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MODULES FOR WHICH
HOMOGENEOUS MAPS ARE LINEAR

A.B. VAN DER MERWE

ABSTRACT. Given an R-module V, the near-ring of ho-
mogeneous maps Mg (V) is the set of maps {f : V — V|
f(rv) = rf(v) for all r € R and v € V} endowed with point-
wise addition and composition of functions as multiplication.
Modules with the property that Mz(V) = Endg (V) when R
is commutative and Noetherian, and V is finitely generated,
are characterized. Commutative Noetherian rings with the
property that Mp(V) = Endgr(V) for all uniform modules,
V, are also classified.

1. Introduction. Let R be a commutative Noetherian ring
with identity and V' a nonzero unital R-module. The set of maps
Mp(V):={f: V>V | f(rv)=rf(v)forallr e Randv € V}is a
right near-ring under point-wise addition and composition of functions,
and the elements are called homogeneous maps. This near-ring has
been the subject of several investigations. See, for example, [3] and
[4]. We write functions on the left of the elements on which they
act; therefore Mg (V) satisfies the right distributive law. Recall that
an R-module V is uniform if for any nonzero R-submodules M and
N, M NN # (0). In the third section, we will see in particular
that modules over Dedekind domains are rather well behaved, since
V uniform implies in this case that Mg (V) = Endg(V). In fact, if we
restrict ourselves to domains, this property will characterize Dedekind
domains. From this consideration, we conclude that the problem of
determining when homogeneous maps are linear becomes significantly
more interesting when we consider Noetherian rings in general.

2. When are all the homogeneous maps on a finitely gen-
erated module linear? We denote the injective hull of V' by E(V).
Since every module can be embedded in an injective module, the fol-
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lowing structural result of Matlis is useful in our situation. (See [6] for
an exposition of this result).

Theorem 2.1 (Matlis). Let R be a commutative Noetherian ring.
Then the following holds.

1. Every injective module is uniquely a direct sum of uniform injective
modules.

2. The map P — E(R/P)yields a one-to-one correspondence between
the prime ideals P of R and the isomorphism classes of uniform
injective R-modules.

3. If P is a prime ideal of R, then every element of E(R/P) is
annihilated by some power of P.

The module E(R/P) may be regarded as an Rp-module, and the
action of r € R on E(R/P) is the same as the action of /1 € Rp on
E(R/P) (see [8, Chapter 5] for details), thus multiplication by elements
in R\P is an isomorphism on E(R/P). The third part of the Matlis’
theorem leads us to the following definition.

Definition 2.2. Assume I is an ideal of R. For v € V, we define the
I-exponent of v (I-exp v) to be the smallest nonnegative integer s such
that I°v = 0. If I"v #£ 0 for all n, then we define I-exp v to be co. We
define I° to be R, even if I is the zero ideal, so that I-exp v > 1, unless
v =0, in which case it equals 0.

Lemma 2.3. Let v € V\{0} and suppose I-exp v < oo; then there
exists d € I'™ such that I-exp (dv) =1, where m = (I-exp v) — L.

Proof. This is clear since I"™ 1y = 0, but I™v # 0. O

Since multiplication by s € R\P acts as an isomorphism on E(R/P),
we have the following result.

Lemma 2.4. Let V C E(R/P) and s € R\P. Then, ifv € V,
P-exp v = P-exp (sv).
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In the remainder of this section, R will be a commutative Noetherian
ring and V a finitely generated R-module, unless stated otherwise. In
the next result we show how to construct a nonlinear homogeneous map
under certain conditions.

Theorem 2.5. Suppose E(V) = &}, E(R/P;) and P; C P, for
all i where Py,...,P, are prime ideals of R. Then there ezists a
A € Mg(V) such that A(V) C E(R/P,) and P,A(V) = 0, but
A(V) #£ 0. We also have that A ¢ Endg(V) if Vp, is not Rp, -cyclic.
Conversely, if Vp, is Rp, -cyclic, then Mg (V) = Endg (V).

Proof. Let Q := P,. Define II : & E(R/P;) — E(R/Q) by
vy + -+ v, = v,. Since E(V) is an essential extension of V, we
have that V N E(R/Q) # 0 and thus that II(V) # 0. Since V is
finitely generated, we can choose a € V such that Q-ezp II(a) is as
large as possible (use Matlis’s theorem). From Lemma 2.3, we have
ad € Q™ with m = Q-exp II(a) — 1 such that Q-exp d'II(a) = 1.
From the fact that E(V) is an essential extension of V, it follows that
there exists t € R\Q such that td'II(a) € V (note if ¢ € Q, then
td'II(a) = 0). From Lemma 2.4, Q-ezp td'II(a) = 1. Let d = td'. Since
Q-exp (a) > Q-exp II(v) for all v € V, and since d € Q™, we have
that Q-exp dIl(v) < 1for all v € V. Let X = Rga NV, and suppose
X is generated as an R-module by g; = (r;/s;)a for i = 1,... ,m. Let
s =[I;", s; and ¥ = sdIl. Then ¥(X) C V, and from Lemma 2.4 we
have Q-exp ¥(a) =1 > Q-exp ¥(z) for all z € X.

Define A: V — V by
Ao = {

Now we show that A is homogeneous. If v € X and r € R, then
rv € X and thus rA(v) = A(rv). If v ¢ X and r € @, then since
Q-exp ¥(v) < 1, A(rv) =0 = rA(v). Ifv ¢ X and r ¢ Q, then
rv ¢ X, since rv € X implies that v = (1/r)(rv) € X. So we
conclude that A is homogeneous. Suppose V( is not Rg-cyclic, and
let y € V\X. Since X is a submodule of V, a +y ¢ X. Thus
0=A(a+y) #Ala) + A(y) = Aa) #0.

Conversely, suppose Vq, is R¢-cyclic, and let v,,v2 € V. Notice that,
from the discussion following Theorem 2.1, we have that the natural

U(v) ifveX
0 otherwise.
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R-homomorphism from V' to Vg is a monomorphism. Thus there exists
x € V such that v; = (r1/s1)z and vy = (r3/s3)z. So for f € Mg(V)
we have s185f(v1 +v2) = f(s2r12 + s1722) = s182(f(v1) + f(v2)), from
which we conclude that f(vy 4+ v2) = f(v1) + f(v2). O

We notice that if Vg is locally Rg-cyclic (with @ as in the previous
proof and V not necessarily finitely generated), then the argument in
the last part of the previous proof will show that Mg (V) = Endg(V),
where we define Vi to be locally Rg-cyclic if there exists for each
v1,v2 € Vg an element x in Vy such that v; = (r;/s;)x for some
ri/si € Rq.

Corollary 2.6. Suppose V is a finitely generated R-module and
E(V) = E(R/P)® --- ® E(R/P), where P is a prime ideal of R.
Then P = /(0:V). Also, Mg(V) = Endg(V) if and only if Vp is
Rp-cyclic.

Proof. This follows since 1/(0: V) = P from Matlis’s theorem and
the remarks following it. O

Corollary 2.7. Suppose V is a finitely generated uniform R-module.
Then Mg(V) = Endg(V) if and only if Vp is Rp-cyclic, where
P=,/(0:V).

Proof. The result follows from Corollary 2.6. o

Example 2.8. Let R = k[z,y], where k is any field, and let V =
(x?y, zy*)/(z®y). Then routine calculations show that V is uniform
and that \/(0:V) = (z). It is clear that Vi, is R-cyclic (Vi) is
generated by (zy?)/1), and so we conclude that Mz (V) = Endg(V).

Quite often one only knows that the injective hull of a module
exists, and not much more about it. In the next few results, we
therefore develop an alternative way of determining whether or not
a module satisfies the hypothesis of Theorem 2.5, and also a method
for determining the primes that are involved.
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Definition 2.9. Let V be an R-module (not necessarily finitely
generated), and let P be a prime ideal of R. We say P is an associated
prime ideal of V, P € AssV, if there exists a v € V such that
(0 : v) := Anng(v) = P (see [7, Definition 9.32]). We will denote
the maximal members of Ass V' (which might not be maximal ideals of
R) by Max-AssV.

Lemma 2.10. Let V be an R-module. Then each maximal member
of the nonempty set 0 := {Anng(v) | v € V\{0}} is prime, and thus
belongs to AssV. In fact, the collection of maximal members of 6 is
Max-Ass V.

Proof. See [7, Lemma 9.34]. o

Proposition 2.11. Let V be an R-module of finite uniform dimen-
sion (but not necessarily finitely generated). If E(V) = @ ,E(R/P;),
then AssV = {Py,...,P,}.

Proof. For each i, i = 1,2,...,n, choose v; € E(R/P;) N (V\{0}),
and d; € R such that P;-exp d;v; = 1. Then P; C (0 : dv;), but from
the remarks following Theorem 2.1 we also have reverse containment
and thus equality. Thus AssV 2 {P,...,P,}. To show that AssV C
{P1,...,P,},let P € AssV. Since P € AssV, there exists v € V such
that (0:v) = P. Suppose v = 1 + -+ + &, with z; € E(R/P;). Then
P=(0:v)=+/(0:v) =/NiZ?(0: z;) = Nz, 20P. Thus P = P; for
some j (see [7, Lemma 3.55]). o

Proposition 2.12. Suppose V is an R module such that Max-Ass V'
has only one element; then Mg(V) = Endg(V) if and only if Vp is
Rp-cyclic, where {P} = Max-AssV.

Proof. From Proposition 2.11 we have that V satisfies the hypothesis
of Corollary 2.6. O

In the remaining results in this section we will show that Mg(V) =
Endg(V) if and only if Vp is Rp-cyclic for all P in Max-Ass V.
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Definition 2.13. Submodules Xi,...,X, of an R-module V are
called a system of partial components for V if:

1. Max-Ass X; has only one element for each ¢ (thus multiplication
by elements in R\Max-Ass X; is a monomorphism on X;);

2. for each i there exists a; € R\Max-Ass X;, such that o;V C X,
and for each v € V\{0}, a3v # 0 for at least one j.

Proposition 2.14. Suppose E(V) = & E(R/F;) and Max-AssV =
{Q1,...,Qu}. Then X; :=VN®p,cq,E(R/P;),j=1,...,n, is a sys-

tem of partial components for V.

P’I’OOf. Since X] g EBPIQQ]E(R/Pl)v E(XJ) g @pngJE(R/Pz) In
order to obtain equality, we show that ©p,cq, E(R/P;) is an essential
extension of X;. If W is a nonzero submodule of ©p,cq,E(R/F;), we
have that W NV # &, since E(V) is an essential extension of V. But
then W NV C X; implies that WNX; # &. From the summands that
appear in F(X;), we conclude that Max-Ass X; has only one element.

For each Q; choose 3; € Np,gq,Pi\Q; ([7, Lemma 3.55]). From
Matlis’s theorem, there exist positive integers n; such that o; := B;-”
is such that a;V C X; since Sjv = 0 for sufficiently large n if
v € E(R/P) and 3; € P and since V is finitely generated. The
remaining properties of a system of partial components follow from
the fact that multiplication by an element in the complement of the
prime ideal @ is an isomorphism on E(R/P) if P C Q. i

Proposition 2.15. Suppose Xi,...,X, is a system of partial
components. Then Mg(X;) = Endg(X;) if and only if (X;)q, is Rg,-
cyclic, where {Q;} = Max-Ass X;.

Proof. Since Max-Ass X; has only one element, the result follows from
Proposition 2.12. O

Proposition 2.16. Suppose V' has a system of partial components
Xi,..., Xpn. Then Mg(V) = Endg(V) if and only if Mg(X;) =
Endg(X;) for each i.
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Proof. =. Suppose Mg(X;) # Endgr(X;) for some j, and that
{Q;} = Max-Ass X; for each i = 1,... ,n. Then from Theorem 2.5 we
have a nonlinear homogeneous map A; on X; such that Q;A;(X;) = 0.
Let a; be as in Definition 2.13. Define ¥; : V' — V by ¥;(v) = Aj(a;v).
In order to verify that ¥; is nonlinear, observe that A;(z+y)—A;(z) —
A;(y) # 0 implies that Aj(aj(z +y)) — Aj(ajz) — Aj(oyy) # 0.

<. Suppose Mg(X;) = Endg(X;) for each 4, but Mg(V) #
Endg(V). Suppose f is a homogeneous map on V such that v := f(v+
w)— f(v) — f(w) # 0 for some v,w € V. Let a; be as in Definition 2.13.
Then a3y # 0 for some j. But a3y = (a; f) (v + ojw) — (o f) (ejv) +
(ajf)(ozjw) = 0, since OéjV - Xj and (Oéjf)(XJ) - Xj. ]

Theorem 2.17. Suppose V has a system of partial components
Xi,...,Xy. Then Mg(V) = Endg(V) if and only if (X;)g, is Ro,-
cyclic for each i, where {Q;} = Maz-Ass X;.

Proof. This result follows from Propositions 2.15 and 2.16. o

Example 2.18. Let J; be Q;-primary for ¢ = 1,... ,m, in the ring
R. Also suppose that Q; Z Q; if ¢ # j, and let V = @?_,; R/J;. Since
Q7" C J; for some n; (to see this, first note that the radical of J;
is Q;, and then recall that in a Noetherian ring some power of the
radical of an ideal is contained in the ideal), and since (J; : 7) is Q;-
primary if r ¢ J; ([7, Lemma 4.14]) and thus contained in @;, we have
from Lemma 2.10 that Max-Ass R/J; = {Q;} because, if r ¢ Q);, then
(Ji : r) = Q;. Now choose §; € N Q;\Qi. Also let n be large enough
such that B € J; if i # j. Let a; := 8. Then since (J; : a?) = J; [,
Lemma 4.14], the o; and X; := R/J; satisfy the properties as stated in
Definition 2.13. Since each R/J; is cyclic as an R-module, we conclude
from Theorem 2.17 that M (V) = Endg(V). o

Theorem 2.19. Mg (V) =Endg(V) if and only if Vp is Rp-cyclic
for all P in Max-AssV.

Proof. Let X; and Q); be as in Proposition 2.14. From Matlis’s
theorem we have that if @ ¢ X;, then ra = 0 for some r ¢ Q;; thus we
conclude that Vg, = (X;)g,. Notice that, from Proposition 2.11, we
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have that the Q; are precisely the members of Max-Ass V. Now simply
use Theorem 2.17 to obtain the result. ]

3. Homogeneous maps on uniform modules. In this section we
apply some of the previous results in order to classify all commutative
Noetherian rings with the property that Mpg(V) = Endg(V) for all
uniform modules V. So in this section we will assume that R is
commutative and Noetherian.

From the results in [2] describing when Mg(V) = Endg(V) and
when Mpg(V) is a ring, where R is a Dedekind domain, it follows that
if Mg(V) is aring and if V is also uniform, then Mpg(V) = Endg (V).
This is not the case for arbitrary Noetherian rings. In fact, let
R = Zy[z,y]/(z,y)?, V = (z,y)/(x?,y?); then, since Anngv C Anngw
implies that w € Rv for all v, w € V, we have from Anngv C Anngf(v)
that f(v) € Rv for all v € V and f € Mg(V). Thus Mg(V) is
a ring, since if f;(v) = r;v for ¢ from 1 to 3, then f5(f2 + f1)(v) =
r3(rg + r1)v = r3rov + r37rv = f3fo(v) + f3f1(v). But since V is not
cyclic, Mg(V) # Endgr(V). It is not hard to verify that V is also
uniform. o

Lemma 3.1. Mg(V) = Endg(V) for all uniform modules V if
and only if the dimension of (PRp)" '/(PR,)" as an Rp/PRp vector
space is less than or equal to 1 for all n > 1 and for all prime ideals P
of R.

Proof. =. Suppose there exist a prime ideal P and a positive integer
m such that dimg, /pg,(PRp)™'/(PRy)™ > 2. Since E(R/P) ~
E(Rp/PRp) as R-modules ([8, Proposition 5.6]), and since all sub-
modules of E(R/P) are uniform, it follows from Corollary 2.7 that it is
enough to find a finitely generated R-submodule V of E(Rp/PRp) such
that Vp is not Rp-cyclic. Let A,, := {x € E(Rp/PRp) | (PRp)"z =
0}. Then A, /A, ; ~ PR% '/PR} as Rp/PRp-vector spaces ([8,
Chapter 5, p. 133]). Since dimg, ,pgr,(PRp)™ '/(PR,)™ > 2 we
have that A,, is not cyclic as an Rp-module, and thus Mg(4,,) #
EIldR(Am)

<. Suppose V is uniform, and dimg, /pg, (PRp)"'/(PR,)" < 1
for all n > 1. Since V is uniform, we have that E(V) = E(R/P) for
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some prime P. Then again, from Nakayama’s lemma [7, Proposition
9.3], we have that each A; is cyclic as an Rp-module for each i. From
Matlis’s theorem we have that F(V) = U2, A;, and so from the remarks
following Theorem 2.5 we have that Mg (V) = Endg(V), since Vp is
locally Rp-cyclic. O

Theorem 3.2. Mpg(V) = Endg(V) for all uniform modules V if
and only if the mazimal ideal of Rp is principal for each prime ideal P
of R.

Proof. Suppose Mg(V) = Endg(V) for all uniform modules V; then,
from Lemma 3.1, we have that dimg, /pr,(PRp)" */(PR,)" <1 for
all n > 1, for all prime ideals P of R. This holds in particular for n = 2.
But then we have from an application of Nakayama’s lemma that PRp
is principal. The converse follows trivially from Lemma 3.1. ]

Corollary 3.3. Suppose R is an Artinian commutative ring. Then
Mg (V) = Endg (V) for all uniform modules V if and only if Rp is a
principal ideal ring for all primes P.

Proof. From Hopkins-Levitzki we have that Artinian implies Noethe-
rian. The result now follows since the following are equivalent for local
Artinian rings (see [1, Proposition 8.8]):

(a) every ideal is principal;

(b) the maximal ideal M of A is principal;

(c) dimA/MM/M2 <1 O

Corollary 3.4.  Suppose R is a (Noetherian) domain. Then
Mg(V) = Endg(V) for all uniform modules V if and only if R is
a Dedekind domain.

Proof. <. If R is a Dedekind domain, then Rp is a discrete valuation
ring (see [1, Proposition 9.3]), and in particular a principal ideal domain
for each P, and thus the result follows from Theorem 3.2.

=. Suppose Mg(V) = Endg(V) for all uniform modules V. Then
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from Theorem 3.2, we have that Rp is a local domain with principal
maximal ideal and thus of dimension one by applying the principal ideal
theorem, and therefore a discrete valuation ring. Thus R is a Dedekind
domain. ]
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