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LEGENDRE EXPANSIONS OF POWER SERIES
JAMES GUYKER

ABSTRACT. We estimate the Legendre coefliients of power
series representations and the rates of pointwise and mean
square convergence of their Legendre series expansions. Our
main result is based on showing that the nth coefficient of the
Legendre expansion of 2™ does not exceed 2/n.

1. Introduction. In an application of the Gram-Schmidt proce-
dure to curve fitting, polynomials are expressed in terms of a family
of orthogonal polynomials. It is natural to attempt orthogonal ex-
pansions of functions defined by power series over a given interval by
converting their succesive partial sums. (Many such functions, espe-
cially ones with no closed forms, arise as solutions of linear differential
equations with power series as coefficients.) In particular, least squares
approximations with respect to the simplest inner product are obtained
by finding the first few terms of Legendre series expansions. For this
case we show that the conversions are easily accomplished and derive
straightforward error estimates for the rates of pointwise and mean
square convergence. We then illustrate the errors with the standard
Maclaurin series representations of calculus.

Given an integrable function f(z) on [—1,1], the unique polynomial
which minimizes f_ll(f(x) — p(z))?dz over all polynomials p(zx) of
degree at most n is

Po(z) = Z bip;(x)

where p;(z) = (275!)7!(d?/dz?)(z* — 1)7 is the classical Legendre
polynomial (from Rodrigues’s formula) and

. 1
L[ r@ne) i,

b; =
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1272 J. GUYKER

see [2, 10]. In particular, if f is continuous on [—1,1], then
lim,, f_ll(f(w) — P,(z))?dz = 0 by the Weierstrass approximation the-
orem. Moreover, if both f and f’ are sectionally continuous on (—1,1),
then f(z) = lim,, P,(z) for each z in (—1,1) [8, 11-13, 15]. In this
article we approximate the Legendre coeflicients b; from elementary
vector products for functions f which are defined by power series on
(—1,1) and obtain bounds on the rates of these limits. As usual, func-
tions over intervals (a, b) are reduced to this case via the transformation
z— (2z—b—a)/(b—a). A key identity in our development is an ana-
logue of the Abel partial summation formula [1, Theorem 10.16]: for
any numbers z,, and w,

(1) gﬂziwi - <§;ﬂzl>wm + 5 < an Zi)(wj+1 — w;).

j=m ~i=j+1

2. Coefficient estimates. Suppose that f(z) = Y a;z' where
> (a2i/(2¢ + 1)) and > (ag2i+1/(2¢ + 2)) both converge. Then f(z) is
defined for each z in (—1,1). The proof is as follows:

) 25+t _ a2i+t 2 t 1 2+t t = 0 1
;azwtl‘ ;—2i+t+l(l+ + D)z= T .1,
where (2i+t+1)|z|**t decreases for i > N = —(1/2)(t+1+(1/In|z|))
and converges to zero. By (1) we have that, for n > N,

Z agi T <220+t + 1) || e (n, t),
2i+t>n
where
(2) g(n,t) = max Z Bkt sy ,
2i+t+1 -

2itt>k
and hence lim,, Y o, . azi4¢x® " = 0. Therefore, ) a;2* converges.

The Legendre expansion of z* is well known [11, 13, 15]:

K2
2itt
= Zmi,2j+tp2j+t(x), t=0,1,
=0
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where
. 27 + 1 “jﬁ)m %+ 4 2k
mi; = 55 5 7 1\ 1 oL
TU2i42 L4 20— (=1)7 + 2k

(['] is the greatest integer function).

The following result shows that the vector (b;) of Legendre coefficients
of f(x) may be obtained from an easily generated matrix product.

Theorem 1. Let f(z) = > a;z' where Y (a2;/(2i + 1)) and
>(agit+1/(2¢ + 2)) converge. Let j be a nonnegative integer and
t =t(j) = j—2[j/2]. Then b; = >, azi++m;;j and we have the es-
timate

b — Z aziyemij| < (25 + 1)e(n, t).
2i+t<n

Proof. By Abel’s test [1, Theorem 10.18], for £ = 0,1, ..., the series

Z A2i4t+ts _Z A2i4t+ts 2i+t+s+1
- 2 +2k+2t+s+1 —~ 2i+t+s+12+2k+2t+s+1
s=0,1,

converge and therefore so do Y, ((—1)*%a;4+/(i + 2k + 2t + 1)). Hence,
by Abel’s theorem [3, p. 325],

b= 22 [ s@m@ i [ swpea)
/2 2+ )

A2i4t

2741 J .
(25 + )g (2k+ 1) 2= 20+ 2k + 2 + 1

It follows that b; = lim, b,; where > ;_burpr(z) is the Legendre
expansion of the partial sum Y7 a;z'. Therefore, b; is of the given

form since

n 1 [
E a;x' = E E E A2i4+4Mi 25 4+tD2j+(T)
i=0

t=0 2i+t<n j=0
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and {pr(x): 0 < k < n} is linearly independent.

For the estimate,

E a21+tm1]

|'_ nJ|—

2i+t>n
244t .
siton 2i+t+1

where (2¢ 4+ ¢ + 1)m;; is monotonically increasing with limit 2j + 1.
Thus we have that |b; — b,;| does not exceed (2j + 1)e(n,t) by (1) and
(2). o

Remark. Let (c;) be any bounded, monotone sequence. If > a;x!
satisfies Theorem 1 with coefficient error estimate (25 + 1)e(n, t), then
by (1) so does Y a;c;z* with error estimate bounded by (2j+1)(|c,+1|+
|c = cnt1])e(n, t) where ¢ = limg;.

When the convergence is absolute, ¢(n,t) is at most
Y 2ittsn 1@2i+¢|/(2i +t+1). In particular, if the terms of the sequence
azi++ have a common sign and f(z) = 3" a;z* has a closed form, then
estimates to £(n,t) may be compared to its exact value

[(n—t—-1)/2] ‘

A244t
(/f Jde (= /f dm>_ ; 2i+t+1]

Examples 1. Consider the transformation to [—1, 1] of the exponen-
tial function e® defined on [a, b]:

(M) ()2 () F

By the ratio test, if n > r = (b — a)/2, then

ef [(n—t—1)/2] T‘2i+t

E(TL, t) — _(67" _ 1)(67“ + (—l)t) _ eatr

2r (2i+t+1)!

i=

ea+r,rn+1
n((n+2)(n+1)—r?)’
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(Similarly for sinh« and coshz.)

2. For |u| > 1 and positive integer k, we have that (u*/(u* — 2*)) =
>, (z¥ /uk?) on (—1,1) has estimate

1 1 |ul|®

t) <
E(TLv )— n+2\u|”+1 |u|k71

by the geometric sum formula.
3. secz = Efz? on [-1,1] where E} =1 and

=1

((2¢)!E? is the Euler number E;.) Then E} is monotonically decreasing
and ((3+ \/§)/12)’ < Er < (1/2)" for all i. This will follow from the

inequalities
1
(3 i \/§>Ez*1 <E’< <§>E1*1

12

for ¢ > 1. We first verify the lower inequality by induction. The case
t = 11is clear so let ¢ > 1 and assume that it is true for all subscripts
i' < i. Setting w = (3 + /3)/12, we have that

& E 541 By . . Eg
3 (@ 2a ) 62

since each term is nonnegative.
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Finally the upper inequality is a direct consequence of the lower since
(1/2)Er | — E} is equal to

[((i-1)/2] . .
Ei—2j Ei_Qj_1 . . E
a —-1-2[(i-1)/2
; <(4j)! (4j+2)!> + (@ (= 1)/2D G,
[(i—1)/2]
w 1 .
- - By 1 2[(i —1)/2]) =2,
=3 (G ) Fam e 2 g
Therefore,
e(n,0) = In _cosl \ A g
T 1 —sinl %1

(n—1)/2
_(/2)
- n+2

as in Example 2.

4. tanz = (secz)(sinz) = > ,o, B3x* ! on [—1,1] where the
definitions of Bj; and E} are closely related:

: . Er .
B* = E B VWi S e
23 ( ) (2,7_1)'

Jj=1

In fact, it will follow that 0 < 2B} — B3, < ((3—+/3)/3)(1/2)**. (The
value of (—1)**1B3,(2i)!/(221(2%" — 1)) is the Bernoulli number By;.)
Then B3, is monotonically decreasing with (v/3/3)((3 + v/3)/12)" * <
B3, < (1/2)%~! since it follows as in Example 3 that

V3

?EQM <Bj <E;,,
and hence

3
B3 <E ;< E ;< %Ez

i—2 < Bj(i_1)-

DN | =
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Thus,
[("*2)/2} B; 9
1)=1 - 22
g(n,1) = In(secx) ; % 1 2

- 1 (1/2)(’@71)/2
T Vv2-1 n+2

5. Let f(z) = Y. a;xz* on (—1,1) where |a;| < 1/P for some p > 0,
e.g., In(l + z) and arctanhxz. Note that the integrals in the least
squares problem for In(l + z) are improper. By the integral test,
e(n,t) <1/(2p(n — 1)7).

6. For real h > —1, the binomial series (1+z)" = Y (};) z' defined on
(—1,1) satisfies Theorem 1 by Raabe’s test [1, 3, 14] and, for n > h+3,

ety gh_y e
R P £ 2itt+l
where Cy = ht and, with j = 27 + ¢,
h—j+2)(h—j+1
Ci:( J+2)( J+)CH‘

i(G—1)

Convergence is slow for values of h near —1, e.g., £(40,0) =~ .0895 for
h = —.5, but is increasingly better for larger values of h, €(40,0) ~
.000000622 for h = 2.3.

7. Forarcsinz = a4+, (1-3- -+ (2i-1)/(2-4 - (20))) (x> / (2i+1))
on [—1,1], we have that

[(n=2)/2]
T™—2 Di

1 = — _—

1) == ; (2i + 1)(2i + 2)

where Dy =1 and D; = ((2¢ — 1)/(24))D;_1, e.g., €(41,1) = .000967.
When Leibniz’s alternating series test holds for Y ag;y+/(2i +t + 1),
it follows that e(n,t) < max{|an+1|/(n + 2), |ant2]/(n + 3)}:
8. For sinz = Y (—1)(z**1/(2i + 1)!) on [-1,1], e(n,1) < (1/(n +
2)!). (Similarly, for cosz, arctanx and arcsinh x.)
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9. sechz = Y (~1)'Ef2? and tanhz = Y ,o,(—1)""'B3z% ! on
[—1,1] satisfy Leibniz’s test by the arguments in Examples 3 and 4,
respectively. Therefore, e(n,t) < (1/2)("~t+1)/2 /(n 4 2) for both series.

10. (1 + 2*)~! = > (~1)'z* on (—1,1) has estimate £(n,0) <
1/(n +2). (Similarly for (arcsinhz) = (1 4 2?)~1/2.)

When a bound M on the partial sums of > ag;4 is known, g(n,t) <
4M/(n + 2) by (1).

11. Consider the series f(z) = _sin((i + 1)0)z® on (—1,1) where
is a fixed angle that is not a multiple of #. By [1, Theorem 10.19],
| > i<psin(2i0)| and |, ;. cos(2if)| are bounded by |sinf| ' for
every k, and thus ¢(n,t) < (8 —4t)/((n + 2)|sinf)).

3. Convergence. For pointwise convergence, we will need coef-
ficient error estimates e(n,j) such that e(n,j)/+/j is summable with
respect to j. They will readily follow from the next result.

Proposition. Let m;; be defined by (3) for all nonnegative integers
i and j. Then, for each j, we have that m;; < 2/(j + 1) for all i,
and lim; m;; = 0. Moreover, m;; > m;y1; if and only if i > I(j) =
[1+(G-2)G+3)/4].

Proof. It is easily checked that lim; m;; = 0 and that m;; > m;4q ; if
and only if ¢ > I(j).

Since m;y = (2i + 1)~ ! and myy,1 = 1, in order to verify m;; <
2/(j + 1), it suffices to show that

(4) (J+2)mr+1),5+1 < (G + D)mrg),

for all j > 1. Consider first the case when j is a multiple of 4. For
convenience, let y; = j* + 3j. Then I(j) = (y; — 2j — 4)/4 and
I(] + 1) = yj/4' Since ml(j+1)7j+1 = mI(]’+1)71’j+1, in this case (4) is
equivalent to

ﬁ (=4 —4-2)  _ G+DE+ D +2+2)
(v —4i+2j+2)( - 4-2) = (+2)25+3)(5 - 2)

i=1
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which may be rewritten in the form

i/2
z; y

5 <

(5) Zl;[lmi—l—S(j—%)_y+(3j2—7j—14)

where y > 2x; > 0 for all i. To show (5), let us cross multiply and
observe that

i2
y[[@i+8G—20)) —y[[z: > 8y(i —2k) [[ =
k=1 i£k
i2
>16( [ =) DG - 2k)

= (45° - 8j) [ ] =:-
(5) is now clear since it is reduced to checking that 3;2 — 7j — 14 <
452 — 8j.
Suppose next that j = 4k — 1 for some positive integer k. Using the
same notation as in case 1, we have that (4) is equivalent to
(G-1)/2

I1 L < ¥
. z +8(j—2i) ~ y+ (352 -75—14)

i=1

which may be established as above with slight modification.

Now let j = 4k — 2 for some k > 1. In this case, (4) is equivalent to

ﬁ (=% +2)(—%) G+ D@+ D +2+4)
sy — 442 +4)(y; —4i—2j+2) T (7 +2)(2) + 3)y,

which is of the form

if?2 ) .

x Y
6 - <
©) Ex2‘+8(j—2i+1)_y*+(3j2+j_4)
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where y* > 227 > 0 for all <. Cross multiplying as in case 1, we have
that

J/2
v [ +8G —2i+1) =y [[2r =D 8y (G —2k+1) [
k=1 i#k

i/2

>16(JJa7) Y6 -2k +1)

k=1
= 452 H x;.

Hence (6) follows since 352 + j — 4 < 4j2.

Finally, consider the case j = 4k — 3 for k > 1. Here (4) is equivalent
to

(G-1)/2 " X
H Z < Y
S T A8 —2i+1) Tyt + (37 +—4)
which is analogous to (6). O

Suppose now that f(z) = > a;z’ where 3 as; and Y ag;y1 both
converge. (Equivalently, f(z) is continuous on [—1,1] by Abel’s the-
orem.) Then, by the above remark, f(x) satisfies the hypotheses of
Theorem 1, and the proof of the following result contains a refinement
of the coefficient error estimate in this case.

Theorem 2. Let f(z) =Y a;x’ where Y az; and Y azir1 converge,
and let P, (z) = >°7_ob;pj(x). Then, for each n,

</1 (f(z) — Po(z))? d$>1/2 < < : )1/2(5'(%0) +¢'(n, 1))

-1 2n+3

and for z in (—1,1),

(@) — Pal@)] < 2(¢/(n, 0) + &' (m, 1)) | "+ + 22(—:20)
32 >1/2

N (3 - %) max{¢(n,0),'(n, 1)}<m



LEGENDRE EXPANSIONS OF POWER SERIES 1281

where €'(n,t) = max{| D 5, a2iye| 1 kK > n}.

Proof. The mean squares estimate is direct. By the least squares
property of P, (x),

[ @ -r@res [ 11 (z) dr

-1 i>n
1
</ <
)

1
< / 4(€'(n,0) + €' (n, 1)) 222+ g

2i+1
> agip®t

2i4+1>n

;

2i>n
-1

_ (2n8+3>(5'(n,0) 4 e, 1))

Similarly, with ¢ = j — 2[j/2], we have
Z a; x| + ‘ (Z aixi> — P, (z)
i>n =0

< 2(e'(n,0) +¢'(n, 1)) [|*

(7) + ( Z azimio>p0($)

2i>n
n

z( ) awmi,-)p,-@)
j=1 N2i+t>n

A well-known bound on p;(z) for j > 1 and —1 < < 1 is given by
p3(x) < m/(2§(1 — 2?)) [8, p. 210], [12, p. 63]. Moreover, by (1) and
the proposition,

E 24155

|f(z) = Pn(z)] <

+

< 4e'(n,t)ymy(y,; < 8'(n,t) /(5 +1).

2i+t>n
Hence,
n
Z( Z a2i+tmij>Pj($)
j=1 2i+t>n

= <iﬁ%> maX{E'(n,o),g'(n,1)}<13_2_7;2>1/2

j=1
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so our pointwise estimate follows from (7) and the integral test. o

By (1), e(n,t) < &'(n,t)/(n+2). More importantly, for the examples
given above, ¢’ may be approximated by the same methods used for
e If 3" Jagiqe| < oo, then €'(n,t) < 3 0., la2it¢|. In particular, if
{a2;++} has a common sign and f(z) = Y a;x’ has a closed form, then
a useful identity is

1 [(n—t-1)/2]
g'(n,t) = §(f(1)+(—1)tf(—1))— > azige)-
=0
Furthermore, if ) ag;1¢ satisfies Leibniz’s test, then &'(n,t) <

max{|an 1], [an42/}-

Examples (revisited). 1. If n > r = (b —a)/2, then

[(n—t—-1)/2] 7‘2i+t

e'(n,t) = (b + (—1)te?) /2 — et e

ea—i—rrn-i-l
< .
“(n—DY(n+1)n—1r?)

2, 8, 9. &'(n,t) is bounded by n+2 times the bound given for £(n, t).

3.
[(n=1)/2]
g'(n,0) =secl — Z Ef < (1/2)(n=D/2,
i=0
4.
[(n—2)/2]
e'(n,1)=tanl— > B},
i=0
(n—1)/2
L e
V2-1
5.
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where we now must assume p > 1.

6. For n > h + 3,
[(n—t=1)/2]

oh—1 _ Z C;

=0

g (n,t) =

where now h > 0. Convergence is slow for h near zero, but steadily
improves as h increases.

7. As in Example 6, the series for arcsin z satisfies the hypotheses of
Theorem 2 by Raabe’s test, and

[(n—2)/2] D,

20+ 1

£'(n,1) =

|
|

=0

Unfortunately, convergence is very slow: ¢’'(100,1) = .08.

Remark. The error analyses used for our examples were based on the
usual convergence tests from elementary calculus. For finer remainder
estimates, see the articles [4, 5, 6].
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