%/® g) log z,

and the < is absolute.

Proof. Given any z, x > 3, we can find a corresponding integer n
such that a,, < z < ap+1. Now z and n are thus fixed. Plainly,

1S(z) — R(z)| = |5(z) — R(an) — R(z) + R(an)|

(50) < |S(z) — R(an)| + |R(z) — R(an)|.

Since a, < ¢ < anp41, we get, by (42) and (43),

() — R(an) = kn(z — ay) = 1) = Rlan) oy

Ap4+1 — Aanp
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Since 0 < & — an, < apy1 — an when a, < z < apq1, it follows that

S(2) ~ R(an)| < [R(ans1) — Rlay)|
(51) < Y {Am)+1h

ap<m<ant1

Furthermore, since a, < ¢ < an41, we have

[R(z) — R(ax)| < > {A(m)+1}

ap<m<z

< > {Am)+1}

ap<m<ant1

(52)

Substituting (51) and (52) into (50) we get

S(z) - R(x)| <2 > {A(m)+1}

(53) an<m<any1

< (an+1 - an) log An+1,

and the < is absolute.

From (41) it is easily seen that a,y; — an < an, n > 0, that is,
Gnt+1 < 2a,, n > 0. Then, since the z and n given above satisfy
an < x < apt1, we have z < ant1 < 2a, and z > a, > (1/2)an41.
And, therefore, from (41) again

Ap+41 — Gn S an exp(f logl_(6/3) an) < T exp < logl_(6/3) %)7

moreover,
log,, ., <log(2z) < logz.

Substituting in (53) we get
S(z) — R(z) < zexp (— log!~ /% g) log z,

and the < is absolute. Because z is arbitrary, we establish the lemma.
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Lemma 9. When x is suitably large, we have
z y
> e =0{a(3) -#(3)}
a<n<b
- 2 so{a(5)-#(3)]
n n

a<n<b

+ O{x exp <— loglf(é/g) %) log? J;},
and the O is absolute.

Proof. Let

H= Y {A(n)-1- 5’@)}3(%).

a<n<b

By the definition of R, see (2),

M= 3 aw-1-sH ¥ am-1+n)

a<n<b m<(z/n)
(54) = Y {A(m)-1} > {A(n) —1-5"(n)}
m<(z/a) a<n<min((z/m),b)
+ 2y Z {A(n) —1-5"(n)}.
a<n<b

Write d = min((z/m),b). Applying (49) and Lemma 8 we have

> {A(n) ~1-8'(n)} = R({d]) ~ S(d]) — {R([a]) - S([a])}

a<n<d
2

exp (— loglf(‘;/?’) %) log x,

< dexp <— log!~(%/3) M) logd

x
< =
m

and the < is absolute.
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In like manner,

Z {A(n) —1-5'(n)} < zwexp <— log!~ %/ %) log z,

a<n<b

and the < is absolute.
Substituting the last two inequalities in (54), we get

A 1
H, < zexp (— log! —(%/3) %) log Z %

m<z

<L T exp (— logl_(‘s/?’) %) log? z,

and the < is absolute. That is, by the definition of Hy,

3 {A(n)—l}R(%) =Y S’(n)R(%)

a<n<b a<n<b
+ O{mexp (— 10g17(5/3) %) 10g2x},

and the O is absolute.

In like manner,

s - a(2) - 5 sa?)

a<n<b a<n<b

+ O{yexp (— logl_(5/3) %) log2y},

and the O is absolute.

The lemma follows from the last two formulas.

Lemma 10. When z s suitably large, we have
b
> seofa(z) - w()}= [ sofa(z) (5
n n o t t
a<n<b
+ 0(f>,
a
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and the O depends on §.

Proof. Let
3 S'(n)R(%) —/abs'(t)RG) dt
then o
e 5 fron(e) [ o)
55 i

[b]s’ ()m/ sOr(7) a.

Using Lemma 5 we can get

b
S’(t)R<f> it < =,

“sir(F)at < ©
/[G]S()R<t> <<a,

and the <’s depend on §. By Lemma 7, we have

(57) /n: S’(t)R(%) dt = S'(n) /n: R(%) dt.

Substituting (56) and (57) in (55) we get

me 3 st [ {n(7) -n(5) faeso(5)

and, using Lemma 5 again, we have

H< Y / {A(m)+l}dt+§

a<n<b?n—1 (m/n)<m<(z/t)

< ¥ S {Am 1+l

a<n<b (z/n)<m<z/(n—1)

< Y {A(m)+1}+§<<§,

m<xz/(a—1)

(56)
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and the < depends on §.

In like manner,
y ’ y T
3 S’(n)R(—> —/ S’(t)R<—> it <
n a t a
a<n<b

and the < depends on 6.

The lemma follows from the last two inequalities.

Lemma 11. Ify > (z/2),x —y > mexp(—logl_(‘;m) x), then when
x 15 suitably large, we have

{(R(z) - R(y)}logz = — /ab s'(t){RG) - R<%> } dt

0 log x
+ 5 pioge+of@ L,

and the O depends on 6 and A.

Proof. Combining Lemma 9 with Lemma 10, we get

(58) a;ﬂgb{A(n) - ”{R(%) - R<%>}
= [ sfn(5)-n(2)}o

+ O{mexp (— logl_(‘;/?’) %) 10g2x},

and the O depends on §.
By (37), when z is suitably large, (then a is suitably large),

1 1
loggzlog\/ﬁziloga: o8

4 2loglogz’
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Using this inequality and the condition of the lemma, we can get, when
x is suitably large,

z —y > zexp(—log' =%/ z)

log z 1-(5/3) )
- = 1
(59) > mexp( <2logloga:> > o8 T

> xexp ( logl_(5/3) %) log?

and the > depends on §.

Combining (59), (58), (32) and Lemma 4, the lemma follows imme-
diately.

Proof of Lemma 2. Let u be an arbitrary positive number, and let u
be suitably large. Put

(60) v = u1*(5/(2*5));
then
(61) p1(8/2) — ,(2=0)/2 _ ,,(1=(8/(2=8)))((2-6)/2) — (10

Also let g be an arbitrary positive number satisfying
(62) 1—g>exp(—u'"?), g>(1/2).
Then from (62) we have
(63) zg > (x/2) for z > 0.

And, from (62) and (61) we get, when v < logz < u,

z—xg=2x(l—g) > zexp(—u'")
(64) = zexp(—v!~/2)
> zexp(—log!~¥/? ).
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If y = g, then from (63) and (64) we see that, when v < logz < u, z
and y satisfy the conditions of Lemma 11. Hence, when v < logx < u,
we can take y = zg in Lemma 11 and get

{R(z) — R(zg)}logz = — /: S’(t){R(%) - R(%) } dt

0 log x
i — 1 _
+A(m zg) ogm—i—O{(az mg)loglogm}’

and the O depends on § and A. And then, on writing £ = logu,
n =logt, a =loga and B = logb, we have

B
(R(¢5) — R(efg)}e = — / S'(e"){R(e€) — R(eSg) Y™ di
(65) g

0
qea-aerofea -t L

for v < € < u, and the O depends on § and A.
Furthermore, from (37) and (12), we have

_ _ dogz ¢
(66) a=loga= loglogz  log¢’

_ _ gz . &
(67) B =logb=1logz loglogz g€
Define

~ [{R(e®) — R(efg)}e 6(1 —g)! ifv<¢<u,
o se-{! s
[ S'(ef) ifE> v,

(69) oo = {51 HEzu

Noting (64) and ¢ = logz, ie., z = €f, we can apply (20) with
0=1-(6/2), =€ and y = e°g to (68) and get

FOI<1+0(E7?) =1+0(w™""?),
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for v < & < u, and the O depends on §. Furthermore, applying
Lemma 5 with = = e to (69), we get

19(&)| < 1+ 07 =1+ 0(u™/%),

for £ > v, and the O depends on §.

Since, from the definitions of f and g, f(§) = ¢(§) = 0 when
0 < ¢ <w, we get from the last two inequalities

I£(€) < 1+ 0(w™7?),

7
o 9(E)] < 1+ 0(u™*"),

for 0 < ¢ < u, and both O’s depend on .
Let
(71) w = yt—0/(2(2-9)))

From (66) and (67) we see that there exists a constant ¢; depending
only on ¢ such that, for u > d; and w < £ < w,

et > W L e S 10/
logé — logu logu

and similarly

3
log ¢

Hence, if « < n < B, thenn > a > v and £ — 7

>
for u > 61 and w < & < wu. Therefore, if a < n < g,
and w < ¢ < wu, we can get R(ef) — R(efg) = f(£)ef(1 — g),
R(ef™") — R(efg) = f(€ —n)et "(1 — g) and S'(e") = g(n) from
(68) and (69). Substituting in (65) and multiplying the equality by
e ¢(1—g)7t, we get

- 8=

> .

B
@) 5©6=- [ ase-man+ Ge+o(i),

for w < ¢ < wu, and the O depends on § and A.
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Define
13
1) mO =0 he)=g [ arE-mdn o<
By (70), we have

(74) R(E)| <1+0@™*) for0< ¢ <u,

and the O depends on §.

From the definition of h, we have

13 B8
6 - / F(6— ) dn = / g(m)F(€ —n) dn— / g(m)F(E —n)dn
19 a
(75) - /ﬁ o(m)F(€ — ) dn + / o(m) F(€ —n) dn,

for w < & < u. From (70) we see that g(n)f(§ —n) < 1for 0 <n <¢,
w < & < u. Substituting in (75) and using (66) and (67), we get

&
£)E - / fe-min<e—pra< iz,

for w < £ < u, and the < depends on §. Combining this with (72), we
obtain

M)+ f(E)e = Se+ o<é> for w< £ <,
namely,
(76) he)+ 7€) = % + 0<$> for w < £ < u,

and the O depends on § and A.



PRIME NUMBER THEOREM 1007

Trivially,
/f R(e") - R(e"g) |
0 e’(1—g) 7
[ ¥ -y
= —_ A(n) —1}dn
o €1(l—g) engam<en
_ min(log(n/g),£)
_ Z A(n) 1 / e_,q dn
n<et 1- g logn
A _ 1 [los(n/g)
= Z 7(1@ / e Tdn
n<efyg -9 logn
A 1 [los(n/9)
—i—O{ Z —(1n)+ / e " dn}
efg<n§ef -3 logn
o Am)—1 A(n) +1
P
n<efg efg<n<et
= O(l)v

for w < ¢ < u, and the O is absolute. Using this, we get from (68)

/Ef(n)dn=/§wdn

w w 6"(1 - g)
€ R(e") - R(e"g) v R(e") - R(eg)
‘/o (1 g) d"‘/o ai—g)

= O(l)’
for w < £ < u, and the O is absolute.

Writing n for £ in (76) and integrating (76) between the limits w and
&, we get

/sh(n)dn__/Ugf(n)dn+%(§_w)+0< 3 >

w log w

for w < € < u,

where |0;| < 1, and the O depends on ¢ and A.
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Using the last two formulas, noticing (74), (71) and w < (§/logu) <
(&/1og€) for wlogu < & < u, we obtain
3 3
/ h(n) dn :/ h(n) dn + O(w)
0 w

(77) _—/ugf(n)dn+%§+o<b§§>

_0 §
B A£+O<log£>’
for wlogu < € < u, and the O depends on § and A.

Let N be an arbitrarily large natural number, and let ¢ = (1/N).
Taking A = 8¢ 3 in (77), we see from (70) and (77) that there exists a
constant vy depending only on ¢ and € such that, when v > vy,

§ §
| Poa<aros [ Fman<arag oro<e<a,
0 0
and
¢ 1
/ h(n) dn‘ < 1535 for wlogu < ¢ < u.
0

Thus, using Lemma 3 with F =G =14¢, X =uand Y = wlogu, we
get

/u h%(n) dn < G + Ks> (1+¢)%u,

w log u

where K is independent of ¢, w and u.

We choose ¢ suitably small such that (1 +¢)? < (11/10) and (1/2) +
Ke < (5/8), so that, when v > vy,

(78) /“ h%(n) dn < Eu

w log u — 16
Using (74) and noting 0| < 1, we get from (76)

o ={-mo+ 4 ro(iie))

0 6> 1
— 1)~ 2500 + 5 +0(1ore )

9 2 1 1
<h (§)+2+E+O<@>,
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for w < € < u, and the O depends on § and A. Integrating this between
the limits wlogu and u and taking A = 48, we have

u ) u ) ” u ‘
/wloguf (5)d5§/wloguh (a)d£+1—6+0<1ogw>,

using this and (70) and (78), noting (71), we obtain

/f2(£)d£=/ £2(€) dé + O(wlog )
0 w log u

“ U U
(79) s/wbguh?(f)duﬁw(bgu)

3 u
< —
- 4u+0<logu>’

and the O depends on §.
Using (72) with £ = u, A = 20,

Fwlu < {/Oug%n) dn/ou Fu—m) dn}1/2

u
+%+O<1ogu>'

Since [ f*(u —n)dn = [, f2(£)d¢ by putting & = u — 7, and since
Iy 9%(m) dn < uf{1+O(v=%/%)} = u{l1+ O(1/logu)} by using (70) and
(60), it follows, using (79), that

< {310 )N ur Lo
wis = 4 logu “ 20 log u

1 U U
=-Vv3 —+0
pV3u+tog + <10gu>
19 U
< —u+0
20"t <10g u) ’
and the O depends on §. Using (68), this inequality can be written in
the form

u u 19 u _Lu eu_eug
80) IR - Rl < ol - eg) + 0 ST,
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and the O depends on §.

If z and y satisfy the condition (30) and y > (x/2), then we
can use (80) with v = logz and ¢ = (y/z) (then z = e* and
y = e"g), it is easy to verify that in this case g satisfies (62) because
1—g=1-(y/z) = ((z —y)/z) > exp(—log' ~° z) = exp(—u' %) and
g = (y/z) > (1/2), and get (29) when y > (2/2). If y < (z/2), we can
get (29) from the prime number theorem too. Thus, we complete the
proof of Lemma 2.

5. The estimate of A;(n) —ilog' ' n in short intervals. In the

preceding section we proved (29) under the hypothesis of (27). In this
section we shall estimate R;(z) — R;(y) for ¢ > 2 which includes (27).

In the preceding section we use Lemma 1 with ¢ = 2 to estimate
R(z) — R(y) under the hypothesis of the estimate of Ra(z) — Ra(y).
In this section we shall also use Lemma 1, on writing ¢ + 1 for i, to
estimate R;(z) — R;(y), ¢ > 2, under the hypothesis of the estimate
of Rit1(x) — Ri11(y). Thus we can use the same method as that
used in the last section to estimate R;(z) — R;(y) for ¢ > 2. But
to estimate R;(z) — R;(y) for ¢ > 2 by using Lemma 1 is simpler
than to estimate R(z) — R(y) by using Lemma 1 because it is not
effective if we straightforwardly apply Lemma 1 to the estimate of
R(z)— R(y) and, in this case, we must transform Lemma 1 into another
form for which Wirsing’s lemma can be applied, but it is effective if we
straightforwardly apply Lemma 1 to the estimate of R;(z) — R;(y),
1 > 2, and in this case we need not transform Lemma 1 into another
form in order to use Wirsing’s lemma. Thus we can get the estimate
of Ri(z) — R;i(y) when ¢ > 2 as long as we can get an estimate of
R;(z) — R;(y) when 1 is large.

Let p be an arbitrary constant, 0 < p < (1/2), and define

(81) wy(z) = zexp(—(logz)! *(loglogz) "), t>0.

Lemma 12. When x is suitably large, we have
(i) If t < t', then wi(x) < wy ().

(ii) If m and n are arbitrary integers satisfyingm > 1 and1 < n < b,
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b being defined by (12), then

Wi (Z) > nwp_1 (%)

Proof. When z is suitably large, (loglog ) is an increasing function
of t for every fixed  and then by (81) w;(x) is also an increasing
function of ¢ for every fixed z. This establishes (i).

We proceed to prove (ii). From (12),

o z log
&~ loglogz’

then, when m > 1, n < b and =z is suitably large, we have

logz

1-p
(log z)*~*(loglog z)™™ < < > (loglog z)~(m=1)

loglog x

2\
= <10g E) (loglog )~ (M~

1-p —(m=1)
< <1og£> <loglog£> ,
n n

and it follows from (81) that

1
—wp(z) = d exp(—(log z)'~*(loglog ) ™™)
n n

x 2\ 2\ Y
— exp <— <log —> (loglog —> >
n n n
(%)
= Wm-1\ — |-
n

This establishes (ii).

Y

Lemma 13. If z and y are suitably large, y > (/2) and © —y >
w;—1(z), then

o i logifl:z:
. — R < _ log® 1 _
[Ri(@) ~ Rily)| < (@~ y)ilog w+o{<w y>1og10gx}’
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fort > 1, and the O depends on p and i.

Proof. Let us apply inductive method. When ¢ = 1, puttingo =1—p
in (20) and noting (6), we have

|R1(z) — Ra(y)| = [R(z) — R(y)|
< (z—y){1 +O(log™"x)}

1
:w_y+0{(w_y)loglog:v}’

for y > (z/2), * —y > wexp(—log' ) = wo(z) and the O depends
on p.

Therefore the lemma is true when 7 = 1.

Suppose that the lemma is true when ¢ = m, m > 1; that is to say,
when y > (z/2) and z — y > wy,—1(x),

log™™* x}

(82) |Rm(2) ~ Ru(y)| < (& — y)mlog™ o + O{(x “Yogloga

the O depending on p and m.

Then writing (z/n) for z, (y/n) for y in (82), we have, when
(y/n) = =/(2n), (z/n) = (y/n) = wp1(z/n) and n < b, b being
given by (12),

n(G) = () = (- )
n n n n n

+O{<£ _ g)@}
n n) loglogx

Now we shall use Lemma 1 and (83) to prove that the lemma is true
when i = m+ 1. Ify > (2/2) and © — y > wy(z), then (y/n) >
(x/(2n)) for n > 1, and by using (ii) of Lemma 12, (z/n) — (y/n) >
(1/n)wm(z) > wm—1(z/n) for n < b. That is to say, in this case z
and y satisfy the conditions of (83); thus, we can substitute (83) in
Lemma 1 as long as we take i = m 4+ 1 and 0 = p in Lemma 1, noting
that, when & —y > wp, (z), © —y > wo(z) = z exp(— log' ~* z) by (i) of

(83)

and the O depends on p and m.
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Lemma 12 and (81); doing so, and then substituting (82) in it, noting
that, when z — y > wn(z), € — y > wy_1(z) by (i) of Lemma 12, we
get, when y > (z/2) and = — y > wy, (),
[Bnt1(2) = Rini1(y)] < (¢ = y)mlog™ «
r—-y m—1%
A 1 —
+Y An) mlog™ ™" —

n
n<b
log™ z
1) _
+ {(m y)logloga:}’

and, by using (24), the right side of this inequality is

m log™ z
(@ a)lm+ )1og™ o+ 0 (o )5 L,

and the O depends on p and m + 1. Therefore, the lemma is true when
i =m + 1, and this proves the lemma.

Lemma 14. Let N be an arbitrary constant, and let M be an
arbitrary and suitably large integer, M > N > 1. Also, let i be a
fized integer, ¢ > 2. If

(84)

holds when wp(z) < z —y < zexp(—+/logz), then
3N .
|Bi(z) = Ri(y)| < - - (z —y)log ta

logF1 T
i O{(m B y)loglogm}

(85)

holds when wp1p(z) < z—y < zexp(—+/logz), where h is an integer,
h >1i, z and y are suitably large, both O’s depend on p, i and M.



1014 W.C. LU

Proof. Writing ¢ + 1 for ¢, putting ¢ = p and transposing the terms
in Lemma 1 and noting (81), we get

{Ri(z) — Ri(y)}logz = Riy1(x) — Rit1(y)
ESHEE)

log’
+0{IRia) = Ra)] + (2 = ) s =L,

for y > (z/2), z —y > zexp(—log' ?z) = wy(x), and the O depends
on p and i. By (i) of Lemma 12 and the given condition A > ¢ > 2 in the
lemma, we see that, when = —y > wp(z),  and y satisfy the condition
x —y > wo(z) of this equality and the condition =z — y > w;—1(z)
of Lemma 13, and then we can substitute (84) in this equality and
substitute Lemma 13 in the remainder term of this equality; finally we
get

N 7
HM@—&@W%wSM@—wng

(36) + 2 Am)|R: <%> f <%> ‘

n<b

+0&w—wi%2L}

loglog z

for wp(z) < z — y < xzexp(—+/logz), and the O depends on p, i and
M.

Now we shall use (86) to prove the lemma. First we give a sequence
defined by

N 1

Secondly, we use deductive method to prove that

n—1

(88) A=~ N

in—l

1
i’

S
(]

n > 1.
=0
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When n = 1, (88) holds obviously. Suppose (88) holds when n = m,
m > 1. Then, from (87),

m—1
N 1 N 1 1 N 1
Am+1—_+;Am—_+_.<. + g —>

7

hence (88) holds when n = m + 1, and this proves (88).
Further, we shall use (86) and the deductive method to prove that

. logi_lm
' B ' < ] . i—1 _
(89) |Ri(2) = Ri(y)| < Aj(z — y)log “0{‘”” y)loglogw}’

for 0<j<M+1and wpyj_1(z) <z —y < zexp(—+logz), z and y
being suitably large, and the O depending on p, 7 and M.

When j = 0, noting Ay = %, we can get (89) from Lemma 13 as
long as we can verify that, if  and y satisfy the conditions of (89),
when j = 0, then x and y satisfy the conditions of Lemma 13. This
can be proved as follows. By the given condition h > ¢ in this lemma
and (i) of Lemma 12, we can get © — y > w;_;(z) from the condition
z —y > wp1(z) of (89). Furthermore, when z and y are suitably
large, we can derive y > z —z exp(—+/logz) > (z/2) from the condition
z —y < zexp(—+/logz) of (89). Hence, (89) is true when j = 0.

Suppose that (89) is true when j = m, 0 < m < M; that is to say,

- log"™ 'z
) _ R < _ i—1 _
|R;i(z) — Ri(y)| < Am(z —y) log w+0{(w y)loglogm},

for wpym—1(z) < x—y < xexp(—+/logz), x and y being suitably large,
and the O depending on p, i and M. Writing (z/n) for z, (y/n) for y,

we have
(2) 8 (2) <z 2o
n n n n n
—-1

(90) .

1 3
40 z  y\log' "=z ,
n n/)loglogx
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for whpim—1(z/n) < (z/n) — (y/n) < (z/n)exp(—+/log(z/n)) and
n < b, b being defined by (12), z and y being suitably large, and
the O depending on p, ¢ and M.

Now we shall use (86) and (90) to prove that (89) is also true when
j = m + 1. We first prove that, if x and y satisfy the conditions
of (89) when j = m + 1, then z and y satisfy the conditions of
(90). From the condition x —y < zexp(—+/logz) of (89), we have
(z/n) — (y/n) < (z/n)exp(—+v/logz) < (z/n)exp(—+/log(z/n)) when
1 <n <z, and from the condition z — y > wpm(z) of (89) we have,
by (ii) of Lemma 12, (z/n) — (y/n) > (1/n)wpim(z) > whtm—1(z/n)
when 1 < n < b and z is suitably large. Moreover, if  and y satisfy
the conditions of (89) when j = m+1, then, by (i) of Lemma 12, z and
y satisfy the conditions of (86). Thus, if  and y satisfy the conditions
of (89) when j = m + 1, we can substitute (90) in (86) and get

N i
\Ri(x) — Ri(y)|logz < M(ﬂf —y)log'z

+ ZA(n)Amm —Y log" * %

n<b n
logim
+ O{(m a y)loglog:v }’

then, using (24) and (87), the righthand side is

N A, ; logix
Ly im — ) log® —
(M+ : >($ y)log w+0{(w y)loglogx}

i log' z
= Api1(z —y)log a:—l—O{(m _y)loglogx}’

the O’s depending on p, i and M. Hence, (89) is also true when
j =m+1, and this proves (89).

Finally, by the given conditions ¢ > 2 and N > 1 in the lemma, we
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have from (88),

IN
|
+

<

From this, (85) follows, on using (89) with j = M +1. We thus complete
the proof of the lemma.

Corollary of Lemma 14. Let T, M be arbitrary integers, T > 2,
M > 372 If

l T—1 IOgT_l.',E
_ < —(x— )l B - S
Relo) - Rr)] < 7o w)log" o+ 0f @ ) E
holds when wr(z) < z —y < x exp(—+/log ), then
3T i1 log" ™'z
] — R < — ) log® _
Rite) = Ra()| < 2 - o™ w4 0 - 2

holds when 2 < i < T'—1 and wri (r—ym(z) < z—y < zexp(—/logz),
both O’s depend on p and M.

Proof. Applying Lemma 14 and inductive method, we can get the
corollary at once.

Lemma 15. Let o and o' be arbitrary constants satisfying 0 < o’
o < 1, and let z,y be suitably large satisfying (y/2)exp(— log y)
z —y < yexp(—log” y). Then we have

IAIA

Ui(z) — ¥i(y) = (z — y)mi(z) + O{3'(z — y)(log y)" TV},

for 2 <i < (loglogz)™! log”’ y, where m; is defined by (4), and the O
depends on o and o’.
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Proof. Write ¢ = ( — y)log™* z. From the definitions of ¥; and A,,
see (9) and (1), we have

Vi(z) —Wi(y) = Y, Ai(n)= > p(n)log'm

y<n<z y<nm<z

=> umn) > log'm

n<q (y/n)<m<(z/n)

£ Y lgm Y )

m<(z/q) max(g,(y/m))<n<(z/m)

= Z+Z’ say.
1 2

Applying (22), we have, when n < g and (y/n) < m < (z/n),

(91)

log (z/n) — log' m < log’(z:/n) — log'(y/n) < LY log' ' .

Furthermore, by the conditions of the lemma, we have

T7Y < exp(—log” ),
y

i—1 1

log"™" « = exp(iloglog z)log™" =
< exp(log”’ y)log 'z

Combining these inequalities, we get, when n < g and (y/n) < m <

(z/n),

log’ (z/n) — log" m < ilog™" z.
Substituting in ), we get

21: N OREDY { log* % +O(ilog ™! x)}

n<q (y/m)<m<(z/n)
T y i T . 1
= E y(n){———%—O(l)}{log — + O(ilog m)}
= n n n
p(n), i 1. -1
(x—y) néq o log — + O{ n§<q og'x + (z —y) n§<q —ilog x}

— (@ — ymile) = 3 +0{qlog’  + ( — y)i},
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where

It follows from the definition of ¢ that

(92) Y =(@-ymix) - > +0{(z —y)i},

1

and the O depends on ¢ and o’.

Obviously,

1 .,z it1 X
® X0 ¥ bt c @t

3 g<n<zx

i L i L -y
Sle X ow? Y acw? 3

Q

(94) 2 m<(z/q) (y/m)<n<(z/m) m<(z/q)
< (z—y)log™! g,
and the <’s depend on ¢ and o’.
By the definition of ¢, we have
log T log ( d log’ w) = log d + iloglog x.
q r—y r—y

By the given condition z — y > (y/2) exp(—log” y) in the lemma, we

have
T

r—y

2 2
log <log {_x exp(log” y)} =log = +log” y.
Y Y

Further, by the given condition z—y < y exp(— 1og‘71 y) in the lemma,
we have (z/y) —1 = (z—y)/y < exp(—log” y) < 1, namely, (z/y) < 2,
and consequently, log(2z/y) < log4 < loglog x when z is suitably large.

Combining these results, we get, when z is suitably large,

log T < log? y + 2iloglog .
q
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Since, by the given conditions i < (loglogz) ™! 1og°'l yand ¢ < o
in the lemma, iloglogz < log? y < log? y, it follows that, when z is
suitably large,

log g < 3log? y.
Substituting in (93) and (94), we have

(95) Y < (z—y)(3log” y)"t,
(96) Y < (x—y)(3log” y)t,

and both <’s depend on o and o”'.

Substitute (95) into (92), and then substitute (92) and (96) in (91).
The lemma follows immediately.

Lemma 16.

mi(z) = ilog" 'z + O(log"?

fort > 2, and the O depends on .

z),

Balog has proved in [1, p. 290] that M;(z) = iz log" 'z + O(i(i —
Dz log' ?z) for 2 < i < logz, where M;(z)=Y", -, u(n)(z/n)log'(z/n),
and the O is i-uniform. By the definition of m;, see (4), we see that
m;(z) = (1/z)M;(x), and Lemma 16 follows immediately.

Lemma 17. Let 0,0’ be defined as Lemma 15, and let x,y be suitably
large satisfying yexp(—log”y) <  —y < yexp(—log? y). Then we
have ' '

Ri(x) — Ri(y) < (z — y)(log” " & +1og' " x),
for i > 2 and the < depends on o, o' and i.

Proof. From the definitions of R; and ¥;, see (6) and (9), we have
Ri(z) — Ri(y) = Y _ {Ai(n) —ilog" 'n}

y<n<z

=U,(z) — P;(y) — i Z log' 'n,

y<n<z

(97)
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for i > 2. Using (22), we have, for y <n <z, i > 2,

r—Yy 2

: log" ™2 z.

log 'z —log"'n <log 'z —log"ty < (i—1)
Since ((z — y)/y) < exp(— log”’ y) <1 by the given condition z — y <
yexp(—log? y) in the lemma, we get, for y <n <z, i > 2,

1 2

n < log' ™2z,

71—

log" 'z —log'™

and the < depends on i. It follows that
Z log' tn= Z {log" * 2z + O(log" 2 )}
y<n<z y<n<z
(98) — (@—y)log' "o+ Oflog" "z + (z — y) log ?a},
and the O depends on i.

From the conditions of the lemma, we see that log 'z < (z —
y)log"™?z for i > 2, and the < depends on ¢. And, therefore, the
remainder term of (98) is O{(z — y)log" ?z}, the O depending on o
and 7. Substituting (98) into (97), we have
Ri(2) = Ri(y) = ¥s(z) — ¥;(y) —i(z —y)log' 'z

+ O{(z — y)log' ?z},

for ¢ > 2, and the O depends on ¢ and <.

(99)

Combining Lemma 15 and Lemma 16 with (99), the lemma follows.

Lemma 18. Let p be as before, and let A be an arbitrary constant,
A > 1. Then, when zexp(—log'"*z) <z —y < zexp(—+/Iogz) and
x,y are suitably large, we have

1 ie1 log' 'z
. _ R < (g — ) ==
|Ri(z) — Ri(y)| < A(w y) log w+0{(w y)loglogx},

for i > 2, and the O depends on p, i and A.

Proof. Taking 0 =1 — p and ¢’ = (1/3) in Lemma 17, we get, when
yexp(—log' "y) <z —y < yexp(—log/*y),

(100) Ri(z) — Ri(y) < (z — y){(log x)(l—ﬁ)(i-!-l) 1 logi2 2},
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for ¢ > 2, and the < depends on p and .
Let T' = [3/p]; then, if i > T,

1-p)i+1)=i+1—p(tE+1)<i+1—p(T+1)

i) s

Substituting in (100) we obtain, when i > T, yexp(—log' *y) <
z—y < yexp(—log'/?y),

(101) Ri(z) — Ri(y) < (z —y)log' *=,

and the < depends on p and i. Hence, the lemma is true when i > T

When 2 < i < T — 1, we apply the corollary of Lemma 14. By (i) of
Lemma 12 and (81), we have, when y < z and z,y are suitably large,

p

wr(x) > wo(z) = zexp(—log' ) > yexp(—log' 7).

Hence, when wr(z) < z —y < zexp(—+/logz), we can use (101) with
t =T and get

T—1
Rr(z) — Rr(y)| < m(ﬂc —y)log" Tz
log" 'z
* O{(I —Y) loglog = }’

and the O depends on p and T

Consequently, using the corollary of Lemma 14 with M = 3T[A + 1]
and noting (i) of Lemma 12, we obtain, when 2 < ¢ < T — 1,
wr(z) <z —y < zexp(—+/logz), where L =T + 3T[A + 1]T,

—_

|Ri(2) = Ri(y)| < (2 —y)log'™ " &
(102) log"™' z
* O{(I Y loglog = }’

and the O depends on p, T' and A.
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From (81) we see that there exists a constant z¢ depending only on
p, T and A such that, when z > x,

wr,(z) = zexp(—(log z)! ?(loglog z) L) < zexp(—log' " ).

Therefore (102) holds when z and y satisfy the conditions of the lemma.
In addition, by the definition of T°, T only depends on p. Thus we
establish the lemma when 2 < <T — 1.

Lemma 19. Let 6 be an arbitrary constant, 0 < § < 1. If
z—y > zexp(—log' ™’ z) and x is suitably large, then

IR(z) ~ R(w)| < 50 () +0(102L§x>’

and the O depends on 6.

Proof. Taking p = (6/4) and ¢ = 2 in Lemma 18, we get, when
x exp(— log'—(%/2) z) <z —y < zexp(—+logz),

1 logz
(103)  |Ra(z) — Ra(y)| < Z(x—y)logx+0{(m_y)W}’

where A is an arbitrary constant, A > 1 and the O depends on § and
A.

If x —y > zexp(—+logz) and y > (z/2), then give arbitrarily a
SeqUENCe 20, 21,--- ,2m Satisfying y =20 < 21 < - < zp_1 < 2 =T
and z, exp(— log17(5/2) Zn) < zZpn — 2n-1 < zpexp(—vlogz,), n =
1,2,...,m,so that Ra(z) — R2(y) = R2(2m) — R2(2m—1) + R2(2zm-1) —
Ro(zm—2) + -+ + Ra2(z1) — Ra(20), and from this we see, by applying
(103) to every Ra(zn) — R2(2n-1), 1 < n < m, that (103) still holds
when z —y > zexp(—+/logz) and y > (2/2). Thus, applying Lemma 2
we can get the lemma at once.
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6. Balog’s identity.

Lemma 20.

R(z)log" « + é <Ij> Z Ai(n)logh~! %R<%>

n<z

where

R(z) = ZR(%).

n<x

This lemma is given by Balog [1, p. 288]. It is the base of the proof
of the main theorem in the paper.

From (38),
R(z) < vz forz>1.

Using this and writing r = J;log_zk x, we get, when k < /logz and x
is suitably large,

ook TR(® ) kf\ﬁ
Z,u(n) og nR<n> <<Z 0g" 4/

n<x n<x
k X x4 X

<L Var 1ogk T+ logk d
r
< x(2kloglog z)*,

and the < is k-uniform.
Write

(105) ¢ = exp(+/log z),
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(106) I:é( >Z<:A n)logh~ ER(%),
(107) J:é( > z;A n) log"~ ;R(%).

Substituting (104) in Lemma 20 and using the notations (106) and
(107), we have, when k < y/logz and z is suitably large,

(108) R(x)logF z + I + J = O{z(2kloglog z)*},

and the O is k-uniform.

In (108), I can be straightforwardly calculated, so the key of (108) is
how to deal with J.

Let
(109) ui(n) = Ai(n) = mi(n), n=1, ix>1,
where m; is defined by (4). Then
Ai(n) =m;(n) +ui(n), n>1, i>1

Substituting this into (107),

aw 73 (4) 3 tmto) w0 2n(3) 0
where

CDRE i () 3 oo 2(7)

) n=3(5) X et 2a(%)

We shall now deal with J;, while Jo will be specially discussed in
Section 8.
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Define

(113) m(z) = mo(z) = Z M

n

Lemma 21. Let A be an arbitrary positive number. Then
(i) m(z) = O(log " z),
(i) mi(z) = 1+ O(log “ z),
and both O’s depend on A.

Proof. On the one hand, Wirsing [6, pp. 7-8| proves that, if

(114) > (% - #) — 2y =0(log™*" z)

holds, then both m(z) = O(log™ z) and mi(z) = 1 + O
(log_A’ zloglog ) hold, where A’ is an arbitrary positive number, and
all the O’s depend on A’. On the other hand, we can obtain (114)
from any one of [2, 6] and [3]. Putting A = A’ — 1, the lemma follows
immediately.

Part (ii) of Lemma 21 will be applied in Section 8.

Lemma 22. .
mi(x) < ilog tz fori>1,

and the < s i-uniform.

Proof. By (4) and partial summation

m;(x) = Z @logi %
(115) = m([z]) log' ﬁ
+ Z m(n)(logi % — log’ TLLH> for i > 1.

n<zr—1
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Taking A =4 in (i) of Lemma 21,
(116) m(n) < log *n forn > 2.
Using (22),

log' = — log! —— < 1ilo g
(117) En B auri=n'™®
forir<n<zxz-—-1, i>1.
Substituting (116) and (117) in (115), we get
. 1 , .
mi(x) < ilog™'ax + Z —(logn)*ilog" 'z < ilog" "z,
2<n<z—1

and the < is i¢-uniform. The lemma is proved.

Lemma 23. If k < \/logz, then

J1<<k:10g mz < >‘+log 22 Z log E‘R(%)—i—m,

n<e c<n<lx

and the < is absolute.

Proof. Substituting (4) into (111), we have

lei( ) 3 Z“ log" - 1gk_i%R(%>

=1 c<n<z m<n
Z Z Z < > log" — 1 gk_i zR<£>
c<n<zrm<n n n

By the binomial theorem,

(118)

k

k ) k—i k—i & kL
E . | log® — 1 —_E I — =1 -
<z>0g 0og < >0g log n 0g n

i=1
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Substituting in (118), we get

> 50 (ot £ —t0g 2 (2

c<n<rm<n
SR POLLAIWERWED Sy PIE)
m m n m n
c<n<lz * m<n m<n

Thus, using notations (4) and (113), we have
(119)

=Y {mk(x)— 3y $logk%—m(n)logk%}R<%>.

c<n<lz n<m<z
Using (116) via partial summation

Z ,u log << log * nlog’c E,
n

n<m<z

and the < is absolute. Substituting this and (116) into (119), we get

Ji= > {mk(fv)+O(1°g_4"1°g,c %>}R<%>

c<n<zx
(120)

2) Y R<%) {log ey log

c<n<le c<n<lx

46l

and the O is absolute.
From (38),

R(z) _
c<;§m n n<c

Putting ¢ = k£ in Lemma 22,

my(z) < klog*'z,
and the < is k-uniform. Combining both formulae, we have

z) Y R<%> <klogh 1tz ( >‘+\/_klog “1g,

c<n<lx n<e
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and the < is absolute. By the given condition k£ < /log z in the lemma,
the last term is \/Eke(k_l)log logz < vxlogzeV logzlogloge o 4

On substituting in (120), noting that log™* ¢ = log™> = from (105),
the lemma is proved.

7. The estimate of u;(n) in short intervals. Define

(121) Ui(z) = Zu,(n)

n<x

Lemma 24. Let o be an arbitrary constant, 0 < o < 1, and let z,y
be suitably large satisfying

y (o g
B exp(—log” y) <z —y < yexp(—log” y);

then we have

(i) Ui(z)—U;(y) < 3i(z—y)log? TV y, for 2<i < (loglog x) ' log” y,
and the < depends on o.

(i) >y cn<a [ui(n)] < (2 —y) log't™ z, for i > 1, and the < depends
on o.

Proof. From the definitions of U;, u; and ¥;, see (121), (109) and (9),
we have

U(z) = Ui(y) = Y wiln)= Y {Ai(n) —mi(n)}

(122) y<n<w y<n<z
= Ti(x) = Wi(y) — Y mi(n).
y<n<z

Taking ¢’ = o in Lemma 15,
(123)  Ty(2) - Ti(y) = (@ — y)mi(e) + O{3'(z — y) log” " g},

for 2 < i < (loglogz)~'log” y, and the O depends on o.
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From the definition of m;, see (4), we have

S omm= 33 M g

y<n<z y<n<zm<n
pu(m) i uwlm) . n
124 _y M) log’ - log? -
(124) PR DI b D DED Dl =
m<s y<n<z y<n<lz s<m<n
= A1 + Ay,

-1
say, where s = zlog™ " .

Using (22), we have, when m < s, y <n < z,

i Y w_ylogiflm;

logi % — logi % < logi % — log <1

further, by the conditions of the lemma we have

T —

Y < exp(f logg y)a
log' ™'« = exp(iloglogz)log™' z < exp(log” y)log™" x,

and so

T N
log” o log" - <ilog 'z,

when m < s, y < n < z. It follows that

A=Y @ 3 {1og" % —i—O(iloglx)}

m<s y<n<z
_ Z @{x _y+0(1)}{10gi z +O(i10g1$)}
m<s m "
pm), ;=
=(z-y) ) ——log'—
(125) mzs: mem
1. _ L iloe?
—i—O{mz;sElog z+ (z y)ngsmllog m}

i)~ @ —g) Y P i L

+0{log™ & + (z — y)il,
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and the O is absolute.
By the definition of s, we have

m
s<m<x

s<m<w

< logiJrl z
S
= (loglog z)"**,

and the < is absolute. Furthermore, by the conditions of the lemma,

we have )
log"™ & = exp(iloglog z) log z

< exp(log” y) logx
< % exp(—log” y)
Sip__y7

and the < depends on o. Substituting these into (125), we obtain
(126) Ay = (z — y)mi(z) + O{(z — y)(loglog z)* 1},

and the O depends on o.
Now we consider Ay. From the definition of s, we have
1 ;T
< “log =
IVED YD M
y<n<z s<m<n
127 )
(127) <L (z—vy) log' ™! g
= (z — y)(loglog z)"*1,
and the < is absolute.
Substituting (126) and (127) into (124), we have
> mi(n) = (@ - y)ymi(e) + O{(z - y)(loglog 2)" '},

y<n<z

and the O depends on o. Since loglogz < iloglogz < log” y by the
condition of the lemma, the remainder term is O{(z — y)log” ™) y}.
Substituting the last equality and (123) in (122), we establish (i).
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We proceed to prove (ii). From the definitions of w;, A; and m;, see
(109), (1) and (4), we have, when ¢ > 1 and n is suitably large,

ui(n)| < [Ai(n)] + |[mi(n)|
= Zp(m)logi%‘ + Z @logi%

m|n m<n
§login21+login Z %
mln m<n

< d(n)log'n + log" n,

where d is a divisor function, and the < is ¢-uniform. Hence, when
i>1,

(128) Z lui(n)| < log" z Z d(n) + (z —y)log"™ x,
y<n<z y<n<z
and the < is absolute.
Using the formula of Dirichlet

Z d(n) =zlogz + (2y — 1)z + O(Vx)

n<x

and (22), we have

Y d(n) =zlogz —ylogy + O(z —y + V/x)

y<n<z
(129) = (z —y)logz + y(logz — logy)
+O0(z —y+Vx)
= O{(z — y)logz + Vz},

and the O is absolute. Furthermore, from the condition of the lemma,
we have

Vi < %exp(*log” y) <z —y,

and the < depends on o. Substitute this into (129) and then substitute
(129) into (128). We establish (ii) at once.
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8. A transformation of J,. Define

19 1
50 — ifi=1
20+O<10glogac> Bre S

1 ; A,B) = , =t

(30) QS(I,U, ’ ) ilog’_lx—i—O 10g x 1f2§l§B,
A loglog x
O{3!(log z)(1~)i+1)} if i > B,

0<o<1, A>1, B>2, where the first and last O’s depend only on
o, while the second O depends on o, A and B.

In this section we shall prove

Lemma 25. Let A be an arbitrary constant, 0 < A < (1/4), and let
A, B be arbitrarily large constants. If k < log(l/z)_)‘ x, then, when x is
sustably large,

X

3 k k—1
(131) |J2|§Z<Z-> Z bi(n, A\, A, B)log" ™" =

x
n n
i=1 c<n<l

+0(x),
and the O depends on \.

In (131), A will be taken sufficiently small, while A and B, being at
our disposal and independent of A\, will be chosen large enough later.

Before proving Lemma 25 we shall first prove several lemmas.

We first give a sequence b,, defined by
(132) bo =3, bpy1 = b+ [bnexp(—log! *b,)] forn >0.

We then define the function V; by
Vi(b,) = Ui(b,) fori>1, n>0,
(133) Vi(z) = kni(x — by) + Ui(by) fori>1,
z € [bn,bpt1], n >0,
where
Ui(bn+1) = Ui(ba)

(3) bn—i—l*bn

)
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By (133), the derivative of V;(z) is ky ; when b, < & < b,41, that is,
V!(z) = ky,; for € (by,bp41). Now we define the derivative of V;(z)
at the points by, bz, ... by V/(bnt1) = kn,; for i > 1 and n > 0. Thus,
by (134), we have

Ui(bn+1) — Us(bn)
bn+1 - bn

(135) Vi (@) = ks =

fori > 1, x € (bp,bpy1] and n > 0.

Lemma 26. If k and X\ satisfy the conditions of Lemma 25, then
there exists a constant Ao depending only on A such that, when x > Ao,

1
<-————logt™*
~ 4loglog(2x) °8

=0

Proof. By the definition of ¢, see (105), we have, when z is suitably
large,

10g1—,\§Z 1/\\/— <> C
1, (1072,
2

>].
—1lo Cc =
=9 g

Furthermore, it is evident that there exists a constant A\; depending
only on A such that, when x > Aq,

8loglog(2z) < log*/? z

Combining the above results, we have that there exists a constant Ay
> A1) depending only on A such that, when x > ),
)

1 1-X

1 > log 1/2)=2 .,
4loglog(2x) 8

L
4~

Since k satisfies the condition k& < log(l/z)f)‘ac in Lemma 25, the
lemma is proved.
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Lemma 27. Let A\, A and B be defined in Lemma 25, and let k
satisfy the condition of Lemma 25. Then, when x is suitably large, we
have

Vi ()| < ¢i(t, A\, A, B) forc<t<z, 1<i<k

Proof. Given any number ¢, ¢ < ¢t < x, we can find a corresponding
integer n, such that b, < t < b,41. Now t and n are thus fixed, so
that, from (135),

Ui(bpt1) — Ui(by)

1 '(t) =
( 36) Vi (t) bn+1 - bn

for ¢ > 1.

If 1 < i < B, we have from the definitions of U; and u;, see (121) and
(109),

Ui(bns1) = Ui(ba) = Y wi(m)

bp<m<bni1

= Y {Aim) - mim)}

b <m<bpi1

Taking A = 1 in (ii) of Lemma 21 we have m;(m) = 1+ O(log ' m).
Further, using Lemma 16 we have m;(m) = ilog"~' m + O(log" ™% m)
for 2 < i < B, and the O depends on i. Substituting in the above
equality, we get

Ui(bus1) = Us(ba) = Y {Ai(m) —ilog" ' m + O(log" *m)}
bp<m<bnpii
(137) = R;i(bp+1) — Ri(bn)

logi_ ! bnt1

O« (b1 — by
" {( i )loglogbn+1

} for 1 <i< B,

the latter step following from (6) and Rj(bn+1) — R1(bn) = R(bn+1)

R(bn) = an<m§bn+1{A(m) - 1} = an<m§bn+1{A1 (m) - 1}7 by (6):
(2), (1) and the O depending on i.

By (132),

bpt1 — bn = [bn exp(— logk)‘ bn)] > byt exp(— 10g17(A/2) bnt1),
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when b, > A9, where \s is a constant depending only on A, hence we
can use Lemma 19 with § = (A\/2), = b,,11 and y = b, and get

bn+1 - bn >

19
|R(brt1) — R(bn)| < 2_0(b"+1 —bn) + O(log log by t1

and the O depends on A. Noting that R;(z) = R(z), see (6), we can
substitute this inequality in (137) and get

19 bn+1 - bn
Ui(bpy1) = Ur(bn)| < 55 (bng1 —bn) + O ——— |,
02 (00i) = i) < g0~ ) + O 0 )
then substituting this into (136), and noticing (130), we obtain

19 1
Vi(t —4+ 0| ——
Vi)l < 20+ <10g10gbn+1>

(138) _ 19 1
20 +0 loglogt

= ¢1(t7)‘7AaB)7

and the O depends on .
Next, by (132) and the given condition A < (1/4) in Lemma 25,

bpi1 — by = [by exp(—1log' ™ b,)]
{ > b1 exp(—log =MD b, ),

< bpt1 exp(—+/log bpt1),

when b, > Az, where A3 (> A2) is a constant depending only on A;
hence, we can use Lemma 18 with p = (A\/4), z = bp41 and y = by,
and get

1 "
|Ri(bny1) — Ri(bn)| < Z(anrl — by) log" ' byt
IOgiil bn+1
bn - bn T 11 b
+ O{( + )loglog brt1

for 2 < ¢ < B, and the O depends on A, i and A. Substituting this
inequality into (137) and then substituting (137) into (136), we get

IOgi71 bnt1 >

139 Vi(t)] < loglog bpi1
(139) Vi ()] < loglog by, 41

log"f1 bny1 + O(

| =
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for 2 <i < B, and the O depends on ), i and A.

Noting (132), we have by, ;1 < 2b, < 2t when b, <t < b,,;. Hence,
log" ' but1 < (logt + log2)"™" = (log#)"'(1 + (log2/logt))"~" =
(logt)"=1{1 + O(1/(logt))} for b, < t < b,11, and the O depends
on 7. Substituting this into (139) and noticing (130), we obtain

logF1 t

10) V()< Siog et o(

A ) :¢i(t7A7A7B)7

loglogt
for 2 <i < B, and the O depends on A\, B and A.

If B < i <k, we first prove that

(141) by > =, bp1 <2,

N o

b, and b, still satisfying b,, < t < b,41, ¢ < t < z, given in the
beginning of the proof.

From (132), we see that b,y; < 2b,. Since b, and b, satisfy
by, <t < bpyr, tsatisfying ¢ <t < z, it follows that b, > (1/2)b, 41 >
(1/2)t > (1/2)c and b, 41 < 2b, < 2t < 2z. This proves (141).

Now t and n being still fixed as above, we apply (i) of Lemma 24 to
(136) when B < 7 < k. Since ¢ < k and k satisfies the condition of
Lemma 25, we have by using Lemma 26 and (141)

1 I—Ab

i<k< L 1=A - o
loglog b, 11

c
11 e\ 1 - < ny

~—  ~ 4loglog(2z) 0 4

for © > Xp. And so, we can use (i) of Lemma 24 with 0 = 1 — A,

x =bp41 and y = by, (in this case, from the last inequality we see that

i satisfies the condition of (i) of Lemma 24 provided B < i < k and

from (132) we see that b,1 — b, satisfies the condition of Lemma 24),

and get
Ui(bpy1) — Us(by) < 3 (bpy1 — by )(log by, )1 =N,

for B < i < k, and the < depends on A. Substituting this into (136),
we obtain

Vvi/(t) < 3i(10gbn)(1—)\)(i+1) < 3i(10gt)(1_)\)(i+1),
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for B < i <k, and the < depends on A. By (130), this inequality can
be written in the form

for B < i < k, and the O included in ¢; depends on .

Combining (138), (140) and (142), noticing that ¢ is arbitrary within
the interval [c, x|, we get the lemma at once.

Lemma 28.
V/(m)=Vi(m)—-Vi(m—1), i>1; m=4,56,....
The proof is completely the same as Lemma 6.

From Lemma 28, we get, for arbitrary integers m,n,3 < n < m and
1> 1,

(143) 'Z Vi (j) = Vi(m) — Vi(n).

Lemma 29.
t .
Vi(t) — Ui(t) < texp (— log' ™ 5) log" ™ (2t),

fort >3 andi > 1, and the < depends on .

Proof. We shall prove this lemma in a similar manner as Lemma 8.

Given any number ¢, ¢ > 3, we can find a corresponding positive
integer n such that b, < t < b,41. Now t and n are thus fixed. In
the same way as (50)—(52), we can obtain the following corresponding
results:

[Vi(t) = Ui(t)| < |Vi(t) = Us(bn)| + |Us(t) — Us(b)s
Vi(t) = Ui(bn)| < [Ui(bnt1) — Ui(bn)|

S Julm),

b, <m<bpt1

S fui(m)l.

bpn<m<bny1

IN

IN

|Ui(t) — Us(bn)|
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Substituting the last two inequalities in the first inequality, we get
Vit) -~ Ui <2 Y ui(m)].
bn<m<bpn41

Using (ii) of Lemma 24 with 0 = 1— A, = b, and y = by, it follows
that '
Vi(t) — Us(t) < (bng1 — bn)log" ™ byyy  for i > 1,

and the < depends on A. And so, by (132),
Vi(t) — Ui(t) < by exp(—log* *b,) log" ™ byyy  fori > 1,

and the < depends on A. Since ¢t < b1 < 2b, < 2t by (132) and the
given condition b, <t < b, in the beginning of the proof, the right
side of the inequality is < ¢ exp(— log* *(¢/2)) log"™*(2t).

Because t (> 3) is arbitrary, we establish the lemma.
Proof of Lemma 25. Let

(144) G= > {ui(n)—Vi'(n)}logk_i%R<E>, 1<i<k.

c<n<z

From the definition of R, see (2),

< ) > {A(m)-1}+2y forc<n<a.

m<(z/n)

Substituting this into (144) we get, for 1 < i < k,

G= 3 {uiln) - V/(m}og" = 3 {A(m) 1)
c<n<z m<(z/n)
(145) k—i L
+ 2y Z {ui(n (n)}log "
c<n<lzx
=Gy + Go,

say. Plainly, for 1 <i < k,

(146) Gi= > {A(m)-1} X {u,-(n)—Vi'(n)}logk_i%.

m< (w/c) e<n<(a/m)
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By (143) and Lemma 29, we get

> {ui(n) = Vi ()} = {U([1]) = Vi([)} — {Ui([e]) — Vi([e])}

c<n<t

< texp (— log' ™ %) log't*(2t)
< texp < log' ™ 2) log' ™ (2z),

forc <t <z and 1 <i <k, and the < depends on A. Using this via
partial summation

7)Y {wl) -V (m)ogt S

c<n<(z/m)

<= exp <— log' ™ E) logtt(22),
m 4

for 1 < i < kand 1l < m < (z/c), and the < depends on .

Substituting in (146),

m

A 1
Gy < Texp <— log!™* Z) long(Qx) Z M

m<z

< Texp <— log* ™ Z) log"*2(2),

for 1 <i <k, and the < depends on \. Furthermore, using (147) with
m=1,

Gy < xexp (— loglf)‘ 2) logk+1(2m) for 1 <7<k,

and the < depends on A.
Substituting the last two inequalities in (145) we get

G < rexp <— log17>‘ 2) logk”(?x) for 1 <i<k,
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and the < depends on A. By (144) we can write this inequality in the
form

3 wi(n)loght 2 < ) 3" Vi(n)log* ;R<%>

c<n<lz c<n<wz
+ O{x exp (— log' = > logk+2(2m)},

for 1 <i < k, and the < depends on \. Substituting this into (112),
we have

J2:Z< ) 3 Vi(n)logh™ ER(%)

i=1 c<n<l
"k
o 1-A k+2
+O{ 2_0 (l.)xexp( log >log (29;)},

and the O depends on A. Applying Lemma 27 to the main term and
applying the binomial theorem to the remainder term

|J2|<Z< > Y diln )\,A,B)logki%R<%>‘

(]_48) c<n<z
+ O{2kx exp <— log* 2) logk+2(2w)},

and the O depends on .

It is evident that klog2 + (k + 2) loglog(2z) < 4kloglog(2z) when
z is suitably large and, by Lemma 26, 4kloglog(2z) < log'~*(c/4)
when = > A\g. Hence, when z > A4, where Ay (> \g) is some constant
depending only on A,

28 10g" 2 (22) = exp(klog 2 + (k + 2) loglog(2z))
< exp(4k loglog(2x))

< exp <log1>‘ 2)

Substituting in the remainder term of (148), Lemma 25 follows imme-
diately.
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9. The main result of this paper. Let ¢ be an arbitrarily small
constant, £ > 0, and define

(149) C(z) = exp(—log/?P ¢ z);
(150) Q(z) =z 'C Y2)R(z), z>1;
(151) A(z) = sup (), ==1.

Then, from (150),

(152) R(z) = 2C(2)Q(z), =x>1.
We take
(153) k= [log'=9)/2 z);

then there exists a constant ¢y depending only on ¢ such that, when
T > €,

(154) k > log /¢ zloglog .

Lemma 30. If2 <n <z, then
(i) log* !(z/n) < logh ! ge=(k—1(logn/logx)
(11) (logw . (10gn)/2)k_1 < 10gk71 xe—(k—l) logn/(2logm)’
iii) C(z/n) < C(z) exp(log~ 2 ~¢ zlogn).
g g

Proof. If 1 < t < x, then

logt -l
logz
— 1ng—1 xe(kfl) log(1—(logt/ log z))

(logz —logt)* ! =log" ' & <1

Since

1 1 1/ logt\> 1
log (1 — ogt :_ogt__ ogt _”‘S_ogt
logz logz 2\logz log x
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for 1 <t < z, we have
(155) (logz —logt)F~! < logh=! we~(k—Dlost/log)  for 1 <t < g,
Putting ¢ = n in (155), we have
logh~1 % = (logz — logn)F~! < logh =1 ge~(k—1)(logn/logz)

So (i) holds when 1 < n < z. And, when n = z, (i) holds too obviously.
Thus we establish (i).

Putting ¢t = v/n in (155), we get (ii) at once.

We proceed to prove (iii). By the definition of C, see (149), the proof
of (iii) is just to prove that

exp <— log(/2)—¢ f) < exp(— log/? ¢ 2 + log= /2% z1log n)
n
(156) for 2 <n<uz.
Since
x logn (1/2)=e
logt/?7¢ Z = (logz — log n) /=€ = log(1/?)~¢ w(l - —>
n

log x
I
> log(1/?)—¢ J;(l - 1222)

1/2)—¢ 1/2)—e

= log( T — log_(

zlogn,
for 2 < n <z, (156) follows from this.

The proof of the lemma is completed.

Now we estimate Jo. Write

(157)

g 1 x
Zy=k ¢1<n,§,A,B) log® 15‘}2(5),

c<n<l

(158)

k
w(8) S alesan)ee 2

=2 c<n<lzx
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Using Lemma 25 with A = (¢/2), in this case by (153), k satisfies the
condition of Lemma 25, we get, when z is suitably large

(159) \Jo| < Zy + Zy + O(x),

and the O depends on &.
Substituting (130) in (157),

19 1 k—1 a
1 Zy =k — 1 —
(160) ! {20 +O(log10gc>} Z %

c<n<zx

7

+(3)
n
and the O depends on e.

We shall next prove, by a suitable choice of A and B, that

. 1 1 logn\‘ "
) hd <4 ==
(161) ¢z<n)2’A’B) = {80+O(10g10g0>}< 2 ) ’

forc<n <z and 2 <1t <k, and the O depends on .

We take o = (¢/2), B = (6/¢) and A = 8028 in (130). Then, if
2 < i < B, we can get (161) from (130) at once, and if B < i < k, we
can get from (130),

b (n, %, A, B> < 3i(log n) 1 (=/2)(E+D)
< (3 loglf(E/Z) n)i—i—l

logn —(e/2) il
(162) =\ 6log n

it1
_ <lo§ n> (61og—(=/ n)it1,

for ¢ < n < z, and the < depends on €.

It is easily seen that there exists a constant €; depending only on ¢
such that, when n > ¢ > ¢, 610g_6/2n < 1. And so, when B < i<k
and c < n <z,

(6log~*/*n)"*! < (6log /2 n)P = 68 log™ (/DB n < log~ /DB



PRIME NUMBER THEOREM 1045

and the < depends on B; since we have taken B = (6/¢), the last
expression is log™® n. Substituting in (162) we get, when B < i < k
and c < n <z,

€ logn aa _3
¢i n, 57 A7 B < —2 log n

logn\**
 (2) gt

and the < depends on e. This gives (161) when B < i < k.
Substituting (161) in (158),

1 1
Ty < 4 — .
2= {80 +O(loglogc)}

(163) k

S0 5 () e

=2 c<n<z

and the O depends on e.

(f) - i!(kkii)! = (z'—l)]!c(!k—z')! _k<]:_11>

for 1 <i <k, we have

k i—
B(0) () s
; {2 2 n
1=2
k i—1
k—1Y (logn k—i
<
<63 (1) (%)

putting j = ¢ — 1 and using the binomial theorem, the right side of this

Since

’

38



1046 W.C. LU

inequality is

k

k

= =
7 N
Ea

<.
—
N~
Y
—

@]
Do | 0%
3
N~~~
.

)

£

L

d

Jj=

J=0
<logn AN
=k + log —
2 n
logn k=t
:k<log$— 5 >

Substituting in (163),

1 1
Zy << — —_—
2= {80 +O<loglogc>}k

logn\ ! T
3 (1se=57) |a(3)

2 n
c<n<lx

and the O depends on e.

(164)

Lemma 31. Let

(165) Yi= Y logtt?

<x>
n n
c<n<lz

(166) o= Y <1ogx—1°§">k_l‘}z<%>‘.

c<n<lz

)

Then

m 1 & x
< — —
Y,, < ? {1+O(loglogm)}xbg mC(m)A(Q),

m=1,2,

and the O depends on ¢.
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Proof. Substituting (i) and (ii) of Lemma 30 in (165) and (166),
respectively, we have

_ k—1)logn x
Y,, < logF™t _ (k=1)logn R| —
=08 7 Z exp< mlogx > n

(167) c<n<lwx

’

From (152) and (151),

") 2o G)le() = 2o C )

n n n n n n 2

for 2 <n < z. Then using (iii) of Lemma 30 we have

(168) ‘R<£> < EC(av) exp(log(l/z)gwlogn)A(g>,
n n

for 2 <n<ux.
Substituting this in (167),

Y,, <log" 'z Z C ) exp(—I,, log n)A(%),

(169) c<n<z
m=1,2,
where
-1

(170) Im = k —log~ /D=y

mlogx
Trivially,

]_ xr
Z —exp(—l, logn) = Z ptm—1 / ttm—1 dt—i—O(c_lm_l)

c<n<z n c<n<lzx ¢

< / t~tLdt 4+ 0(1)
1

- L 1o

Im
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substituting in (169) we have

Yy < {i + O(l)}xlogk_l xC(x)A<E>,

lm

(171)
m=1,2,

and the O is absolute.
From (170) and (154) we have

k 1 m
L, — 1oL omy e
mlogw( k kP v

= i 140 1 , m=1,2
mlogx loglog x

therefore, noting (153),

1 mlogx 1 -t
il = - 1
lm—f-O(l) p {1+O<loglogm>} +0(1)

mlogx 1
k { + <loglogm>}’ m T

and the O depends on ¢. Substituting in (171) the lemma follows.

Lemma 32.

39 1 N z
<<l = 1 Al =
| 2] < {40 +O<loglogx>}w og” zC(z) (2> + O(xz),

and the O’s depend on ¢.

Proof. Substituting Lemma 31 in (160) and (164) we have

19 1 . z
71 < — 1 Al =
L= {20+O<loglogc>}x og"” vC(z) <2>7

1 1 k Xz
<< — Z
Zy < {40 +O<loglogc) }xlog mC(m)A(Q),

and the O’s depend on e. Noting (105), the remainder terms in Z; and
Zy are O(1/(loglog x)). On substitution in (159) the lemma follows.
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Lemma 33.

Ji < log" =2 z|R(a)| + zlogh (/) xC(m)A(%) +z,

and the < depends on ¢.
Proof. If n < ¢, then by (105), logn < log ¢ = v/log x, and therefore,
exp(log” /P zlogn) <1 forn < ¢
substituting in (168) we obtain
(172) R<%> < %C(x)A(%) for 2 <n<c

and the O is absolute. It follows that, using (105) again,

(173) Y R(%)‘ < mlogco(x)A@) - x\/@o(x)A@),

2<n<c

and the < is absolute.
Using Lemma 31,

kT
Zlogg

(174) c<n<zx

A kf]_iL'
R| — <1 1 —
<n>_ogm > loght

c<n<lz

=Y, logz < xloghtt 2C(x)

b
/N
N8
~_

and the O depends on &.

Substituting (173) and (174) in Lemma 23 and noticing (153), the
lemma is proved.

Lemma 34.

I < xlogh=(s/% xC(m)A(%),

and the < depends on €.
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Proof. From the definition of A;(n), see (1), we see that A;(1) =
(1) log"1 =0 for ¢ > 1. Therefore, we get from (106) and (14)

R(g>y

Isg(’j) > Ain)log* 'z

2<n<c

Substituting (172) into this inequality,

k

k Ai(n) | ki x

(175) I<<xz<i> > — = log" T aC(@)A( 3 ),
=1 2<n<c

and the O is absolute.

Writing D = (2/¢) 4+ 1 and noting (105) we get from (16)

A; : :

(176) Z Ai(n) < logtc=1log"’?z for1<i<D,

n
n<c

and the < depends on D.
If D < i <k, from the definition of A;, see (1), we have

Ai(n) = Z,u(m) log’ % < log’ nz 1 =d(n)log’ n,

mln m|n

where d is a divisor function. And, hence, noting (105) again,

A; o~ d . '
(177) Z fln) <log'c Z % < log™t? e =1og/A* g,
n<c n<c

for D < 1 < k and the < is 7-uniform.
Noting (153),

(k) _ k-1 (ki) 1

) 7! 7!

(178)

< i,log“/?)*(E/?)im for 1 <i < k.
2.
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Using this and (176),

k Ai(n) Lo i (e/2)i Lo i(e/2)
— < =
( p > E< < i log T i log x,

for 1 <i < D, and the < depends on D.
Using (178) again and (177),

k A’L(n) 1 i+1—(e i
()Z — < o (loga) +1=(e/2)

7

n<c

i+1—(c/2)D

IN

1
+(log )

1 )
_ T laei—(e/2)
= log x,

for D < i < k and the < is absolute.

Substituting the last two formulae in (175) and noting that D depends
on €, we have

k
1
I« mz a logh—(¢/2) xC(m)A(%) < zlogh—/? wC(w)A<E>,
i=1 "

and the < depends on . This proves the lemma.

Theorem.
R(z) < zexp(—log/P == g),

and the < depends on €.

Proof. Substituting Lemma 32 and Lemma 33 in (110) and then
substituting (110) and Lemma 34 in (108), we obtain

39 1 x
loghz < {2 —_— log® Al =
1719) |R(z)|log" z < {40 +O<loglogm>}x og" zC(x) <2>
+0 {logk_(l/z) z|R(z)| + z(2kloglog x)k} ,

and the O’s depend on .
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By (153), when z is suitably large,

(2kloglog z)* < ( 2\/@10g log )"

< (e tlogz)k = e Floghx
= exp(—[log(kE)/2 z]) log® z
< exp(— log(1/?)—¢ z)logh 1z

= C(x)log" 'z,

the last step following from (149), and the < depending on £. Substi-
tuting in (179) we get

39 1 . z

< s

|R(z)|log® {40+0(loglogaz>}mbg xC(m)A<2>
+ O{log"~Y? z|R(z)| + zC(z) log* ' 2},

and the O’s depend on €. By substituting (152) and dividing both sides
of this inequality by zlog® zC(z), we get

0 = {5+ 0 iogig) 4(3)

1
+0{log—“/2>x|cz(w)+ }
logz

and the O’s depend on . From this we see that there exists a constant
€ depending only on ¢ such that, when = > 3,

Q@) < A(3) + 1551Q@) + 15540

(for the last term noticing that A(1) > 0 from the definition of A). From
the definition of A we have A(1) < A(xz/2) for > 2. Substituting this
in the above inequality and reducing, we get

|Q(z)] < A(g) for x > &3,
that is, by (151),

|Q(z)] < sup |Q(¢)| for z > es.
1<6<(2/2)
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Consequently,
Q(z) <1,

and the < depends on ¢. Substituting this in (152) and noticing (149),
we complete the proof of the theorem.
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