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ON BOUNDARY CONDITIONS FOR
STURM-LIOUVILLE DIFFERENTIAL OPERATORS
IN THE DIRECT SUM SPACES

SOBHY EL-SAYED IBRAHIM

ABSTRACT. Sturm-Liouville (S-L) boundary value prob-
lems on any finite number of intervals are studied in the set-
ting of the direct sum of the L2 -spaces of functions defined
on each of the separate intervals. The interplay between these
L2 -spaces is of critical importance. This study is partly mo-
tivated by the occurrence of (S-L) problems with coefficients
that have a singularity in the interior of the basic interval. In
the one interval case, the singular self-adjoint boundary con-
ditions are characterized in terms of certain Wronskians in-
volving y and two linearly independent solutions of M[y] =0
by Krall and Zettl in [11].

1. Introduction. The boundary value problems for the Sturm-
Liouville (S-L) expression

1
Mly] = E[—(py')' +qy] onI=(a,b),
—0<a<b< oo

on two intervals are studied in the setting of the direct sum of the L2-
spaces of functions defined on each of the separate intervals by Everitt
and Zettl in [8]. In the one interval case, the characterization of sin-
gular self-adjoint boundary conditions for Sturm-Liouville problems is
identical to that in the regular case provided that y and py’ are re-
placed by certain Wronskians involving y and two linearly independent
solutions of My] = 0 has been proved by Krall and Zettl in [11].

Our objective in this paper is to extend the results of Krall and
Zettl in [11] to the case of any finite number of intervals I,. = (a,, b..),
r =1,2,...,n. Here the interior singularities occur only at the ends
of the intervals. In particular, we define a minimal and a maximal
operator each associated with expressions, and characterize all self-
adjoint extensions of the minimal operator in terms of “boundary
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conditions.” These conditions involve the expressions on the intervals
I.,r=12,...,n.

In the regular case our conditions can be interpreted in terms of the
values of the unknown function y and its quasi-derivative at all end-
points.

In the singular case our conditions are given, just as in the one interval
case, in terms of Wronskians involving y and two linearly independent
solutions of M,.[y] =0,r =1,2,... ,n.

2. Notation and basic assumptions. Let —oco < a, < b, < o0;
let I denote an interval with left end point a, and right end point b,
r=1,2,...,n. We use [a, to indicate a closed end-point a, and (a,
to indicate an open endpoint a,; use of the square bracket [a, implies
that a, € R, the set of real numbers.

Consider Lebesgue measurable functions p,, g., w, from I, into R
satisfying the following basic conditions:

1
—, T,wTGLZOC 1), w.(t) >0,
o 0y € L (1), (1)
ae,r=12,...,n,

which are taken to hold throughout this paper. Differential expressions
M., r=1,2,...,n are defined by

(22) MT[y] = 7(p7“y’), +¢ry on IT? r= 1a27 sy T

Let H, = L2 (I,) denote, for r = 1,2,... ,n the set (equivalence
classes) of Lebesgue measurable functions f defined on I, satisfying

(2.3) / |f (2)|Pw,(z) de < 00, T=1,2,...,n,
I,
with inner-product

24)  (frg)r = /I f@g@w(z)de, r=12,... n,

and norm ||f] = (f, f)llv/f, this is a Hilbert space on identifying
functions which differ only on null sets. Let

D, ={f€H,: fp-f € ACi.(I;) and w, *M,[f] € H,},

r=1,2,...,n.
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Below we will denote p,.f’ by frm and call it the quasi-derivative of f.
The subscript r will be omitted in most cases since it is clear from the
context.

The operator T, defined by
(2'5) Trf = w_er[f]a f € D,,

is called the maximal operator of M, on I., r = 1,2,...,n. It is well
known, see [14, p. 68], that D,. is dense in H,.. Hence T, has a uniquely
defined adjoint. Let

Tor =T; and Dgy, =domain of T,
r=12,...,n.
The operator T, is called the minimal operator of M, on I,.

For f,g € D, and o,8 € I, r =1,2,... ,n, Green’s formula is

B
(2.6) / (M 115 - (L g]} dz = [f, 61, (8) - [f, gl (a0,
where

(2'7) [f’g:l”':fg[:l}if[l}g’ f’gEDT’ T:l’27""n;
and y!!! denotes p,y’ for r =1,2,... ,n.

For f,g € D,, the limits limg . [f, g]-(8) and lim,_q,[f.g](c)
exist and are infinite. These are denoted by [f, ¢]-(b,) and [f, ¢](ar),
respectively, r = 1,2,... ,n.

For f,g € ACioc (I,.), let
(28) Wr(fag) = fprgl _gprfl'
Choosing solutions © and ¢ of M,[y] = 0 satisfying:
W.(0,¢)(z) =1 forall z €I,

2.9
(2.9) r=12,...,n.

Note that the bilinear form [f, g], in (2.6) can be written as

[fa g]r = fprgl - gprf,

(2.10) = (3,p:9) <(1) _01> <prff’> '
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From (2.8) and (2.9), we get
0 -1\ _ (0 -1 0 ¢ 0 -1
1 0) \1 0 PO p.@ 1 0
(¢ 52) )
¢ p¢')\1 0)°

and hence the bilinear form in (2.10) can also be written as:

(2.11)

[fag]r = (Wr(g7®)’WT(g’¢)) <? _01> (%((?ai))>
=W .(g,0)W,(f,0) — W, (g, 0)W,.(f, )
:det<Wr(f,®) Wr(f,qﬁ)),

(2.12)

W.(3,0) W.(3,9)
r=12,...,n;

see [11] and [12]. Let w, be a function which satisfies:

»>0 ae onl, w,€ L),
(2.13) w a.e. on w ioe (Ir)
r=12,...,n.

The endpoint a, is regular if it is finite and
(2.14) ;Y g, w, € L'a,,a, +¢] for some e > 0.

Similarly, the endpoint b, is regular if (2.14) holds with the interval
[ar, ar + €] replaced by [b, — &,b.]. An endpoint is called singular if it
is not regular. Thus, a, is singular if it is either infinite or finite and
(2.14) fails to hold for one or more of p !, ¢, and w,. An important
distinction between a regular endpoint is the fact that at a regular
endpoint ¢, all initial value problems y(c,) = o, (p.¥')(cr) = Br;
ar, By € C,r =1,2,...,n, have a unique solution. This is not true
when ¢, is singular, see [6].

Assume that a, and b, are singular endpoints. For any open interval
(ar,b,) and X\ € C, the conditions (2.1) imply that any solution y of
M,ly] = wyy, A€C onl,,

2.15
( ) r=12,...,n,
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is in LfUT (ar,br), see [4]. However, such a y may or may not be in
L% (ap,b,). If y is in L2 (a,,(,) for some 3, in (ar,b,), then this is
true for all 3, in (a,, b,). If for some 3, in (a, b,) all solutions of (2.15)
are in L2 (ar,f3,), then we say that M,[] is in the limit-circle case at
a, or simply that a, is LC. Otherwise, M,[.] is in the limit-point case
at a, or a, is LP. Similarly, b, is LC means that all solutions of (2.15)
are in L,ZUT (ar,br), ar < ap < bp, r =1,2,...,n. This classification is
independent of X in (2.15), see [14]. Otherwise, b, is LP. The limit-
point, limit-circle terminology is used for historical reasons.

The classification of the self-adjoint extensions of Tj, depends, in
an essential way, on the deficiency index of Ty . We briefly recall the
definition of this notion for abstract symmetric operators is a separable
Hilbert space.

A linear operator A, from a Hilbert space H, into H, is said to be
symmetric if its domain D(A4,) is dense in H, and

(Arf,9) = (f,Arg), f,gin D(A,),

r=12,...,n.
Any such operator has associated with it a pair (d,,d, ), where each
of df,d, is a nonnegative integer or +co. The extended integers are

called the deficiency indices of A, and are defined as follows:

For A € C, the set of complex numbers, let R denote the range of
(A, — M), I being the identity operator. Let

(2.16) Nar={fe(4y) | Arf=Af}, r=1L2,...,n,
and with
N} = Ni,, N, =N_ir;
(2.17) r=12,...,n.
df =dim N}, d; =dim N[,

The subspaces NI, N~ are called the deficiency spaces of A,., and
the pair (d;,d, ) are called the deficiency indices of A,. For later use,

recall the following two results.

For any A € C\R, we have, from the general theory,

(2.18)  D(A:) = D(A,)FNa, 4Ny, r=1,2,...,n,
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where D(A,), Ny, and Ny . are linearly independent subspaces and
the sum is direct (which we indicate with the symbol +), see [2].

Any self-adjoint extension S, of the symmetric operator A,, r =
1,2,...,n, satisfies

A.CS, =S:CcA;, r=12,...,n,
and hence is completely determined by specifying its domain D(S,.),
D(A,) C D(S,) C D(A}).

This can be proved using formula (2.18), see [1, 2, 14].

Theorem 2.1. The operator Ty, is a closed symmetric operator
from H, into H, and

(2.19) Ty, =T, T;=To, r=12...,n

Proof. See [14, Section 17.4].

To relate the deficiency indices of Tp , to the equation
(2.20) M.ly] = M,y on I, = (arb.), r=1,2,...,n,
observe that

Ny, ={y € H, | Tg,y = Try = w; 'M,[y] = Ay, r =1,2,... ,n}.
From this we can conclude that N,;F, N,  consists of the solutions of the

equation (2.20), which are in the space L2, (1), for A = +i and A = —i,
respectively. Thus, d!,d. are the number of linearly independent

solutions of (2.20) which are in the space H, for A = +i and A\ = —i,
respectively. It is well known that df = d-, r = 1,2,... ,n, under

conditions (2.1), see [7, Section 9]. The common value is denoted by
dr,r=1,2,...,n.

From the above discussion we see that there are only three possibili-
tiesd,. =0,1,2, r=1,2,... ,n.
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Some of the basic facts are summarized in:

Theorem 2.2. (a) Do, = {f € D, : [f,g](b.) — [, 9](ar) = 0 for all
g€ D},

(b) If M, is in the limit point case at an endpoint c, then [f, g](c) =0,
forall f,ge D,.,c=a, orc=0b,,7=1,2,...,n.

(c) If an endpoint c is regular, then, for any solution y, y and yl are
continuous.

(d) If ar and b, are both regular, then, for any T r, Tor, 01,5, 02, in
C, there exists a function f in D, such that

f(ar = Ti,ry f[l] Ar )= T2 r;
(ar) ! (ar)= r=12,...,n,

f(br) = 61,1‘7 f[l](br): 52,7‘7

(e) If a, is regular and b, singular, then a function f from D, is in
Dy, if and only if the following conditions are satisfied:

(1) f(ar) =0 and f[ll(ar) =05
(ii) [f,9](by) =0 for allg € D,, 7 =1,2,... ,n.

The analogous results hold when a,. is singular and b, is reqular, see [8,
Proposition 1], [9] and [14].

Lemma 2.3. Given «,,B,,7 and §,. in C, there exists a ¢ €
D,\Dy, such that

WT(’(/}? @)(aT) = Qr, Wr("/’a ¢)(ar): Br;
r=12...,n.

Wr(wa 8)(bT) = Tr, WT‘(¢7 ¢)(b7“) = 57‘7
Furthermore, ¥ can be taken to be a linear combination of © and ¢

near each end point.

Proof. The proof is similar to that in [8, Lemma 2].

Since Ty, is symmetric, it follows that if S, is any self-adjoint
extension of Ty ,, we have

(2.21) Ty, CSp =8 CTy, =T, r=12,..,n
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Thus such a self-adjoint operator S, is completely determined by its
domain D(S,). From (2.21) we have

(2.22) Dy, Cc D(S;)CcD,, r=12,...,n.

To specify D(S,), we start with formula (2.18) applied to T ,:

(2.23) D, =Dy, +N;+N, r=12,...,n.

T

Let H be the direct sum
(2.24) H=H =PL, (ar,b,).
r=1 r=1

Elements of H will be denoted by f = {fi,...,f.} with f; €
Hyq, ... ,fn € H,.

Remark. When ;N I; = @, i # j, 4,5 = 1,2,...,n, the direct
sum space @' L2 (I;) can be naturally identified with the space
L% (Ur_,I.), where w = w, on the interval I,, r = 1,...,n. This
remark is of particular significance when U'_,I, may be taken as a
single interval, see [8].

We now establish by [8, 9, 11] and [13] some further notation

(2.25) Do(M) =@ Do(M,),  D(M) =D D(M,);

(2.26) To(M)f = (To(Mi)f1,--- ,To(Mn)fn),
fl € D(Ml), . ,fn c D(Mn)

Also,

f1 € D(Ml), . afn S D(Mn),
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~ o~

[{ag] = Z{[fragr]r(bT) — [frygrlr(ar)},  f,9 € D(M),
(2.28) =1

n

({72) = Z(fr;gr)a

r=1
where f = {f1,...,fn}, 9 = {91,--- ,9n}, and (-,-), is the inner
product defined in (2.4).
Note that Tp(M) is a closed symmetric operator in H.

3. The characterization of self-adjoint domains. In [11] Krall
and Zettl characterized the singular self-adjoint boundary conditions
for Sturm-Liouville problems in terms of Wronskians involving y and
two linearly independent solutions of M[y] = 0 for some one interval
case. In this section we generalize the results of the characterization
of self-adjoint domains in [11] for separate intervals I, = (a,b;),
r=12,...,n.

We summarize a few additional properties of Tj in the form of a
lemma.

Lemma 3.1. We have

(a) Ty = @71 155, = ©p_1 T In particular,

D(I3) =D =D,
r=1

(b) N* = @7 N, N~ = &) N7,

r

(c) The deficiency indices (d,d™) of Ty given by
at=Pd;, 4 =Pd,,
r=1 r=1
(d) D=Dy Nt LN

Proof. Part (a) follows immediately from the definition of the op-
erator To(M) and from the general definition of an adjoint operator.
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The other parts are either direct consequences of part (a) or follow
immediately from the definitions.

Since d;-L =d;,j=12,...,n, we have d* = d~ = d. Also, the
possible values of d are

(3.1) 0<d< 2n.

If S.,r=1,2,...,n are self-adjoint extensions of T,

(3.2) S = é S,
r=1

is a self-adjoint extension of Ty(M), see [8] and [9].

The next result is a straightforward extension of Theorem 4 in [14,
Section 18.1]; see also [3] and [9].

Theorem 3.2. If the operator S with domain D(S) is a self-adjoint
extension of Ty, then there exist ; C D(S) C D, j = 1,2,... ,d,

satisfying the following conditions:
(i) ¥ ,...,¥ are linearly independent modulo Dy;
~1 ~d
(i)
n

[QP 7'¢ ] = Z{er, wlﬂ“](br) - [¢jTa¢kr](ar)} =0,

r=1

jk=1,2,...,d,

(iii) D(S) consists precisely of those f in D which satisfy

[{7%)] = Z{[frawjr](br) - [frawjr](br)} =0,

i=1,2,....,d,....

(3.3)

Conversely, given v € D, j =1,2,... ,d, which satisfy conditions (i)

j
and (i), then the set D(S) defined by (iii) is the domain of a self-
adjoint extension of 1.
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Proof. The proof entirely similar to that of [14, Theorem 18] and [9,
Theorem 1.1] and is therefore omitted.

Remark. It is well known from [14] that no boundary condition is
needed at a limit-point end-point. On the other hand, a boundary
condition is needed for each limit-circle end-point.

The self-adjoint extensions are determined by boundary conditions
imposed at the endpoints of each of the intervals I.. The type of
these boundary conditions depends on the nature of the problem in the
interval I,.. There are four possibilities for each r, r = 1,2,... ,n.

Case (i). Assume both endpoints a, and b, are regular endpoints. In
this case, if we put

-1 r ~[2—k ~1) ar
P (ar) = (~DFal,  92H(@,) = (-1)* g,
5Lk=12 r=12,...,n,

(3.4)

we have by (2.7) and (3.3) that the boundary conditions on the
functions y, € D(M,) are

B.(yr,I;,) = M"Y (a,) + N"Y (b)) =0,

3.5
(8:5) r=12,...,n,

where
M, = (af), N" = (Bjx),

k=12, r=12,...,n,

are 2 x 2 matrices over C, Y (-) = (y,p,y’') ' (:), T for transpose, and
afy, By are complex numbers satisfying

(3.6) M"J(M"™)* = N"J(N™)*, J= <(1) _01> .

The above boundary conditions determine the domains of self-adjoint
extensions of Ty(M,.) for each r, see [11] and [14] for more details.

In the other three cases, the self-adjoint extensions S, of Ty(M,),
r = 1,2,...,n, are determined by boundary conditions in terms of
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certain Wronskians involving y and two linearly independent solutions
of

(3.7) M,yJ=0 onl., r=12...,n,

at a singular endpoint.

Case (ii). Assume both endpoints a, and b, are singular and LC. By
(2.12), (3.3) and Lemma 2.3, if we put
(3.8)
Wr(wjrv ¢) = /B;U WT(¢jr7 0)=- ;27 .
- _ 7=12; r=1,... ,n.
Wr(wj'r: ¢) = _a;'lra Wr(dj]"l‘v 9) = a;Z’

Then the boundary conditions in this case on the functions y, € D(M,.)
are:

(3.9  By(ymI)=M'Y(a,)+N'Y(b)=0, r=12,...,n,

which determine the domains of self-adjoint extensions of Ty(MM,.) for
each r, where

MT:(a;k)7 NT:(/Brk)a ]7k:1725 r=12,...,n,
are 2 X 2 matrices over C satisfying
(3.10) M"J(M"™)* = N"J(N")*,

and
Y() = (Wr(yra 6)7 WT(y’h ¢))T()v

T for transposed matrix.

Case (iii). (a) Assume the left endpoint a, is regular and the right
endpoint b, is singular and LC. The boundary conditions in this case
on the functions y, € D(M,) are

B.(yr,I.,) = M"Y (a,) + N"Y (b.) =0,

3.11
( ) r=12,...,n,
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but where
(3.12) Y(a,) = (y,pry') " (ar),
(3.13) Y (br) = (Wi (y, ©), W, (y, ¢))T(b7’)7

r=12...n,
and the matrices M", N7, satisfying
M"J(M")* = N"J(N")*.
(b) If a, is singular and LC and b, is regular, then let

Y(a,;) = (Wi(y,0), Wi(y, )" (ar),

T r=12,...,n,
Y(br) = (y,Pry ) (br)a

and the rest is the same as in Case (iii) (a).

Case (iv). Assume one endpoint is LP and the other is either regular
or singular LC.

(a) Suppose a, is LP. Then the boundary conditions in this case on
the functions y,. € D(M,.) are

By(yr, 1) = M"Y (a,) + N"Y (b,) = 0,

3.14
( ) r=12,...,n,
with M"™ = (g g), and
Y (b:) = (y,0:9") " (br), if b, is regular,

Y (b,) = (W, (y,0), W,(y, $)) " (b.) if b, is singular and LC.

(b) If b, is LP and a, is regular or singular LC, then the boundary
conditions in this case on the functions y, € D(M,) are

B.(yr,I.,) = M"Y (a,) + N"Y (b.) =0,

3.15
( ) r=12,...,n,
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with N” = (g g), and
Y(a) = (y,py") ' (ar), if a,. is regular,
Y(ar) = (W,(y,0), W,(y, ¢))T(ar), if a, is singular and LC.

Next the characterization of all self-adjoint extensions of Tp(M) in
terms of boundary conditions featuring L2 (a,,b,)-solutions of the
equation (3.7) for any n intervals I, = (a,,b.), r = 1,2,...,n, is
covered by the following theorem.

Theorem 3.3. Let Ty(M) be the minimal operator with deficiency
indices (d,d). Then the set of all y = (y.) € D(M) such that

n

(3.16) > B.(y,I,) =0

r=1
is the domain of self-adjoint extension S of To(M) where B, (y, I,.) takes
one of the forms (3.5), (3.9), (3.11), (3.14) and (3.15), respectively,
depending on the nature of the problem in the interval I,..

Conversely, let S be a self-adjoint extension of the minimal operator
To(M) with deficiency indices (d,d). Then D(S) is the set of y € D(M)
satisfying (3.16).

Proof. The proof follows from the results for the case of a single
interval; see [8, 11] and [14].

4. Discussion. In this final section we consider the following
discussion about the results in Section 2. First we discuss the possibility
of the self-adjoint extensions which are not expressible as a direct sum
of self-adjoint extensions in the separate intervals I,. = (a,b,), r = 1,2.
We will refer to self-adjoint extensions of 7y(M) which do not arise in
(3.2) as “new self-adjoint extensions”; see [8] for more details.

In (3.1), the only possible value of the deficiency index d for the two
intervals are 0,1,2,3 and 4, so we have the following cases.

Case 1. d = 0. This can only occur when all four endpoints are LP. In
this case, Tp| is itself adjoint and has no proper self-adjoint extensions.
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Case 2. d = 1. We must have three LP endpoints and one LC or
regular. There are no new self-adjoint extensions, i.e., all self-adjoint
extensions of T can be obtained by forming direct sums of the self-
adjoint extensions of Ty ; and Ty 2. These are obtained as in the one
interval case. In other words, the conditions of Theorem 3.2 reduce to
the known self-adjointness conditions on the interval with singular LC
or regular endpoint.

Case 3. d = 2. There must be two LP endpoints. Each of the other
two may be LC or regular.

(i) If both endpoints are from the same interval, say I, then
S =T, ® S,

where Sy is a self-adjoint extension of Tj 2. The conditions of Theo-
rem 3.2 reduce to those for determining the extensions of 1p 2 on Iy,
i.e.,

M?Y (ag) + N?Y (by) = 0,
where
Y() = (y,p29") " () at a regular endpoint
Y () = (Wa(y, ©), Wa(y,$)) " (-), at singular endpoints
and M?, N? are 2 x 2 matrices over C satisfying
M?J(N?)* = N2J(N?)*.
(ii) If there is one LP and one LC or regular endpoint from each in-
terval, then “maxing” can occur and we get new self-adjoint extensions

of Ty. For the sake of definiteness, assume that the endpoints a; and
by are limit-points, as and b; are regular or singular LC, then

M?Y (a3) + N'Y (b)) =0,

where

Y (az) = (y,p29’) ' (a2) if as is regular
Y(az) = (Wa(y, ©), Wa(y, ¢7))T(a2) if as is singular and LC.
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Similarly at the point b;.

Case 4. d = 3. Here we must have either d; = 2,dy = 1ord; =1,
ds = 2.

We assume the former holds. The latter is entirely similar. Thus we
must have either ay, by, as are regular or singular LC and b, is LP, or
a1,by1, by are regular or singular LC and a5 is LP. Again, for definiteness,

we assume the former holds. In this case only the term involving by
(which LP) in (3.3) is zero for all f € D(M). Using the notation from

~

Case 3, “the boundary condition” (3.3) becomes
MY (a;) + N'Y (b)) + M?Y (az) = 0,

where

Y(ar) = (yupryl)T(ar)y if a, is regular
Y(a,) = (W:(y,0), Wr(y,tﬁ))T(ar) if a, is singular LC, r =1, 2.

Case 5. d = 4. This means that d; = 2 = dy. Therefore, each one of
four endpoints a1, b1, as and by is either regular or singular LC. In this
case the boundary conditions in Theorem 3.2 take the form

S MY (a,) + NTY (b,)} =0,

r=1

where

Y()=(y,py) () at regular endpoints,
Y(-) = (W (y,®), W (y, ¢7))T() at singular LC endpoints.

We refer to [8] for more details.

Secondly, we show that the characterization of the singular self-
adjoint boundary condition is identical to that in the regular case
provided that y and py’ are replaced by certain Wronskians involving
y and two linearly independent solutions of M,.[y] =0, r = 1,2.
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In Case 2, d = 1, there are three LP endpoints and one regular or
singular LC. In this case all self-adjoint extensions of Tj can be obtained
by forming a direct sum of the self-adjoint extensions of Ty ; and T 2.

(a) Assume that by is regular and the other three points a1, ag, b2 are
LP-endpoints. In this case, the condition (3.3) becomes

n

([?\/J’ %1])22 = Z([yra ¢1r])Z:

(4.1) IS

= 51 (b)) P (b1) — B (b1)ya (b1) = 0.

If b is regular, then by (3.4) we get (4.1) can be rewritten as

(4.2) By (b1) + Byt (b1) = 0.

From Theorem 3.2 (i), we have that not both 8{; and 3}, can be zero
since this would imply, by Theorem 2.2 that ¥; = (¢11,%12) € Do.

Condition (ii) in Theorem 3.2 becomes
(4.3) ﬁhﬂ_%z - Bhﬂ%z =0.

Since B{; can be taken to be real, (4.2) just means that both 31; and
Bi, must be real. To summarize, we can say that if b; is regular and
ai,as, bs are LP endpoints, then all self-adjoint domains are determined
by boundary conditions (4.2) where 3{, and i, are real and cannot
both be zero. Also, the boundary conditions at a regular endpoint a,
are all of the form:

(4.4) atyyi(ar) + alyy(ar) =0,

where a1, and a}, are real and cannot both be zero.

Similarly, when each of the endpoints as and bs is regular, then the
boundary conditions are all of the form

(4.5) a2 1y(as) + alyyl (as) =

2 a1, by, by are LP,
(4.6) By2(b2) + BLys (ba)

0;
0; ay,b1,a2 are LP,
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respectively.

(b) Assume that b; is singular LC and the other three points are LP
endpoints. Using (2.12), (2.3) and Lemma 2.3, we can express condition
(3.3) of Theorem 3.2 as

2
Z Yrs wlr ar

r=1

(4.7) = [y1, ¥11](b1)
= (W1 (911, ) W1(y1,0) = Wi(¢11, ©)Wi(y1, ) (b1) = 0
Set

(4.8) Bl =Wi(¥11,8)(b1), Bz = =Wi(¢11,0)(br).
Note that for fixed © and ¢ a given ¢; € D determined 31, and 31, by
(4.8). Conversely, by Lemma 2.3, given 3}, and Bi, in C, there exist

a 1 € D such that (4.8) holds. Thus, the “boundary conditions” (3.3)
can be expressed as:

(4.9) B11Wi(y1,0)(b1) + B, Wi (y1, ) (b1) = 0.
Again, by Theorem 3.2, 81, and 31, cannot both be zero.

With identification (4.8), Condition (ii) again becomes (4.3) and
reduces to requiring both 8{; and 3}, to be real.

In summary, we can say that if the points a1, as, by are LP endpoints
and b; is singular LC, then all self-adjoint domains are determined by
“boundary conditions” of the form (4.9) where 8}; and (i, real and
cannot both be zero.

Remark. Assume that ai,as and by are LP endpoints. Comparing
(4.9) with (4.2), note that when y;(by1) is replaced by Wi(y1,0)(b1)
and y[ ](bl) is replaced by Wi(y1, ¢)(b1), then the singular case when
the endpoint b; is singular LC is an exact parallel of the case when b,
is regular.

Again, when a; is singular LC and the points by, as,bs are LP end-
points, all self-adjoint domains are determined by “boundary condi-
tions”:

(4.10) ap; Wi(y1, 0)(a1) + aj, Wi (y1, ¢)(a1) =0,



STURM-LIOUVILLE DIFFERENTIAL OPERATORS 891

where ai, and ai, are real and cannot both be zero.

Similarly, when each of the points as and bs is singular LC and the
other three endpoints are LP endpoints, then the boundary conditions
are all of the form:

afy Wa(ys, ©)(az) + aiaWa(ys, ¢)(az) = 0;  a1,b1,by are LP,
0

BEWa(y2, ©)(b2) + BioaWa(ya, ¢)(b2) = 0; a1,by,as are LP,

respectively.

We refer to [11] for more details in the one interval case.
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