SEMIREGULAR, SEMIPERFECT AND PERFECT RINGS RELATIVE TO AN IDEAL

MOHAMED F. YOUSIF AND YIQIANG ZHOU

Abstract

Let I be an ideal of a ring R. Consider the following conditions on R : 1. If X is a finitely generated submodule of a finitely generated projective module P, then $X=A \oplus B$ where A is a summand of P and $B \subseteq P \cdot I$. 2. If X is a submodule of a finitely generated projective module P, then $X=A \oplus B$ where A is a summand of P and $B \subseteq P \cdot I$. 3. If X is a submodule of a projective module P, then $X=A \oplus B$ where A is a summand of P and $B \subseteq P \cdot I$. When I is the Jacobson radical $J(R)$ of R, these conditions characterize semiregular rings, semiperfect rings and right perfect rings, respectively. In this paper we completely characterize these conditions for the cases when I is the right singular ideal, or the right socle, or the intersection of any two of the three ideals. As applications, structure theorems are obtained for right CEP-rings R with $J(R)^{2}=0$ and for QF-rings R with $J(R)^{2}=0$.

All rings R are associative and have an identity, unless otherwise specified, and modules are unitary right modules over R. For an R module $M, J(M), Z(M)$ and $\operatorname{Soc}(M)$ are the Jacobson radical, the singular submodule and the socle of M, respectively. We use Z_{r}, Z_{l}, S_{r} and S_{l} to indicate the right singular ideal, the left singular ideal, the right socle and the left socle of R, respectively.

1. I-Semiregular rings. The following lemma has been observed in [21, Lemma 1.1] when K is a principal right ideal of R.

Lemma 1.1. Let I be an ideal of the ring R. The following conditions are equivalent for a right ideal K of R :

[^0](1) There exists $e^{2}=e \in K$ with $(1-e) K \subseteq I$.
(2) There exists $e^{2}=e \in K$ with $K \cap(1-e) R \subseteq I$.
(3) $K=e R \oplus S$ where $e^{2}=e$ and $S \subseteq I$.

Proof. (1) \Rightarrow (2). This is obvious since $K \cap(1-e) R \subseteq(1-e) K$.
$(2) \Rightarrow(3)$. Let $S=K \cap(1-e) R$.
$(3) \Rightarrow(1)$. For $a \in K$, write $a=e r+s$ where $r \in R$ and $s \in S$. Then $e a=e r+e s$ and $(1-e) a=a-e a=s-e s \in I$. So $(1-e) K \subseteq I$.

Following [21], R is called a right I-semiregular ring if every principal right ideal K of R satisfies the equivalent conditions of Lemma 1.1.

Clearly R is a (von Neumann) regular ring if and only if R is right (respectively left) (0)-semiregular and R is semiregular (or f-semiperfect) if and only if R is right (respectively left) $J(R)$-semiregular. The right Z_{r} semiregular rings, called right weakly continuous rings, are studied in $[\mathbf{2 1}]$. Let δ_{r} be the ideal of R defined by $\delta_{r} / S_{r}=J\left(R / S_{r}\right)$. The right δ_{r}-semiregular rings are discussed in [23].

The next lemma is due to Baccella [6].

Lemma 1.2. For a ring R, idempotents of R / S_{r} lift to idempotents of R.

Proof. Let $x \in R$ with $x^{2}-x \in S_{r}$. Write $S_{r}=S_{1} \oplus S_{2}$ where S_{1} is the sum of all nilpotent minimal right ideals and S_{2} is the sum of all idempotent minimal right ideals. Then both S_{1} and S_{2} are ideals of R and $S_{1}^{2}=0$. Write $x^{2}-x=a_{1}+a_{2}$ where $a_{1} \in S_{1}$ and $a_{2} \in S_{2}$. Since $a_{2} R$ is a direct sum of finitely many idempotent minimal right ideals, it is standard to show that $a_{2} R$ is a direct summand of R_{R}. So $a_{2} R=f R$ for some $f^{2}=f \in R$. Write $f=a_{2} b$ where $b \in R$ and let $c=b f$. Then $a_{2}=f a_{2}=a_{2}(b f) a_{2}=a_{2} c a_{2}$ and $c \in S_{2}$. It follows that $x^{2}-x=a_{1}+a_{2} c a_{2}=a_{1}+\left(x^{2}-x-a_{1}\right) c\left(x^{2}-x-a_{1}\right)=$ $\left(x^{2}-x\right) c\left(x^{2}-x\right)+b_{1}$ where $b_{1} \in S_{1}$. Let $y=1-(x-1) c(x-1)$. Then $x y x=x^{2}-\left(x^{2}-x\right) c\left(x^{2}-x\right)=x^{2}-\left(x^{2}-x-b_{1}\right)=x+b_{1}$ and hence $(x y)^{2}=x y+b_{1} y$ with $b_{1} y \in S_{1}$. Since $S_{1}^{2}=0$, there exists $e^{2}=e \in R$ such that $e-x y \in S_{1}$. So $e-x=(e-x y)+(x y-x)=$

$$
(e-x y)-x(x-1) c(x-1) \in S_{1}+S_{2}=S_{r}
$$

Lemma 1.3. For a ring R, let $\bar{R}=R / S_{r}$. If idempotents of $\bar{R} / J(\bar{R})$ lift to idempotents of \bar{R}, then idempotents of R / δ_{r} lift to idempotents of R.

Proof. Let $x \in R$ with $x^{2}-x \in \delta_{r}$. Then $\bar{x} \in R / S_{r}$ and $\bar{x}^{2}-\bar{x} \in J(\bar{R})=\delta_{r} / S_{r}$. By the hypothesis, there exists $\bar{a}^{2}=\bar{a} \in \bar{R}$ such that $\bar{x} \bar{a} \in \delta_{r} / S_{r}$. Thus, $a^{2}-a \in S_{r}$ and $x-a \in \delta_{r}$. By Lemma 1.2, there exists $e^{2}=e \in R$ such that $a-e \in S_{r}$. So $x-e=(x-a)+(a-e) \in \delta_{r}$. -

The right δ_{r}-semiregular rings were characterized in [23, Theorem 3.5]. A new characterization of such rings is given in the next theorem.

Theorem 1.4. A ring R is a right δ_{r}-semiregular ring if and only if R / S_{r} is semiregular.

Proof. By [23, Theorem 3.5], R is a right δ_{r}-semiregular ring if and only if R / δ_{r} is a regular ring and idempotents lift modulo δ_{r}. Thus the implication " \Rightarrow " follows immediately. Suppose that R / S_{r} is a semiregular ring. Then $R / \delta_{r} \cong \bar{R} / J(\bar{R})$ is regular and idempotents of R / δ_{r} lift to idempotents of R by Lemma 1.3. Thus, R is right $\delta_{r^{-}}$ semiregular.

Following Ara [2], we say that an ideal I of a ring R is an exchange ring if, for every $x \in I$, there exists $e^{2}=e \in x I$ such that $1-e \in$ $(1-x) R$. This extends the concept of a unital exchange ring to rings without unit.

Corollary 1.5. Let R / S_{r} be a semiregular ring. Then R is an exchange ring and every finitely generated projective R-module is isomorphic to a direct sum of right ideals of the form $e R, e^{2}=e$.

Proof. Suppose that R / S_{r} is semiregular. Then R / S_{r} is an exchange ring by Warfield [22]. By [6, Lemma 1.2], S_{r} is an exchange ring. Since
idempotents of R / S_{r} lift to idempotents (Lemma 1.2), a result of Ara [2, Theorem 2.2] asserts that R is an exchange ring. The second part follows from a well-known result of Warfield [22, Theorem 1].

Theorem 1.6. The following are equivalent for a ring R :
(1) R is right S_{r}-semiregular.
(2) For any $a \in R$, aR $=e R \oplus U$ where $e^{2}=e$ and $U \subseteq J(R) \cap S_{r}$.
(3) R / S_{r} is a regular ring.
(4) If X is a finitely generated submodule of a (finitely generated) projected module P, then $X=A \oplus B$ where A is a summand of P and $B \subseteq \operatorname{Soc}(P)$.

Proof. The implications $(4) \Rightarrow(1) \Rightarrow(3)$ and $(2) \Rightarrow(1)$ are obvious.
$(1) \Rightarrow(2)$. Let $a \in R$. By (1), $a R=e R \oplus U$ where $e^{2}=e$ and $U \subseteq S_{r}$. Note that the uniform dimension $\operatorname{dim}(U)$ of U is finite. If $\operatorname{dim}(U)=0$, then $U=(0) \subseteq J(R) \cap S_{r}$, and we are done. Assume that, whenever $a R=e R \oplus U$ with $\operatorname{dim}(U)=k(\geq 0)$ where $e^{2}=e$ and $U \subseteq S_{r}$, there exist $f^{2}=f \in R$ and $V \subseteq J(R) \cap S_{r}$ such that $a R=f R \oplus V$. Suppose that $a R=e R \oplus U$ where $e^{2}=e, U \subseteq S_{r}$ and $\operatorname{dim}(U)=k+1$. Since $a R=e R \oplus[a R \cap(1-e) R], a R \cap(1-e) R \cong U$ and so $a R \cap(1-e) R \subseteq S_{r}$. We can assume that $a R \cap(1-e) R$ is not contained in $J(R)$. Thus, there exists an idempotent minimal right ideal, say I, in $a R \cap(1-e) R$. Obviously, I is a direct summand of R_{R} and hence of $(1-e) R$. So $e R \oplus I$ is a summand of R. Write $e R \oplus I=f R$ where $f^{2}=f \in a R$. Then $a R=f R \oplus V$ where $V \subseteq S_{r}$ and $\operatorname{dim}(V)=k$. By induction hypothesis, there exist $g^{2}=g \in R$ and $W \subseteq J(R) \cap S_{r}$ such that $a R=g R \oplus W$.
$(3) \Rightarrow(4)$. Since R / S_{r} is regular, $\delta_{r} / S_{r}=J\left(R / S_{r}\right)=\overline{0}$. So $\delta_{r}=S_{r}$. Hence, by Lemma 1.2, idempotents of R / δ_{r} lift to idempotents of R. Thus, by [23, Theorem 3.5], R is right δ_{r}-semiregular and $\delta_{r}=S_{r}$. To prove (4), let X be a finitely generated submodule of a projective module P. Since every projective module is a direct summand of a free module, we may assume that P is a free module, and further we can assume that P is a finitely generated free module. Then P / X is a finitely presented module. By [23, Theorem 3.5(2), Lemma 2.4 and Lemma 1.9], P has a decomposition $P=P_{1} \oplus P_{2}$ such that $P_{1} \subseteq X$
and $X \cap P_{2} \subseteq P \cdot \delta_{r}=P \cdot S_{r} \subseteq \operatorname{Soc}(P)$. Thus, $X=A \oplus B$ where $A=P_{1}$ and $B=X \cap P_{2}$.

Corollary 1.7. The following statements hold:
(1) Being right S_{r}-semiregular is a Morita invariant property of rings.
(2) Every right S_{r}-semiregular ring is right $J(R) \cap S_{r}$-semiregular and hence right semiregular. In this case $Z_{l} \subseteq S_{r}, Z_{r} \subseteq J(R) \subseteq S_{r}$ and $J(R)^{2}=0$.
(3) The ring R is regular if and only if every minimal right ideal is idempotent and R / S_{r} is regular.

Proof. (1) This follows from Theorem 1.6(4).
(2) Theorem $1.6(2)$ shows that R is right $J(R) \cap S_{r}$-semiregular and hence right semiregular. Then it follows from [21, Theorem 1.2] that $Z_{l} \subseteq S_{r}, Z_{r} \subseteq S_{r}$ and $J(R) \subseteq S_{r}$. Hence, $Z_{r} \subseteq J(R)$ and $J(R)^{2}=0$.
(3) One direction is clear. Suppose that every minimal right ideal is idempotent and R / S_{r} is regular. Then $J(R) \cap S_{r}=0$. By Theorem 1.6, R is right 0 -semiregular, i.e., regular.

Examples 1.8. (1) A right Z_{r}-semiregular ring may not be right S_{r}-semiregular: Let $R=\left\{\left(\begin{array}{cc}x & y \\ 0 & x\end{array}\right): x \in \mathbf{Z}_{4}, y \in \mathbf{Z}_{4} \oplus \mathbf{Z}_{4}\right\}$ where $\mathbf{Z}_{4}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$. Then $J(R)=Z_{r}=\left\{\left(\begin{array}{ll}x & y \\ 0 & x\end{array}\right): x \in 2 \mathbf{Z}_{4}, y \in \mathbf{Z}_{4} \oplus \mathbf{Z}_{4}\right\}$ with $J(R)^{3}=0$ and $R / J(R) \cong \mathbf{Z}_{2}$. So R is a Z_{r}-semiregular ring. But $\operatorname{Soc}(R)=\left\{\left(\begin{array}{cc}0 & y \\ 0 & x\end{array}\right): y \in 2 \mathbf{Z}_{4} \oplus 2 \mathbf{Z}_{4}\right\}$. So $J(R)$ is not contained in Soc (R) and hence R is not right S_{r}-semiregular.
(2) A right S_{r}-semiregular ring may not be right Z_{r}-semiregular: Let $R=\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$ where F is a field. Then $S_{r}=\left(\begin{array}{c}0 \\ 0 \\ 0\end{array}\right)$ and $R / S_{r} \cong F$. So R is right S_{r}-semiregular. But $Z_{r}=0$ with $J(R) \neq 0$. So R is not right Z_{r}-semiregular.

By Corollary $1.7(2), R$ is right S_{r}-semiregular if and only if R is right $J(R) \cap S_{r}$-semiregular and, by [21, Theorem 2.4], R is right $Z_{r^{-}}$ semiregular if and only if R is right $J(R) \cap Z_{r}$-semiregular. Next we characterize right $S_{r} \cap Z_{r}$-semiregular rings.

Corollary 1.9. The following are equivalent for a ring R :
(1) R is right $S_{r} \cap Z_{r}$-semiregular.
(2) R is right S_{r}-semiregular and right Z_{r}-semiregular.
(3) For any $a \in R, a R=P \oplus U$ where P is projective and $U \subseteq Z_{r} \cap S_{r}$ and every principal projective right ideal is a direct summand.
(4) For any $a \in R$, a $R=P \oplus U$ where P is projective and $U \subseteq Z_{r} \cap S_{r}$ and R is right $C 2$.
(5) R / S_{r} is a regular ring and $J(R)=Z_{r}$.

Proof. The implications $(1) \Rightarrow(2)$ and $(3) \Rightarrow(4) \Rightarrow(1)$ are obvious.
$(2) \Rightarrow(1)$. Let $a \in R$. Since R is right Z_{r}-semiregular, $a R=e R \oplus U$ with $e^{2}=e$ and $U \subseteq Z_{r}$. Since R is right S_{r}-semiregular, $U=f R \oplus V$ with $f^{2}=f$ and $V \subseteq S_{r}$. Since U is singular, $f=0$ and so $U=V \subseteq S_{r} \cap Z_{r}$.
$(1) \Rightarrow(3)$ follows from (1) and [21, Lemma 2.1].
$(2) \Leftrightarrow(5)$ follows from Theorem 1.6 and [21, Theorem 2.4].

The next proposition can be proved using the arguments as in the proof of [21, Proposition 2.2].

Proposition 1.10. The following are equivalent for $a \in R$:
(1) $a R=P \oplus U$ where P is projective and $U \subseteq Z_{r} \cap S_{r}$.
(2) $\mathbf{r}(a)$ is the intersection of finitely many essential maximal submodules of some summand of R_{R}.

Remark 1.11. For an ideal I of R, by [21, Theorem 1.2], the condition that (a) R is a right I-semiregular ring always implies that (b) R / I is regular and idempotents lift modulo I. (a) and (b) are equivalent when $I=J(R), I=S_{r},\left(\right.$ by Lemma 1.2 and Theorem 1.6(3)), or $I=\delta_{r}$ (see [23, Theorem 3.5]), but not equivalent in general by [21, Example 1.3]. From Example 2.8, we have that (b) does not imply (a) when $I=Z_{r}$.

As a comparison to Theorem 1.6(4), a homological characterization
of right Z_{r}-semiregular rings is given as follows.

Proposition 1.12. The ring R is right Z_{r}-semiregular if and only if, for any finitely generated submodule X of a (finitely generated) projective module $P, X=A \oplus B$ where A is a summand of P and $B \subseteq Z(P)$.

Proof. One direction is clear. Suppose that R is right Z_{r}-semiregular. Let X be a finitely generated submodule of a projective module P. Since every projective module is a direct summand of a free module, we may assume that P is a free module and further we can assume that P is a finitely generated free module. Then P / X is a finitely presented module. By [7, Lemma 2.3], P has a decomposition $P=P_{1} \oplus P_{2}$ such that $P_{1} \subseteq X$ and $X \cap P_{2} \subseteq J(P)=P \cdot J(R)=P \cdot Z_{r} \subseteq Z(P)$. Thus, $X=A \oplus B$ where $A=P_{1}$ and $B=X \cap P_{2}$.
2. I-Semiperfect rings. The ring R is called a right I-semiperfect ring if every right ideal K of R satisfies the equivalent conditions in Lemma 1.1. Clearly R is a semisimple artinian ring if and only if R is right (respectively left) (0)-semiperfect and R is semiperfect if and only if R is right (respectively left) $J(R)$-semiperfect. The right $\delta_{r^{-}}$ semiperfect rings are discussed in [23]. The following result is well known and easy to prove.

Lemma 2.1. The following are equivalent for a ring R :
(1) R is a semisimple artinian ring.
(2) Every simple R-module is projective.
(3) Every maximal right ideal of R is a direct summand of R_{R}.
(4) Every singular simple R-module is projective.

Theorem 2.2. A ring R is right δ_{r}-semiperfect if and only if R / S_{r} is semiperfect.

Proof. By [23, Theorem 3.6], R is right δ_{r}-semiperfect if and only if R / δ_{r} is semisimple artinian and idempotents lift modulo δ_{r}. And
the latter, by the same arguments as in the proof of Theorem 1.4, is equivalent to the condition that R / S_{r} is semiperfect.

Theorem 2.3. The following are equivalent for a ring R :
(1) R is right S_{r}-semiperfect.
(2) For every countably generated right ideal $K \subseteq R, K=e R \oplus U$ where $e^{2}=e$ and $U \subseteq S_{r}$.
(3) R / S_{r} is semisimple artinian.
(4) If X is a submodule of a finitely generated projective module P, then $X=A \oplus B$ where A is a summand of P and $B \subseteq \operatorname{Soc}(P)$.
(5) There exists a complete orthogonal set of idempotents $e_{1}, e_{2}, \ldots, e_{n}$, such that for each i, either $\left(e_{i} R\right)_{R}$ is simple or $\operatorname{Soc}\left(e_{i} R\right)$ is a maximal submodule of $\left(e_{i} R\right)_{R}$.
(6) For every maximal right ideal $K \subseteq R, K=e R \oplus U$ where $e^{2}=e$ and $U \subseteq S_{r}$.

Proof. (1) $\Rightarrow(3),(5) \Rightarrow(3),(4) \Rightarrow(2)$ and $(4) \Rightarrow(1) \Rightarrow(6)$ are obvious.
$(3) \Rightarrow(4)$. Since R / S_{r} is semisimple artinian, $\delta_{r} / S_{r}=J\left(R / S_{r}\right)=\overline{0}$. So $\delta_{r}=S_{r}$ and then idempotents of R / δ_{r} lift to idempotents of R by Lemma 1.2. Thus by [23, Theorem 3.6], R is right δ_{r}-semiperfect and $\delta_{r}=S_{r}$.

Let X be a submodule of a finitely generated projective module P. Then P / X is a finitely generated module. By [23, Theorem 3.6(2), Lemma 2.4 and Lemma 1.9], P has a decomposition $P=P_{1} \oplus P_{2}$ such that $P_{1} \subseteq X$ and $X \cap P_{2} \subseteq P \cdot \delta_{r}=P \cdot S_{r} \subseteq \operatorname{Soc}(P)$. Thus, $X=A \oplus B$ where $A=P_{1}$ and $B=X \cap P_{2}$.
(6) \Rightarrow (3). Condition (6) implies that every maximal right ideal of R / S_{r} is a direct summand. Thus, by Lemma 2.1, R / S_{r} is semisimple artinian.
$(1) \Rightarrow(5)$. For any module M, let $\delta(M)=\cap\{N \subseteq M: M / N$ is a singular simple module\}. By [23, Lemma 1.9], for any projective module $P, \delta(P)$ is the intersection of all essential maximal submodules of P. Suppose that (1) holds. Then R is right δ_{r}-semiperfect and
$\delta_{r}=S_{r}$. By [23, Theorem 3.6], there exists a complete orthogonal set of idempotents $e_{1}, e_{2}, \ldots, e_{n}$ such that, for each i, either $\left(e_{i} R\right)_{R}$ is simple or $\left(e_{i} R\right)_{R}$ has a unique essential maximal submodule. The latter means that $\delta\left(e_{i} R\right)$ is an essential maximal submodule of $e_{i} R$. But, by [23, Corollary 1.7], $\delta_{r}=\delta\left(R_{R}\right)$. So $S_{r}=\delta\left(R_{R}\right)$. It follows from [23, Lemma 1.5] that $\operatorname{Soc}\left(e_{i} R\right)=\delta\left(e_{i} R\right)$ for all i. Thus (5) follows.
$(2) \Rightarrow(1)$. Suppose (2) holds. Then R is right S_{r}-semiregular and hence R / S_{r} is regular by Theorem 1.6. So, $\delta_{r} / S_{r}=J\left(R / S_{r}\right)=\overline{0}$. Thus $\delta_{r}=S_{r}$. Moreover, by [23, Theorem 3.6], (2) implies that R is right δ_{r}-semiperfect.

Remark 2.4. Clearly, if R / S_{r} is semisimple artinian, then S_{r} is essential in R_{R}.

Theorem 2.5. The following are equivalent for a ring R :
(1) R is right Z_{r}-semiperfect.
(2) R is semiperfect and $J(R)=Z_{r}$.
(3) If X is a submodule of a finitely generated projective module P, then $X=A \oplus B$ where A is a summand of P and $B \subseteq Z(P)$.
(4) For every maximal right ideal $K \subseteq R, K=e R \oplus U$ where $e^{2}=e$ and $U \subseteq Z_{r}$.

Proof. (1) \Rightarrow (2). Because of (1), every right ideal of R / Z_{r} is a direct summand and so R / Z_{r} is semisimple artinian. Moreover, by [21, Theorem 2.4], $Z_{r}=J(R)$ and idempotents of R / Z_{r} lift to idempotents of R.
$(2) \Rightarrow(3)$. Let X be a submodule of a finitely generated projective module P. Then P / X is finitely generated and hence has a projective cover. By [7, Lemma 2.3], P has a decomposition $P=P_{1} \oplus P_{2}$ such that $P_{1} \subseteq X$ and $X \cap P_{2} \subseteq J(P)$. But $J(P)=P \cdot J(R)=P \cdot Z_{r} \subseteq Z(P)$. Thus, $X=A \oplus B$ where $A=P_{1}$ and $B=X \cap P_{2}$.
$(3) \Rightarrow(1) \Rightarrow(4)$. These are obvious.
(4) $\Rightarrow(2)$. By (4), every maximal right ideal of R / Z_{r} is a direct summand. Then by Lemma 2.1, R / Z_{r} is semisimple artinian and hence $J(R) \subseteq Z_{r}$. Suppose $Z_{r} \neq J(R)$. There exists $x \in Z_{r}$ and a
maximal right ideal K of R such that $x \notin K$. Then $R=K+x R$. By (4), $K=e R+U$ where $e^{2}=e \in R$ and $U \subseteq Z_{r}$. Clearly $e \neq 1$. It follows that $R=e R+Z_{r}+x R=e R+Z_{r}$. This shows that $(1-e) R \cong R / e R \cong Z_{r} /\left(Z_{r} \cap e R\right)$ is singular and projective. By [21, Lemma 2.1], $1-e=0$. This is a contradiction. So $Z_{r}=J(R)$. Thus Condition (4) implies that every simple R-module has a projective cover and hence R is semiperfect.

In view of Theorem 2.3 and Theorem 2.5, the next corollary is immediate.

Corollary 2.6. Being a right S_{r}-semiperfect (respectively right Z_{r} semiperfect) ring is a Morita invariant.

Examples 2.7. (1) A right S_{r}-semiperfect ring may not be semiperfect: Let $Q=\Pi_{i=1}^{\infty} F_{i}$ where $F_{i}=\mathbf{Z}_{2}$ and T the subring of Q generated by $\oplus_{i=1}^{\infty} F_{i}$ and 1_{Q}. Then T is right S_{r}-semiperfect, but is not semiperfect and hence not right Z_{r}-semiperfect.
(2) A right Z_{r}-semiperfect ring may not be right S_{r}-semiperfect: Let $\left.R=\left\{\left(\begin{array}{cc}a & x \\ 0 & a\end{array}\right)\right\}: a, x \in \mathbf{Z}_{4}\right\}$. Then $\left.S_{r}=\left\{\left(\begin{array}{cc}0 & x \\ 0 & 0\end{array}\right)\right\}: x \in 2 \mathbf{Z}_{4}\right\}$ and $\left.Z_{r}=J(R)=\left\{\left(\begin{array}{cc}a & x \\ 0 & a\end{array}\right)\right\}: a \in 2 \mathbf{Z}_{4}, x \in \mathbf{Z}_{4}\right\} . R$ is clearly (right) Z_{r}-semiperfect but is not right S_{r}-semiperfect.
(3) Every right Z_{r}-semiperfect ring is semiperfect. The ring R in Example 1.8(2) is semiperfect but is not right Z_{r}-semiperfect.
(4) Every right S_{r}-semiperfect ring is right S_{r}-semiregular. The ring R in Examples 1.8(1) is right S_{r}-semiregular but not right S_{r}-semiperfect.
(5) Every right Z_{r}-semiperfect ring is right Z_{r}-semiregular. The ring T in (1) is right Z_{r}-semiregular, but not right Z_{r}-semiperfect.

For an ideal I, the condition (a) " R is right I-semiperfect" is equivalent to the condition (b) " R / I is semisimple artinian and idempotents of R / I lift to idempotents of R " when $I=S_{r}$ (see Theorem 2.3(3) and Lemma 1.2). But the next example shows that (a) is not equivalent to (b) if $I=Z_{r}$.

Example 2.8 [Bergman's example]. The ring R in this example is given in detail in [12, Example 1.36]. Let W be the set of all surjective real-valued analytic functions f of a real variable such that f has positive derivative and $f(x+1)=f(x)+1$ for all x. Then W is a group with respect to the compositions of functions. As shown in [12, p. 28], there exists a real number p such that, for $f, g \in W$, $f(p)=g(p) \Leftrightarrow f=g$. Let G be the subgroup of W generated by all elements f of W which are given by $f(x)=x+g(x)$ for all x with g a truncated Fourier series of period 1 with rational coefficients, i.e., $g=\sum_{k=0}^{n}\left[a_{k} \cos (2 \pi k x)+b_{k} \sin (2 \pi k x)\right]$ for some $n \geq 0$ where the a_{k} and b_{k} are rationals. Let $c \in W$ be given by $c(x+1)=x+1$ for all x and $S=\{g \in G: g(p) \geq p\}$. Then S is a sub-semigroup of G and c is a central element of S. Let K be a field and then c will be a central element of the semigroup algebra $K S$. Now set $R=K S / c K S$. As shown in [12, pp. 28-30], R is right primitive (and so $J(R)=0$) and $Z_{r} \neq 0$. So R is not right Z_{r}-semiregular (and hence not right Z_{r}-semiperfect). But it can be proved from the construction of R given in $[\mathbf{1 2}, \mathrm{p} .29]$ that Z_{r} is a maximal right ideal of R. Thus R / Z_{r} is a division ring and hence idempotents of R lift modulo Z_{r}.

By Theorem 2.5, R is right Z_{r}-semiperfect if and only if R is right $J(R) \cap Z_{r}$-semiperfect. But in contrast to Corollary 1.7(2), a right $S_{r^{-}}$ semiperfect ring may not be right $J(R) \cap S_{r}$-semiperfect: The ring T in Example 2.7(1) provides such an example. Next we consider right $J(R) \cap S_{r}$-semiperfect and right $S_{r} \cap Z_{r}$-semiperfect rings.

Corollary 2.9. The following are equivalent for a ring R :
(1) R is right $J(R) \cap S_{r}$-semiperfect.
(2) R is semiperfect and right S_{r}-semiperfect.
(3) R is semiprimary with $J(R) \subseteq S_{r}$.

Proof. (1) \Rightarrow (3). Clearly, (1) implies that R is right S_{r}-semiperfect. So R is right S_{r}-semiregular. Thus, $J(R) \subseteq S_{r}$ by Corollary 1.7(2) and so $J(R)^{2}=0$. (1) also implies that \bar{R} is semiperfect, so R is semiprimary.
$(3) \Rightarrow(2) . R$ is clearly semiperfect, i.e., right $J(R)$-semiperfect. Since $J(R) \subseteq S_{r}$, it follows that R is right S_{r}-semiperfect.
$(2) \Rightarrow(1)$. Let K be a right ideal of R. Since R is semiperfect, $K=e R \oplus U$ with $e^{2}=e$ and $U \subseteq J(R)$. Since R is right S_{r}-semiperfect, $U=f R \oplus V$ with $f^{2}=f$ and $V \subseteq S_{r}$. Since $U \subseteq J(R), f=0$ and so $U=V \subseteq J(R) \cap S_{r}$.

Lemma 2.10. Let $e^{2}=e \in R$ such that $\operatorname{Soc}(e R)$ is a maximal submodule of $(e R)_{R}$. If $K \subseteq e R$ is an idempotent right ideal, then $e R=K \oplus f R$ where $f^{2}=f$ and $\operatorname{Soc}(f R)$ is a maximal submodule of $(f R)_{R}$.

Proof. We can write $K=g R$ where $g^{2}=g$. Then $e R=g R \oplus[(1-$ $g) R \cap e R$]. Write $(1-g) R \cap e R=f R$ where $f^{2}=f$. Then $e R=K \oplus f R$ and $\operatorname{Soc}(e R)=K \oplus \operatorname{Soc}(f R)$ is maximal in $K \oplus f R$. It follows that $\operatorname{Soc}(f R)$ is maximal in $(f R)_{R}$.

A ring R is right Kasch if every simple right R-module embeds in R_{R} or, equivalently $\mathbf{1}(K) \neq 0$ for every maximal right ideal K. Analogously, one defines left Kasch rings.

Theorem 2.11. The following are equivalent for a ring R :
(1) R is right $S_{r} \cap Z_{r}$-semiperfect.
(2) R is both right S_{r}-semiperfect and right Z_{r}-semiperfect.
(3) R is semiprimary and $J(R)=Z_{r} \subseteq S_{r}$.
(4) $R=S \oplus T$ where S is a semisimple artinian ring and T is a semiprimary ring with $J(T)=Z\left(T_{T}\right)=\operatorname{Soc}\left(T_{T}\right)$.
In this case, $Z_{l} \subseteq Z_{r}=J(R) \subseteq S_{r} \subseteq S_{l}, R$ is left Kasch, $J(R)^{2}=0$ and R satisfies $A C C$ on left annihilators and $A C C$ on right annihilators.

Proof. (1) $\Rightarrow(2)$ and $(4) \Rightarrow(3)$ are obvious.
$(2) \Rightarrow(1)$. Let K be a right ideal of R. Since R is right $Z_{r^{-}}$ semiperfect, $K=e R \oplus U$ with $e^{2}=e$ and $U \subseteq Z_{r}$. Since R is right S_{r}-semiperfect, $U=f R \oplus V$ with $f^{2}=f$ and $V \subseteq S_{r}$. Since U is singular, $f=0$ and so $U=V \subseteq S_{r} \cap Z_{r}$.
$(2) \Leftrightarrow(3)$. It follows from Corollary 2.9 and Theorem 2.5.
(2) and (3) \Rightarrow (4). Since R is right S_{r}-semiperfect, by Theorem 2.3, there exists a decomposition $R=e_{1} R \oplus \cdots \oplus e_{s} R \oplus e_{s+1} R \oplus \cdots \oplus e_{n} R$ where $e_{i}^{2}=e_{i}$ for all $i,\left(e_{i} R\right)_{R}$ is simple for $i=1, \ldots, s$, and $\operatorname{Soc}\left(e_{i} R\right)$ is maximal in $\left(e_{i} R\right)_{R}$ for $i=s+1, \ldots, n$. Clearly (3) implies that R is semiprimary with $J(R)^{2}=0$. So, by [19, Lemma 4.10], R_{R} has ACC on direct summands. Therefore, because of Lemma 2.10, we can assume that, for each $s+1 \leq i \leq n, \operatorname{Soc}\left(e_{i} R\right)$ is nilpotent. So, $\operatorname{Soc}\left(e_{i} R\right) \subseteq$ $J(R) \cap e_{i} R=J\left(e_{i} R\right)=e_{i} J(R)=e_{i} Z_{r}=Z\left(e_{i} R\right)$. Since $\operatorname{Soc}\left(e_{i} R\right)$ is maximal in $\left(e_{i} R\right)_{R}, \operatorname{Soc}\left(e_{i} R\right) \supseteq J\left(e_{i} R\right)$. $\operatorname{So}, \operatorname{Soc}\left(e_{i} R\right)=J\left(e_{i} R\right)=$ $Z\left(e_{i} R\right)$ for $i=s+1, \ldots, n$. Write $R=S \oplus T$ where $S=e_{1} R \oplus \cdots \oplus e_{s} R$ and $T=e_{s+1} R \oplus \cdots \oplus e_{n} R$. Then $Z_{r}=Z\left(e_{s+1} R\right) \oplus \cdots \oplus Z\left(e_{n} R\right)$ and $T=Z_{2}\left(R_{R}\right)$ is the second right singular ideal of R. Clearly $S \cdot Z_{2}\left(R_{R}\right)=Z_{2}\left(R_{R}\right) \cdot S=0$. So, $R=S \oplus T$ is a ring direct sum and S is a semisimple artinian ring. Clearly $J\left(T_{R}\right)=J\left(T_{T}\right)$ and $\operatorname{Soc}\left(T_{R}\right)=\operatorname{Soc}\left(T_{T}\right)$ and it can be easily checked that $Z\left(T_{R}\right)=Z\left(T_{T}\right)$. Since $J\left(T_{R}\right)=Z\left(T_{R}\right)=\operatorname{Soc}\left(T_{R}\right)$, we have $J\left(T_{T}\right)=Z\left(T_{T}\right)=\operatorname{Soc}\left(T_{T}\right)$. So, $J\left(T_{T}\right)^{2}=0$. As seen above, $T / J(T)=T / \operatorname{Soc}\left(T_{T}\right)$ is semisimple artinian. Thus T is semiprimary.

To see the last statement, we have $Z_{l} \subseteq Z_{r}$ by [21, Theorem 1.2] since R is right Z_{r}-semiperfect. By (4), $Z_{r}=J(R) \subseteq S_{r}$ and R is semiprimary. Hence $J(R)^{2}=0$ and $S_{l}=\mathbf{r}(J(R))=\mathbf{r}\left(Z_{r}\right) \supseteq S_{r}$. Thus, S_{l} is essential in R_{R}. By [20, Lemma 3.11], R is left Kasch. And it follows from [19, Lemma 4.10] that R has ACC on left annihilators and ACC on right annihilators.

Examples 2.12. (1) For any semisimple artinian $\operatorname{ring} S, R=$ $\left\{\left(\begin{array}{ll}x & y \\ 0 & x\end{array}\right): x, y \in S\right\}$ is an artinian ring with $J(R)=Z_{r}=S_{r}$, but R is not semisimple artinian.
(2) Let $Q=\Pi_{i=1}^{\infty} F_{i}$ where $F_{i}=\mathbf{Z}_{4}$ and R be the subring of Q generated by $\oplus_{i=1}^{\infty} 2 F_{i}$ and $1_{Q} . R$ is semiprimary but not right artinian, and $\operatorname{Soc}(R)=J(R)=Z_{r}=\left(\oplus_{i=1}^{\infty} 2 F_{i}\right)+2 \mathbf{Z} \cdot \mathbf{1}_{Q}$.
(3) Every right $S_{r} \cap Z_{r}$-semiperfect ring is right $J(R) \cap S_{r}$-semiperfect. The ring R in Example 1.8(2) is right $J(R) \cap S_{r}$-semiperfect, but is not right $S_{r} \cap Z_{r}$-semiperfect.

A ring R is a QF-ring if and only if R is left (or right) self-injective
and left (or right) artinian. A ring R is called a right CS-ring if every right ideal is essential in a direct summand of R_{R} and a right CS-ring R is called right continuous if R is right C 2 , i.e., any right ideal isomorphic to a direct summand of R_{R} is itself a direct summand of R_{R} (see [17]). A right self-injective (respectively a left and right continuous) ring R such that R / S_{r} is right artinian or right noetherian is QF (see [3], [4] and [14]). Also right CS-rings R such that R / S_{r} is right artinian or right noetherian have been studied in [10]. Motivated by these results, we characterize below the right CS, right S_{r}-semiperfect rings. Following [15], a ring R is called a right CEP-ring if every cyclic right R-module can be essentially embedded in a projective module.

Theorem 2.13. The following are equivalent for a ring R :
(1) R is right $C S$ and R / S_{r} is semisimple artinian.
(2) R is right continuous, right artinian with $J(R)^{2}=0$.
(3) R is a right CEP-ring with $J(R)^{2}=0$.
(4) There exists a complete orthogonal set of idempotents $e_{1}, e_{2}, \ldots, e_{n}$ such that all $e_{i} R$ are indecomposable modules of composition length at most 2 and, for $i \neq j$, every isomorphism $\operatorname{Soc}\left(e_{i} R\right) \rightarrow \operatorname{Soc}\left(e_{j} R\right)$ extends to an isomorphism $e_{i} R \rightarrow e_{j} R$.
(5) $R=S \oplus T$ where S is a semisimple artinian ring and there exists a complete orthogonal set of idempotents $t_{1}, t_{2}, \ldots, t_{k}$ in T such that all $\left(t_{i} T\right)_{T}$ are indecomposable modules of composition length 2 and, for $i \neq j$, every isomorphism $\operatorname{Soc}\left(t_{i} T\right)_{T} \rightarrow \operatorname{Soc}\left(t_{j} T\right)_{T}$ extends to an isomorphism $\left(t_{i} T\right)_{T} \rightarrow\left(t_{j} T\right)_{T}$.

Proof. (1) $\Rightarrow(2)$. By [10, Lemma 4 and Corollary 6], R is right artinian. Then by Theorem 2.11, R is left Kasch and $J(R)^{2}=0$ and so R is a right C 2 -ring (see [21, Examples (7)]).
(2) \Rightarrow (4). Suppose that (2) holds. Then R is semiperfect and so $R=e_{1} R \oplus \cdots \oplus e_{n} R$ where each $\left(e_{i} R\right)_{R}$ is indecomposable and $J\left(e_{i} R\right)$ is maximal in $\left(e_{i} R\right)_{R}$. It follows that $\left(e_{i} R\right)_{R}$ is uniform since R is right continuous. Thus, each $\operatorname{Soc}\left(e_{i} R\right)$ is simple since R is right artinian. Note that, since R is right artinian with $J(R)^{2}=0$, $J(R) \subseteq \mathbf{1}(J(R))=S_{r}$. So $J\left(e_{i} R\right) \subseteq \operatorname{Soc}\left(e_{i} R\right) \subseteq e_{i} R$. If $\operatorname{Soc}\left(e_{i} R\right)=$ $e_{i} R$, then $e_{i} R$ has composition length 1 . If $\operatorname{Soc}\left(e_{i} R\right) \neq e_{i} R$, then
$\operatorname{Soc}\left(e_{i} R\right)=J\left(e_{i} R\right)$ is maximal in $e_{i} R$. So $e_{i} R$ has composition length 2. Let $f: \operatorname{Soc}\left(e_{i} R\right) \rightarrow \operatorname{Soc}\left(e_{j} R\right)$ be an R-isomorphism where $i \neq j$. Since R is right continuous, f extends to an R-homomorphism $g: e_{i} R \rightarrow e_{j} R$ and f^{-1} extends to an R-homomorphism $h: e_{j} R \rightarrow e_{i} R$ by [17, Proposition 2.10]. Both maps g and h must be one-to-one since f is an isomorphism. Since $e_{i} R$ has composition length at most $2, g$ is an isomorphism.
(4) \Rightarrow (5). Let $e_{i}, i=1, \ldots, n$, be as in (4). Set $S=\oplus\left\{e_{i} R: e_{i} R\right.$ is simple $\}$ and $T=\oplus\left\{e_{j} R: e_{j} R\right.$ has composition length 2$\}$. It can easily be proved that, if $e_{i} R$ is simple (i.e., of composition length 1) and $e_{j} R$ is of composition length 2 , then $e_{i} R \cdot e_{j} R=0=e_{j} R \cdot e_{i} R$ and hence $R=S \oplus T$ is a direct sum of rings. The rest of (5) is clear.
$(5) \Rightarrow(4)$ is clear and $(3) \Rightarrow(2)$ is by $[\mathbf{2 0}$, Theorem 5.8].
(4) \Rightarrow (1). Suppose (4) holds. Then R is right S_{r}-semiperfect by Theorem 2.3. (4) also implies that, for $i \neq j, e_{i} R$ is $e_{j} R$-injective. It follows from [17, Corollary 2.14] that R is right CS.
(2) and $(4) \Rightarrow(3)$. By $[\mathbf{2 0}$, Theorem 5.8], it suffices to show that every right ideal of R is an annihilator. First we show that R is right Kasch. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be given as in (4). Then, since R is semiperfect, it contains a basic set of idempotents, say $\left\{e_{1}, \ldots, e_{m}\right\}$ where $m \leq n$. Thus, $e_{i} R \not \equiv e_{j} R$ if $i \neq j$ and $1 \leq i, j \leq m$. By (4), $\operatorname{Soc}\left(e_{i} R\right) \not \approx \operatorname{Soc}\left(e_{j} R\right)$ if $i \neq j$ and $1 \leq i, j \leq m$. Hence, $\left\{\operatorname{Soc}\left(e_{1} R\right), \ldots, \operatorname{Soc}\left(e_{m} R\right)\right\}$ is an irredundant set of representatives of the simple right R-modules. This shows that R is right Kasch. Let L be a maximal right ideal. Then R / L is isomorphic to a minimal right ideal of R. Thus, $(R / L) \cdot \mathbf{r}\left(S_{r}\right)=\overline{0}$, i.e., $\mathbf{r}\left(S_{r}\right) \subseteq L$ for any maximal right ideal L. Thus, $\mathbf{r}\left(S_{r}\right) \subseteq J(R)$. The other inclusion is clear. Therefore, $J(R)=\mathbf{r}\left(S_{r}\right)$. Next we show that every right ideal contained in $J(R)$ is an annihilator. Let K be such a right ideal. Since R is right CS, K is essential in $e R$ where $e^{2}=e \in R$. Then $\mathbf{r l}(K) \subseteq \mathbf{r l}(e R)=e R$. From $K \subseteq J(R)$, we see that $\mathbf{r l}(K) \subseteq \mathbf{r l}(J(R))=\mathbf{r}\left(S_{r}\right)=J(R)$. But $J(R) \subseteq S_{r}$ by (2). It follows that $K \leq_{e} \operatorname{rl}(K) \subseteq S_{r}$. It must be that $K=\mathbf{r l}(K)$. Now we let I be a right ideal of R. Since R is semiperfect, $I=e R \oplus U$ where $e^{2}=e \in R$ and $U \subseteq J(R)$. Then $\mathbf{r l}(I)=\mathbf{r}(R(1-e) \cap l(U)) \supseteq I$. If $x \in \mathbf{r}(R(1-e) \cap l(U))$, then $\mathbf{l}((1-e) U) \subseteq \mathbf{l}(1-e) x)$ and so $(1-e) U=\mathbf{r l}((1-e) U) \supseteq(1-e) x R$ (note $(1-e) U \subseteq J(R))$. Write $(1-e) x=(1-e) u$ where $u \in U$. Then
$x=e(x-u)+u \in I$. Therefore, $I=\mathbf{r l}(I)$.

We call a module M socle-injective if any homomorphism $f: S_{r} \rightarrow M$ extends to R or equivalently for any semisimple right ideal K of R, any homomorphism $f: K \rightarrow M$ extends to R.

Lemma 2.14. Let R / S_{r} be semisimple artinian. Then a module M is socle-injective if and only if M is injective.

Proof. Let M be socle-injective, and let $f: K \rightarrow M$ be an R homomorphism where K is a right ideal of R. By Theorem 2.3, R is right S_{r}-semiperfect, and so $K=e R \oplus U$ where $e^{2}=e$ and $U \subseteq S_{r}$. Write $K=e R \oplus V$ where $V=(1-e) R \cap K \cong U$ is semisimple. By the socle-injectivity, there exists $g: R_{R} \rightarrow R_{R}$ such that $g(x)=f(x)$ for all $x \in V$. Let $h: R_{R} \rightarrow R_{R}$ be defined by $h(e r+(1-e) t)=f(e r)+g((1-e) t)$. Then h extends f and thus M is injective.

Corollary 2.15. The following are equivalent for a ring R :
(1) R is a QF-ring with $J(R)^{2}=0$.
(2) $(R \oplus R)_{R}$ is $C S$ and R / S_{r} is semisimple artinian.
(3) R_{R} is socle-injective and R / S_{r} is semisimple artinian.
(4) R is right self-injective and R is a direct sum of indecomposable right ideals of composition length at most 2.
(5) $R=S \oplus T$ where S is a semisimple ring, T is right self-injective and is a direct sum of indecomposable right ideals of composition length 2.
Since (1) is left-right symmetric, these are also equivalent to the left versions of conditions (2), (3), (4) and (5).

Proof. $(1) \Rightarrow(4) \Leftrightarrow(5) \Rightarrow(3)$. By Theorem 2.13.
$(3) \Rightarrow(2)$. By Lemma 2.14, R_{R} is an injective, and so $(R \oplus R)_{R}$ is CS.
$(2) \Rightarrow(1)$. By Theorem $2.13, R$ is right artinian, right continuous with $J(R)^{2}=0$. Then by [21, Corollary 2.7], R is right self-injective.

Thus R is QF.

Next, we give another characterization of QF-rings R with $J(R)^{2}=0$. A ring R is said to satisfy (P 1) if R_{R} is indecomposable of composition length 2 such that $\left(R / S_{r}\right)_{R} \cong\left(S_{r}\right)_{R}$. Clearly, such a ring is right selfinjective if and only if every isomorphism $\left(S_{r}\right)_{R} \rightarrow\left(S_{r}\right)_{R}$ extends to an isomorphism $R_{R} \rightarrow R_{R}$. The ring \mathbf{Z}_{4} satisfies (P1). A ring R is said to satisfy (P2) if $R=e_{1} R \oplus \cdots \oplus e_{n} R$ where $n>1$ such that $e_{i} R \cong e_{j} R$ only if $i=j$ and, for each $1 \leq i \leq n,\left(e_{i} R\right)_{R}$ is an indecomposable module of composition length 2 , and $e_{i} R / \operatorname{Soc}\left(e_{i} R\right) \cong \operatorname{Soc}\left(e_{\sigma(i)} R\right)$ where σ is an n-cycle. Clearly again, such a ring is right self-injective if and only if, for each i, every isomorphism $\operatorname{Soc}\left(e_{i} R\right) \rightarrow \operatorname{Soc}\left(e_{i} R\right)$ extends to an isomorphism $e_{i} R \rightarrow e_{i} R$. Note that there exist QF-rings R satisfying (P2) such that $J(R)^{2}=0$ (see [16, Examples (16.19), (5) and (6)]).

Corollary 2.16. The following are equivalent for a ring R :
(1) R is a QF-ring with $J(R)^{2}=0$.
(2) R is Morita equivalent to a ring direct product $R_{0} \oplus R_{1} \oplus R_{2}$ where each R_{i} is right self-injective, R_{0} is a direct sum of division rings, R_{1} is a direct sum of rings satisfying (P 1) and R_{2} is a direct sum of rings satisfying (P2).

Proof. Only need to show that (1) implies (2). Suppose that (1) holds. Since being a QF-ring with $J(R)^{2}=0$ is a Morita invariant and every semiperfect ring is Morita equivalent to its basic ring, it suffices to show that a basic ring S of a QF-ring R with $J(R)^{2}=0$ has the ring decomposition described as in (2). Since the ring S is basic, i.e., the identity is the sum of a basic set of primitive idempotents and is QF with $J(S)^{2}=0$, without loss of generality we can assume that R is itself a basic ring. So by (4) of Corollary $2.15, R=e_{1} R \oplus \cdots \oplus e_{m} R$ where each $e_{i} R$ is an indecomposable module of composition length at most 2 and $e_{i} R \cong e_{j} R$ only if $i=j$. By the injectivity and projectivity of these $e_{i} R$, we have
(a) $\operatorname{Soc}\left(e_{i} R\right) \cong \operatorname{Soc}\left(e_{j} R\right)$ if and only if $e_{i} R \cong e_{j} R$ if and only if $e_{i} R / \operatorname{Soc}\left(e_{i} R\right) \cong e_{j} R / \operatorname{Soc}\left(e_{j} R\right)$ and
(b) for $i \neq j, e_{i} R \cdot e_{j} R \neq 0$ implies $e_{j} R / \operatorname{Soc}\left(e_{j} R\right) \cong \operatorname{Soc}\left(e_{i} R\right)$.

Let $R_{1}=\oplus\left\{e_{i} R: e_{i} R\right.$ is simple $\}, R_{2}=\oplus\left\{e_{i} R: e_{i} R / \operatorname{Soc}\left(e_{i} R\right) \cong\right.$ $\left.\operatorname{Soc}\left(e_{i} R\right)\right\}$ and $R_{3}=\oplus\left\{e_{i} R: e_{i} R\right.$ is not simple and $e_{i} R / \operatorname{Soc}\left(e_{i} R\right) \not \not 二$ $\left.\operatorname{Soc}\left(e_{i} R\right)\right\}$. By (a) and (b), R_{1}, R_{2} and R_{3} all are ideals of R and so $R=R_{1} \oplus R_{2} \oplus R_{3}$ is a ring direct product. By (a), every $e_{i} R$ in R_{1} is an ideal of R_{1} and so $R_{1}=\oplus\left\{e_{i} R: e_{i} R\right.$ is simple $\}$ is a ring direct sum with each $e_{i} R$ a division ring.

By (a) and (b), every $e_{i} R$ in R_{2} is an ideal of R_{2} and so $R_{2}=\oplus\left\{e_{i} R\right.$: $\left.e_{i} R / \operatorname{Soc}\left(e_{i} R\right) \cong \operatorname{Soc}\left(e_{i} R\right)\right\}$ is a ring direct sum with each $e_{i} R$ a ring satisfying (P1).

Choose $e_{i_{1}} R \subseteq R_{3}$. Again because of (a) and (b), there exists $e_{i_{j}} R \subseteq R_{3}, j=1, \ldots, t$, such that $e_{i_{j}} R / \operatorname{Soc}\left(e_{i_{j}} R\right) \cong \operatorname{Soc}\left(e_{i_{j+1}} R\right)$ for $j=1, \ldots, t-1$ and $e_{i_{t}} R / \operatorname{Soc}\left(e_{i_{t}} R\right) \cong \operatorname{Soc}\left(e_{i_{1}} R\right)$. If $A=\oplus\left\{e_{i_{j}} R\right.$: $j=1, \ldots, t\}$ and $B=\oplus\left\{e_{i} R: e_{i} R \subseteq R_{3}\right.$ but $i \neq i_{j}$ for $\left.j=1, \ldots, t\right\}$. From (a) and (b), $R_{3}=A \oplus B$ is a ring direct product and A satisfies (P2). If $B \neq 0$, then a ring satisfying (P2) splits from B using the same process. And this process will ensure that R_{3} is a direct sum of rings satisfying (P2).

Example 2.17 [8, p. 70]. Given a field F and an isomorphism $a \mapsto \bar{a}$ from $F \rightarrow \bar{F} \subseteq F$, let R be the right F-space on basis $\{1, t\}$ with multiplication given by $t^{2}=0$ and $a t=t \bar{a}$ for all $a \in F$. Then R is a local ring, and the only right ideals are $0, J(R)$ and R. Hence R is a local, right artinian, right continuous, right dual ring (i.e., every right ideal is a right annihilator). It follows that $J(R)=Z_{r}=Z_{l}=S_{r}=S_{l}$ and that R / S_{r} is semisimple artinian. Moreover, R is right CEP by Theorem 2.13. But R is not left continuous if $\operatorname{dim} \bar{F}(F) \geq 2$. Indeed, if R were left continuous, then, being local, it would be left uniform. But if X and Y are nonzero \bar{F}-subspaces of F with $X \cap Y=0$, then $P=t X$ and $Q=t Y$ are nonzero left ideals with $P \cap Q=0 . R$ is left artinian when $\operatorname{dim} \bar{F}(F)<\infty$ but is not left finitely dimensional when $\operatorname{dim} \bar{F}(F)=\infty$.

Example $2.18[\mathbf{9}, \mathrm{p} .36]$. Let $R=\mathbf{Z}_{2}\left[x_{1}, x_{2}, \ldots\right]$ where $x_{i}^{3}=0$ for all $i, x_{i} x_{j}=0$ for all $i \neq j$ and $x_{i}^{2}=x_{j}^{2}=m \neq 0$ for all i and j. Then R is a commutative local ring with $J(R)=\operatorname{span}\left\{m, x_{1}, x_{2}, \ldots\right\}$, and R has a simple essential socle $J(R)^{2}=\mathbf{Z}_{2} m$. In particular, R is
uniform and so is CS; C2 also holds because $r(a)=0, a \in R$, implies that a is a unit. Hence R is continuous. Thus, R is a commutative, local, continuous, semiprimary ring with $J(R)^{3}=0$, but R is not finite dimensional. Note that $\operatorname{Soc}(R) \subseteq J(R)=Z(R)$.
3. I-Perfect rings. Let I be an ideal of a ring R. Then R is called a right I-perfect ring if, for any submodule X of a projective module P, X has a decomposition $X=A \oplus B$ where A is a summand of P and $B \subseteq P \cdot I$. Note that R is right perfect if and only if R is right $J(R)$ perfect and R is semisimple artinian if and only if R is right (0)-perfect. The right δ_{r}-perfect rings are discussed in [23].

The next theorem is an improvement of [23, Theorem 3.8].

Theorem 3.1. A ring R is right δ_{r}-perfect if and only if R / S_{r} is right perfect.

Proof. By [23, Theorem 3.8], R is right δ_{r}-perfect if and only if R / S_{r} is right perfect and idempotents lift modulo δ_{r} and the latter is equivalent to the condition that R / S_{r} is right perfect by Lemma 1.3.

The next corollary is an interesting contrast to the fact that a semiperfect ring is not necessarily right perfect.

Corollary 3.2. The following are equivalent for a ring R :
(1) R is right S_{r}-perfect.
(2) Every submodule X of a projective module P has a decomposition $X=A \oplus B$ where A is a summand of P and $B \subseteq \operatorname{Soc}(P)$.
(3) R is right S_{r}-semiperfect.

Proof. (1) $\Leftrightarrow(2)$. This is because of the fact that $P \cdot S_{r}=\operatorname{Soc}(P)$ for any projective module P.
$(2) \Rightarrow(3)$. This is obvious.
$(3) \Rightarrow(2)$. Suppose that (3) holds. Then R / S_{r} is semisimple artinian by Theorem 2.3. Thus, R is right δ_{r}-perfect by Theorem 3.1 and $\delta_{r}=S_{r}$. So R is right S_{r}-perfect.

Proposition 3.3. The following are equivalent for a ring R :
(1) R is right Z_{r}-perfect.
(2) Every submodule X of a projective module P has a decomposition $X=A \oplus B$ where A is a summand of P and $B \subseteq Z(P)$.
(3) R is right perfect and $J(R)=Z_{r}$.

Proof. (1) $\Leftrightarrow(2)$. This is because of the fact that $P \cdot Z_{r}=Z(P)$ for any projective module P.
$(3) \Rightarrow(2)$. It is obvious.
$(2) \Rightarrow(3)$. By Theorem 2.5, $J(R)=Z_{r}$ and thus R is right perfect.

Examples 3.4. (1) Every right Z_{r}-perfect ring is right perfect. The ring R is Example $2.7(2)$ is right perfect but is not right Z_{r}-perfect.
(2) Every right Z_{r}-perfect ring is right Z_{r}-semiperfect. Let R be a dual ring which is not self-injective. Such rings exist by [13, Example 6.1]. By [11, Theorem 13], R is not right perfect. But clearly $Z_{r}=J(R)$ and, by [13, Theorem 3.9], R is semiperfect. So there exist right Z_{r}-semiperfect rings which are not right perfect, and hence not right Z_{r}-perfect.

Finally we note that R is right $J(R) \cap Z_{r}$-perfect if and only if R is right Z_{r}-perfect (by Proposition 3.3), R is right $J(R) \cap S_{r}$-perfect if and only if R is right $J(R) \cap S_{r}$-semiperfect (by Corollary 2.9), and R is right $S_{r} \cap Z_{r}$-perfect if and only if R is right $S_{r} \cap Z_{r}$-semiperfect (by Theorem 2.11).

REFERENCES

1. F.W. Anderson and K.R. Fuller, Rings and categories of modules, SpringerVerlag, New York, Berlin, 1974.
2. P. Ara, Extensions of exchange rings, J. Algebra 197 (1997), 409-423.
3. P. Ara and J.K. Park, On continuous semiprimary rings, Comm. Algebra 19 (1991), 1945-1957.
4. E.P. Armendariz, Rings with dcc on essential left ideals, Comm. Algebra 8 (1980), 24-33.
5. G. Baccella, Generalized V-rings and von Neumann regular rings, Rend. Sem. Mat. Univ. Padova 72 (1984), 117-133.
6. ——, Exchange property and the natural preorder between simple modules over semi-artinian rings, preprint, 2001.
7. H. Bass, Finitistic dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.
8. J.-E. Björk, Rings satisfying certain chain conditions, J. Reine Angew Math. 245 (1970), 63-73.
9. V. Camillo, Commutative rings whose principal ideals are annihilators, Portugal. Math. 46 (1989), 33-37.
10. V. Camillo and M.F. Yousif, CS-modules with $A C C$ or $D C C$ on essential submodules, Comm. Algebra 19 (1991), 655-662.
11. V. Camillo, W.K. Nicholson and M.F. Yousif, Ikeda-Nakayama rings, J. Algebra 226 (2000), 1001-1010.
12. A.W. Chatters and C.R. Hajarnavis, Rings with chain conditions, Pitman Adv. Publ. Program, Boston, London, 1980.
13. C.R. Hajarnavis and N.C. Norton, On dual rings and their modules, J. Algebra 93 (1985), 253-266.
14. D.V. Huynh, N.V. Dung and R. Wibauer, Quasi-injective modules with acc or dcc on essential submodules, Arch. Math. 53 (1989), 252-255.
15. S.K. Jain and S.R. López-Permouth, Rings whose cyclics are essentially embeddable in projective modules, J. Algebra 128 (1990), 257-269.
16. T.Y. Lam, Lectures on modules and rings, Springer-Verlag, New York, 1999.
17. S.H. Mohamed and B.J. Müller, Continuous and discrete modules, Cambridge University Press, 1990.
18. W.K. Nicholson, Semiregular modules and rings, Canad. J. Math. 28 (1976), 1105-1120.
19. W.K. Nicholson and M.F. Yousif, Mininjective rings, J. Algebra 187 (1997), 548-578.
20. On quasi-Frobenius rings, Internat. Sympos. on Ring Theory, Birkhauser, New York, 2001, pp. 245-277.
21. -, Weakly continuous and C2-rings, Comm. Algebra 29 (2001), 2429-2446.
22. R.B. Warfield, Jr., Exchange rings and decompositions of modules, Math. Ann. 199 (1972), 31-36.
23. Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq. 7 (2000), 305-318.

Department of Mathematics, Ohio State University at Lima, Ohio 45804, USA
E-mail address: yousif.1@osu.edu
Department of Mathematics and Statistics, University of Newfoundland, St. John's, Newfoundland A1C 5S7, Canada
E-mail address: zhou@math.mun.ca

[^0]: 1991 AMS Mathematics Subject Classification. Primary 16P99, 16N99.
 The research was supported by the NSERC grant OGP0194196 and a grant from the Ohio State University.

 Received by the editors on July 27, 2001, and in revised form on November 7, 2001.

