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CHAIN CATEGORIES OF MODULES
AND SUBPROJECTIVE REPRESENTATIONS
OF POSETS OVER UNISERIAL ALGEBRAS

DANIEL SIMSON

ABSTRACT. Filtered chain categories C(s, R) of modules
over a commutative artinian uniserial ring R and their rep-
resentation types are studied in the paper. A tame-wild di-
chotomy theorem is proved in case R is a finite dimensional K-
algebra over an algebraically closed field K. The pairs (s, R)
for which C(s, R) is of finite representation type are deter-
mined. In case R = K[t]/(tm) and K is algebraically closed,
the pairs (s, m) for which C(s, R) is of tame representation
type are listed. The problem is reduced to the study of cate-
gories of subprojective representations of posets over uniserial
algebras and then to representations of posets over a field by
applying a Galois covering functor technique.

1. Introduction. Let R be a unitary commutative artinian uniserial
ring with the Jacobson radical J(R). We recall that R is uniserial if
the ideals of R form a finite chain. In this case J(R) is the unique
maximal ideal of R, and there is an integerm ≥ 1 such that J(R)m = 0,
J(R)m−1 �= 0 and any ideal of R appears in the chain

(1.1) R ⊃ J(R) ⊃ J(R)2 ⊃ · · · ⊃ J(R)m−1 ⊃ J(R)m = 0.

Examples of such rings R are the ring Z/pmZ of integers modulo pm

or the uniserial K-algebra Fm = K[t]/(tm), where p ≥ 2 is a prime,
m ≥ 1 is an integer and K is a field.

Following Arnold [1] and [2], given an integer s ≥ 1 we consider the
filtered chain category C(s,R) whose objects are filtered s-chains

(1.2) C = (C1 ⊆ C2 ⊆ · · · ⊆ Cs−1 ⊆ Cs)

of finitely generated R-modules C1, . . . , Cs, and a morphism from C
to C ′ in C(s,R) is an R-module homomorphism f : Cs → C ′

s such that
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f(Cj) ⊆ C ′
j for j = 1, . . . , s− 1. The direct sum of two objects C and

C ′ in C(s,R) is defined to be the s-chain

C ⊕ C ′ = (C1 ⊕ C ′
1 ⊆ C2 ⊕ C ′

2 ⊆ · · · ⊆ Cs−1 ⊕ C ′
s−1 ⊆ Cs ⊕ C ′

s).

One can show that C(s,R) is an additive Krull-Schmidt category with
enough relative projective objects and enough relative injective objects
and that C(s,R) has almost split sequences. The category C(s,R) is
said to be of finite representation type if the number of the isoclasses
of indecomposable objects in C(s,R) is finite.

Following [17, Corollary 5.7], one shows that, for any R as above,
relative projective objects in C(s,R) are relative injective, and relative
injective objects in C(s,R) are relative projective. This means that the
category C(s,R) is relatively quasi-Frobenius.

In [2], Arnold is interested in the problem when the category C(s,R)
is of finite, tame or wild representation type, where the tame type is
understood rather intuitively in the case R is not a finite dimensional
algebra over an algebraically closed field. A tame-wild dichotomy result
for C(s,R) is not established in [2]. The problem for s = 2 is known as
Birkhoff’s problem. It has been solved by Richman and Walker [14] in
the representation-finite case.

In the case R is the uniserial K-algebra Fm = K[t]/(tm), m ≥ 1, and
the field K is algebraically closed, we define in Section 2 a tame type,
a polynomial growth and a wild type for C(s,R) (see Definition 2.3)
and we prove in Corollary 2.9 a tame-wild dichotomy for C(s,R). A
complete solution of the above problem is a consequence of the following
three theorems proved in (3.9).

Theorem 1.3. Let R be a commutative artinian uniserial ring and
m ≥ 1 such that J(R)m = 0 and J(R)m−1 �= 0. The category C(s,R)
is of finite representation type if and only if the pair (m, s) of integers
satisfies any of the following conditions:

(F1) m = 1 or s = 1,

(F2) m ≤ 5 and s = 2,

(F3) m ≤ 3 and 3 ≤ s ≤ 4,

(F4) m = 2 and s ≥ 5.
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Theorem 1.4. Let K be an algebraically closed field, m ≥ 1
an integer and Fm = K[t]/(tm). The category C(s, Fm) is of wild
representation type if and only if the pair (m, s) of integers satisfies
any of the following conditions:

(W1) m ≥ 7 and s ≥ 2,

(W2) m ≥ 5 and s ≥ 3,

(W3) m ≥ 4 and s ≥ 5,

(W4) m ≥ 3 and s ≥ 6.

Theorem 1.5. Let K be an algebraically closed field, m ≥ 1
an integer and Fm = K[t]/(tm). The following three conditions are
equivalent:

(a) The category C(s, Fm) is of tame representation type.

(b) The category C(s, Fm) is tame of polynomial growth.

(c) The pair (m, s) of integers satisfies any of the conditions (F1) (F4)
of Theorem 1.3, or any of the following three conditions:

(T1) m = 6 and s = 2,

(T2) m = 4 and 3 ≤ s ≤ 4,

(T3) m = 3 and s = 5.

The proof of Theorems 1.3, 1.4 and 1.5 is given in (3.8) by applying
the reduction functor res : fspr (I, R) → C(s,R) (2.7), the reduction
given in Proposition 2.8 and corresponding representation type results
in categories fspr (I, R) of filtered subprojective R-representations of
finite posets I presented in Theorems 3.4 and 3.6.

In case s = 2 and m ≤ 6 the structure of the category C(s,Z/pmZ)
has been described in [15]. Let us also recall that chain categories of
modules and the geometric structure of the representation spaces has
been investigated in [4].

Throughout this paper we denote by K a field and by mod (B) the
category of finitely generated unitary right B-modules, where B is a
ring with an identity element.
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2. Filtered chain categories and a reduction to subprojective
representations of finite posets. Let R be a commutative artinian
uniserial ring. Consider the R-subalgebra

Ts(R) =




R R · · · R
0 R · · · R
...

...
. . .

...
0 0 · · · R




of the full matrix algebra Ms(R) consisting of all s by s upper triangular
matrices a = [apq] in Ms(R) with zeros below the main diagonal. Note
that there is a natural functorial embedding

(2.0) E : C(s,R) −→ mod Ts(R)

of categories defined by attaching to each object C of C(s,R) (see (1.2))
the group E(C) = C1⊕· · ·⊕Cs equipped with the right Ts(R)-module
structure defined by the formula (c1, . . . , cs) · [apq] = (c′1, . . . , c′s) where
c′j =

∑s
t=j ctatj . It is easy to see that E is a fully faithful exact

functor and therefore C(s,R) may be viewed as a full subcategory of
the module category mod Ts(R). The indecomposable projective right
Ts(R)-modules e1Ts(R), . . . , esTs(R) are in the image of E , because it
is easy to see that, for any j ≤ s, there is a Ts(R)-module isomorphism
E(Pj) ∼= ejTs(R), where

(2.1) Pj = (0 ↪→ · · · ↪→ 0 ↪→ R
id−→ R

id−→ · · · id−→ R)

is the object of C(s,R) with the module R on the coordinates j, j +
1, . . . , s and zeros on the remaining coordinates. Here {e1, . . . , es}
is the standard set of primitive matrix idempotents in Ts(R). It
follows that {P1, . . . , Ps} is a complete set of indecomposable projective
objects of C(s,R) up to isomorphism.

Following [17, Chapter 5] we define the contravariant functor D• :
C(s,R) → C(s,R) by attaching to any s-chain C (1.2) the s-chain
D•(C) = (C•

1 ⊆ C•
2 ⊆ · · · ⊆ C•

s−1 ⊆ C•
s ), where C•

s = HomR(Cs, R)
and C•

j is the kernel of the epimorphism HomR(Cs, R) → HomR(Cj , R)
induced by the embedding Cj ⊆ Cs for j ≤ s − 1. Since the ring R is
self-injective, then the functor is a duality of categories. We call it a
reflection-duality.
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It is easy to see that D•(Pj) ∼= Ps−j+1. Hence we easily conclude
as in [17, Corollary 5.7] that the indecomposable projective objects
of C(s,R) are relatively injective and, conversely, any indecomposable
relative injective object of C(s,R) is projective. Then, by applying [3,
Proposition 6.1], we get the following nice properties of C(s,R).

Proposition 2.2. Let R be a commutative artinian uniserial ring.

(a) The filtered s-chain category C(s,R) is an additive Krull-Schmidt
category with enough relative projective objects and enough relative
injective objects.

(b) Any relative projective object of C(s,R) is relative injective, and
any relative injective object of C(s,R) is relative projective.

(c) The category C(s,R) has almost split sequences.

Assume now that R is a finite dimensional uniserial K-algebra and
K is algebraically closed. We view C(s,R) as a full exact subcat-
egory of the module category mod Ts(R) along the functor (2.0).
Given an object C of C(s,R) (see (1.2)), we call the vector dimC =
(dim KC1, . . . ,dim KCs) the dimension vector of C. Following [7],
[17, p. 368] and [18] we introduce tameness and wildness for the cate-
gory C(s,R) as follows.

Definition 2.3. Assume that R is a finite dimensional uniserial
K-algebra and K is an algebraically closed field.

(a) The category C(s,R) is of wild representation type if there exists
a K-linear exact representation embedding T : modΓ3(K) → C(s,R)
(see [18]), where

Γ3(K) =
(
K K3

0 K

)
If, in addition, the functor T is fully faithful, we call C(s,R) of fully
wild representation type, or strictly wild representation type (see [7],
[18]).

(b) The category C(s,R) is of tame representation type if, for ev-
ery dimension vector v ∈ Ns, there exist K[t] − Ts(R)-bimodules
L(1), . . . , L(rv), which are finitely generated freeK[t]-modules such that
all but finitely many indecomposable objects C with dimC = v are of
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the form C ∼= K1
λ ⊗ L(j) where j ≤ rv, K1

λ = K[t]/(t− λ) and λ ∈ K.
If there is a common bound for the numbers rv of such K[t]−Ts(R)-
bimodules L(1), . . . , L(rv) in each vector v, the tame category C(s,R)
is called domestic (see [24, (2.1)], [17, Section 14.4]).

(c) Assume that the category C(s,R) is of tame representation type.
We define the growth function µ1 : N3 → N as follows. Given
a vector v ∈ Zs we define µ1(v) to be the minimal number rv of
K[t]−Ts(R)-bimodules L(1), . . . , L(rv) satisfying the conditions in the
definition of tame representation type. A tame category C(s,R) is said
to be of polynomial growth if there exists an integer g ≥ 1 such that
µ1(v) ≤ ‖v‖g for all vectors v ∈ Zs with ‖v‖ = v1 + · · ·+ vs ≥ 2.

Now we show how the study of the category C(s,R) is reduced to
the study of the categories of filtered subprojective R-representations
of finite posets studied in [19, Section 5] and [20]. Here we follow our
notation introduced in [19, Section 5].

Assume that I ≡ (I,�) is a finite partially ordered set (abbr. poset)
with a unique maximal element �. Let F be a commutative ring. In
[19] and [20] we have defined a filtered subprojective F -representation
of I to be the system X = (Xj)j∈I of finitely generated F -modules Xj ,
j ∈ I, satisfying the following conditions:

(a) X� is a projective F -module,

(b) Xj is a submodule of X� for every j ∈ I and Xi ⊆ Xj if i � j
in I.

By a morphism f : X → X ′ of filtered subprojective F -representations
X and X ′ of the poset I we mean an F -module homomorphism
f : X� → X ′

� such that f(Xj) ⊆ X ′
j for every j ∈ I.

We denote by fspr (I, F ) the category of filtered subprojective F -
representations of the poset I. Let FI be the incidence F -algebra
of I (see [17], [19, Section 5]). Following [19, Section 5] and [22]
we denote by modpr(FI) the full subcategory of mod(FI) consisting
of projectively adjusted FI-modules. By [19] there is a category
equivalence

(2.4) ρ : fspr (I, F ) �−→ modpr(FI)

and therefore fspr (I, F ) can be viewed as a full exact subcategory
of the module category mod(FI). Consequently, if F is a finite di-
mensional K-algebra over an algebraically closed field K, then the
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tame representation type, the polynomial growth and the wild rep-
resentation type of fspr (I, F ) are well defined as above. By apply-
ing [19, Lemma 5.8] and [22, Theorems 6.5 and 6.10] to the category
fspr (I, F ) ∼= modpr(FI) one gets the following important result.

Proposition 2.5. (a) Let F be an artinian algebra. Then fspr (I, F )
is an additive Krull-Schmidt category with enough relative projective ob-
jects and enough relative injective objects. The category fspr (I, F ) has
almost split sequences and every object of fspr (I, F ) has a projective
cover.

(b) If F is a finite-dimensional K-algebra over an algebraically closed
field K, then fspr (I, F ) is either of tame representation type or of wild
representation type, and the types are mutually exclusive.

Given an integer s ≥ 0 we consider the totally ordered poset

(2.6) A∗
s : 1 → 2 → 3 → · · · → s− 1 → s→ ∗.

For any commutative artinian uniserial ring R, we define the restriction
functor

(2.7) res : fspr (A∗
s, R) −→ C(s,R)

as follows. If X = (X1 ⊆ X2 ⊆ · · · ⊆ Xs ⊆ X∗) is an object of
fspr (A∗

s, R), we set res (X) = (X1 ⊆ X2 ⊆ · · · ⊆ Xs−1 ⊆ Xs). This
can be viewed as the restriction of X to the subposet 1 → 2 → · · · → s
of A∗

s . If f : X → X ′ is a morphism in fspr (A∗
s, R) we set res (f) =

f |Xs
, the restriction of f to Xs. The main properties of the functor

res are collected in the following proposition.

Proposition 2.8. Let R be a commutative artinian uniserial ring.

(a) The additive functor res (2.7) is full and dense.

(b) If f : X → X ′ is a morphism in fspr (A∗
s, R), then res (f) = 0

if and only if f has a factorization through a direct sum of copies of
the projective object P∗ : 0 → 0 → · · · → 0 → R. If the objects X and
X ′ have no summands isomorphic with P∗, then f is an isomorphism
if and only if res (f) is an isomorphism.
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(c) The functor res defines a bijection between the isoclasses of the
indecomposable objects X of fspr (A∗

s, R) that are nonisomorphic with
P∗ and the isoclasses of indecomposable objects of C(s,R).

(d) If R is a finite dimensional K-algebra over an algebraically closed
field K, then fspr (A∗

s, R) is of tame representation type, respectively
of polynomial growth or of wild representation type, if and only if
the category C(s,R) is of tame representation type, respectively of
polynomial growth or of wild representation type.

Proof. (a) It follows from our assumption that the ring R is a self-
injective. Hence it follows that the functor res is full because, for any
X in fspr (A∗

s, R) the R-module X∗ is projective, and therefore it is
injective. To see that res is dense, we associate with any object C (1.2)
of C(s,R) the object I(C) = (C1 ⊆ C2 ⊆ · · · ⊆ Cs−1 ⊆ Cs ⊆ C∗)
of fspr (A∗

s , R) viewed as a representation of A�
s by taking for C� an

injective envelope of Cs. It is clear that C ∼= res (I(C)).

By applying (a) and the definition of reswe easily prove the statement
(b) and (c). We leave it to the reader.

(d) Assume that fspr (A∗
s , R) is of wild representation type. Then

there exists an exact representation embedding K-linear functor T :
fin (K[t1, t2]) → fspr (A∗

s, R), where fin (K[t1, t2]) is the category of
finite dimensional modules over K[t1, t2] (see [17, Chapter 14] and
[18]). Without loss of generality we can suppose that the objects
isomorphic with P∗ are not in the image of T because otherwise we
can replace the polynomial algebra K[t1, t2] by a localization K[t1, t2]h
at a polynomial h �= 0 (see [18] and [22, Section 6]). It follows that the
functor res ◦T : fin (K[t1, t2]) → C(s,R) is a representation embedding
and therefore C(s,R) is of wild representation type.

Assume that fspr (A∗
s, R) is of tame representation type. We shall

show that C(s,R) is of tame representation type. Fix a vector v =
(v1, . . . , vs) ∈ Ns. Note that the number of R-modules U such that
dim K(U) = vs is finite, up to isomorphism. Let U1, . . . , Uts

be a
set of representatives of the isoclasses of such R-modules U . Let
v(j) = (v1, . . . , vs, v

(j)
∗ ) ∈ Ns+1 for j ≤ ts where v

(j)
∗ = dimKE(Uj)

and E(Uj) is the injective envelope of Uj .

By our assumption, there exist K[t]-RI-bimodules L(1), . . . , L(rv)

which are finitely generated free K[t]-modules such that all but
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finitely many indecomposable objects X of fspr (A∗
s , R) with dimX ∈

{v(1), . . . , v(ts)} are of the form X ∼= K1
λ ⊗ L(j) where j ≤ rv,

K1
λ = K[t]/(t− λ) and λ ∈ K.

Consider the K[t] − Ts(R)-bimodules L
(1)

, . . . , L
(rv)

, where L
(i)

=
res (L(i)). Let C be an indecomposable object of C(s,R) such that
dimC = v. By (a), the object X = I(C) of fspr (A∗

s, R) defined in
the proof of (a) is indecomposable and its ∗-coordinate R-module is
isomorphic to any of the modules E(U1), . . . , E(Uts

). It follows that
dimX belongs to the set {v(1), . . . , v(ts)} and therefore all but finitely
many such objects X are of the form X ∼= K1

λ⊗L(j), where j ≤ rv and

λ ∈ K. Hence we get C ∼= res (I(C)) ∼= res (X) ∼= K1
λ ⊗ L

(j)
. This

shows that C(s,R) is of tame representation type. The polynomial
growth implication is proved in a similar way.

Conversely, assume that C(s,R) is of wild representation type. To
prove that fspr (A∗

s, R) is of wild representation type, suppose to the
contrary that fspr (A∗

s , R) is not. By Proposition 2.5 (b), the category
fspr (A∗

s, R) is of tame representation type and, by the implication
proved above, the representation-wild category C(s,R) is of tame rep-
resentation type. By applying to C(s,R) ⊆ mod Ts(R) the algebraic
geometry arguments used in the proof of [17, Theorem 14.34] (with R
and Ts(R) interchanged), we get a contradiction 1 ≥ 2 in counting cor-
responding algebraic variety dimensions. This proves that fspr (A∗

s, R)
is of wild representation type.

In a similar way we show that fspr (A∗
s , R) is of tame representation

type, if C(s,R) is of tame representation type. This finishes the proof.

As a consequence of Propositions 2.5 and 2.8, we get the following
tame-wild dichotomy result for the categories C(s,R).

Corollary 2.9. If R is a commutative uniserial finite dimensional
K-algebra over an algebraically closed field K, then C(s,R) is either of
tame representation type or of wild representation type, and the types
are mutually exclusive.

Proof. The corollary reduces to a corresponding tame-wild dichotomy
for bocses proved by Drozd in [7]. To see that we consider the following
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diagram

rep (BTs+1(R),K) �−→ prin (A∗
s , R) Θ−→ fspr (A∗

s, R) res−→ C(s,R),

where res is the restriction functor (2.7) and BTs+1(R) is a free tri-
angular bocs (in the sense of Drozd [7]), associated to the bipartite
K-algebra Ts+1(R) =

(
Ts(R) M

0 R

)
in [22, Proposition 4.9], with M a

direct sum of s copies of R. Furthermore, prin (A∗
s , R) is the cate-

gory of prinjective Ts+1(R)-modules in the sense of [17, Chapter 17],
which in our case may be identified with the category of the repre-
sentations Y = (Y1

ϕ1→ Y2
ϕ2→ · · · → Ys

ϕs→ Y∗) of the quiver A∗
s such

that Y1, . . . , Ys are finitely generated R-modules, Y∗ is a finitely gen-
erated injective R-module, f1, . . . , fs are R-module homomorphisms
such that the restriction (Y1

ϕ1→ Y2
ϕ2→ · · · ϕs−1→ Ys) of the representation

Y to the subposet As of A∗
s is isomorphic to a direct sum of copies

of the projective representations P1, . . . , Ps (2.1). The functor Θ as-
sociates to Y the object Θ(Y ) = (Y ′

1 ↪→ Y ′
2 ↪→ · · · ↪→ Y ′

s ↪→ Y∗),
where Y ′

j = ϕs · · ·ϕj(Yj). It follows from [22] that the category

prin (A∗
s , R) is equivalent with the category modpr

pr(Ts+1(R))Ts(R)
R de-

fined in [22], the category fspr (A∗
s, R) is equivalent with the category

modpr(Ts+1(R))Ts(R)
R and the functor Θ is the adjustment functor

ΘTs(R) in [22]. Then, by [22, Theorem 6.10], the functor Θ preserves
tame representation type and wild representation type. Furthermore,
by [22, Proposition 4.9], there exists an equivalence rep (BTs+1(R),K) ∼=
prin (A∗

s , R), preserving the tame and wild representation type. Since,
according to Proposition 2.8, the functor respreserves the tame rep-
resentation type and wild representation type, then the corollary is a
consequence of the well-known tame-wild dichotomy theorem of Drozd
[7].

3. The representation type of the category fspr (I, R). Let I
be a finite poset with a unique maximal element �, m ≥ 1 be an integer
and let Fm = K[t]/(tm) where K is an algebraically closed field. Our
main aim of this section is to present complete lists of pairs (I,m) for
which the category fspr (I, Fm) is of tame representation type, of finite
representation type, of wild representation type, or fspr (I, Fm) is tame
of nonpolynomial growth, respectively.
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For this purpose we recall from [19] that there is a K-linear functor

(3.1) F̃ : fspr−(Îm

∗
,K) −→ fspr (I, Fm),

where Îm is the infinite poset with a Z-action associated to (m, I) in [19,
(5.9)], Îm

∗
= Îm ∪ {∗} is the enlargement of Îm by a unique maximal

element ∗ and fspr−(Îm

∗
,K) is the full subcategory of fspr (Îm

∗
,K)

consisting of objects X = (Xβ;X∗)β∈Îm
such that Xβ = X∗ for β

sufficiently large. Note that fspr (Îm

∗
,K) is the category Îmsp of

Îm-spaces over K and fspr−(Îm

∗
,K) is the full subcategory Îm-s̃p

consisting of the Îm-spaces M = (Mβ ;M)
β∈Îm

such that Mβ = M for
β sufficiently large (see [17] and [19, Theorem 4.5]).

We recall from [17, Proposition 15.100] that the category fspr−(Îm

∗
,

K) = Îm-s̃p is said to be locally coordinate support finite if there exists
a finite subposet L of Îm such that, for any indecomposable object M
in Îm-s̃p the finite poset csupp (M) = {j ∈ Îm

∗
; (cdn M)j �= 0} is

contained in a Z-shift of L, where (cdn M)j = dimK(Mj/
∑

t≺j Mt).

The following theorem collects the main properties of the functor
(3.1).

Theorem 3.2. Assume that Fm = K[t]/(tm), m ≥ 1, I is a finite
poset with a unique maximal element � and Îm

∗
= Îm ∪ {∗} is the

infinite poset associated to (m, I). Then the functor F̃ (3.1) has the
following properties.

(a) If X is an indecomposable object in fspr−(Îm

∗
,K), then the

object F̃(X) is indecomposable and F̃(X) ∼= F̃(σX) where σX is the
Z-shift of X.

(b) If X and Y are indecomposable objects in fspr−(Îm

∗
,K) and

F̃(X) ∼= F̃ (Y ), then Y ∼= σtY for some t ∈ Z.

(c) If the functor F̃ is dense, then it induces a bijection between the
set of Z-orbits of isomorphism classes of indecomposable objects in
fspr−(Îm

∗
,K) and the set of isomorphism classes of indecomposable

objects in fspr (I, Fm).

(d) The category fspr (I, Fm) is of finite representation type if and
only if the poset Îm does not contain the critical posets K1 = (1, 1, 1, 1),
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K2 = (2, 2, 2), K3 = (1, 3, 3), K4 = (N, 4), K5 = (1, 2, 5) of Kleiner [11]
listed in [17]. If fspr (I, Fm) is of finite representation type, then the
functor F̃ is dense.

(e) If fspr−(Îm

∗
,K) is of wild representation type, then fspr (I, Fm)

is of wild representation type.

(f) Assume that fspr−(Îm

∗
,K) is locally coordinate support finite.

Then the functor F̃ is dense and fspr−(Îm

∗
,K) is of tame representa-

tion type, respectively of polynomial growth, if and only if fspr (I, Fm)
is of tame representation type, respectively of polynomial growth.

Proof. Let D = K[[t]] be the power series K-algebra in the indetermi-
nate t. Obviously D is a complete discrete valuation domain with the
unique maximal ideal p = (t) and there are K-algebra isomorphisms
Fm/J(Fm) ∼= D/p ∼= K and Fm

∼= D/pm. Let

Λ = Λ(I,D/pm) =




D pn12 · · · pn1s+1

pm D · · · pn2s+1

...
...

. . .
...

pm pm · · · D


 ⊆ Ms+1(D)

be the classical D-suborder [19, (5.10)] of the hereditary D-order
Γ = Ms+1(D) associated with (m, I) where s + 1 = |I|, pnij = D
for i � j in I and pnij = pm for i �� j in I. It follows from the
definition [19, (5.14)] that the functor F̃ is the composition

(3.3) fspr−(Îm

∗
,K) = Îm − s̃p

F−→ latt (Λ) GI−→ fspr (I, Fm),

where F is the Roggenkamp-Wiedemann [16] covering-type functor
(viewed as the completion functor in [17, Chapter 13]) and the functor
GI is constructed in [19, Section 5] as the composition of the functor
GI : latt (Λ) → f̂spr (I∗, Fm) [19, (5.14)] with a category equivalence
res I : f̂spr (I∗, Fm) �→ fspr (I, Fm) (see [19, Lemma 5.2]). By [19,
Lemma 5.15], the functor GI is a representation equivalence preserving
the representation types.

It is easy to see that the poset Îm is just the infinite poset I(Λ)
associated with Λ in [25] (see also [16], [17, Chapter 13] and [19,
Section 4]).
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It then follows that the statements (a), (b) and (c) are immediate
consequences of the properties of the functor F established in [16] (see
also [17, Chapter 13]).

(d) By the main result in [25], the D-order Λ is of finite lattice type
if and only if the poset Îm = I(Λ) does not contain the critical posets
of Kleiner [11]. Hence the above observations yield the first statement
of (d). To prove the second one, assume that fspr (I, Fm) is of finite
representation type. By (c) the category fspr−(Îm

∗
,K) = Îm− s̃p has

only finitely many isoclasses of indecomposable objects up to a Z-shift.
It follows from [16] and [17, Chapters 11 and 13] that fspr−(Îm

∗
,K)

coincides with its unique preprojective component. By [16], the functor
F carries irreducible morphisms to irreducible ones. Furthermore, by
[19, Lemma 5.15], the functor GI carries irreducible morphisms to
irreducible ones. It follows that the composite functor F̃ = GIF
carries the preprojective component to a finite connected component
C of the category fspr (I, Fm). By the representation-finite criterion
of Auslander [17, Theorem 11.44], extended easily to our situation, the
finite component C coincides with fspr (I, Fm) and consequently the
functor F̃ is dense.

(e) By the arguments given in [17, pp. 383 384], the functor F
preserves wild representation type. Hence (e) follows because F̃ = GIF
and, according to [19, Lemma 5.15], the functor GI is a representation
equivalence preserving the representation types.

(f) We only outline the proof. Assume that the category fspr−(Îm

∗
,

K) = Îm-s̃p is locally coordinate support finite. Since F is a covering-
type functor with the group Z, then the results of Dowbor and
Skowroński [5, Theorem] and [5, Proposition 2.5] on Galois coverings
on locally support finite locally bounded K-categories generalize to
our locally coordinate support finite situation. Since according to [19,
Lemma 5.15] the functor GI is a representation equivalence and pre-
serves the representation types, then the composite functor F̃ = GIF
is dense, preserves and lifts tameness, wildness and the polynomial
growth.

There is an alternative proof of a Theorem 3.2 (f) outlined in [21] (see
also [15]) by viewing the category fspr (I, Fm) as a full subcategory
of the category repK(Q,Ω) of K-linear representations of a bounded
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quiver (Q,Ω) associated to (I, Fm) and applying the universal Galois
covering functor repK(Q̃, Ω̃) → repK(Q,Ω) [6].

Theorem 3.4. Assume that I is a finite poset with a unique maximal
element �, R is a commutative artinian uniserial ring and m ≥ 1
an integer such that J(R)m = 0 and J(R)m−1 �= 0. The category
fspr (I, R) is of finite representation type if and only if the pair (m, I)
satisfies any of the following conditions:

0◦ |I| = 1 and m is arbitrary or m = 1 and I does not contain the
critical posets K1, . . . ,K5 of Kleiner [11] listed in [17],

1◦ I is linearly ordered, |I| ≥ 2 and the pair (m, |I| − 1) satisfies any
of the conditions (F1) (F4) of Theorem 1.3, or

2◦ I is not linearly ordered and the pair (m, I) satisfies any of the
following two conditions:

(F5) m = 3 and I is the poset F0 = (• → ∗ ← •), or

(F6) m = 2 and I is a one-peak subposet of any of the posets
F0,s,F1,F2,F3,F•

1 ,F•
2 ,F•

3 presented below

F0,s :

F1 :

F2 :

F3 :

F1
• :

F2
• :

F3
• :

. . . . . . , s +1 points, s ≥ 3 ,

, ,

, ,

, .

Proof. It follows from the well-known Cohen structure theorem that
there exists a complete discrete valuation domain D with the unique
maximal ideal p and ring isomorphisms R/J(R) ∼= D/p and R ∼= D/pm.
Let Λ = Λ(I,D/pm) be the classical D-suborder [19] in the hereditary
order Γ = Ms+1(D) associated with (m, I) where s+1 = |I|. It follows
from the definition that the poset Îm is just the infinite poset I(Λ)
associated with Λ in [25] (see also [17, Chapter 13] and [19, Section
4]). According to the main result in [25], the order Λ is of finite lattice
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type if and only if the poset Îm does not contain the critical posets
K1, . . . ,K5 of Kleiner. On the other hand, there is a representation
equivalence functor GI : latt (Λ) → fspr (I, R) constructed in [19,
Section 5] as the composition of the functor GI : latt (Λ)→ f̂spr (I∗, R)
[19, (5.14)] with an equivalence res I : f̂spr (I∗, R) �→ fspr (I, R)
(see [19, Lemma 5.2]). It then follows that fspr (I, R) is of finite
representation type if and only if the poset Îm does not contain the
critical posets K1, . . . ,K5 of Kleiner.

To prove the “only if” part we check by a case by case inspection that,
if (I,m) is any of the pairs satisfying the conditions in the theorem, then
the infinite poset Îm does not contain the critical posets K1, . . . ,K5 of
Kleiner. It then follows that fspr (I, R) is of finite representation type.
The reader is referred to the proof of Corollary 5.19 in [19] for an
illustration of this technique in case the poset I is linearly ordered.

To prove the converse we show first that the category fspr (I, R) is
of infinite representation type if I contains a critical poset of Kleiner
or the pair (I,m) is of one of the following types:

(A) The poset I is linearly ordered and any of the following conditions
is satisfied:

(A1) m ≥ 6 and |I| ≥ 3,

(A2) m ≥ 4 and |I| ≥ 4,

(A3) m ≥ 3 and |I| ≥ 6;

(B) The poset I is not linearly ordered and the pair (I,m) is of one
of the following types:

(B1) m ≥ 4 and I is the poset I0: ;

(B2) m ≥ 3 and I is any of the following posets:

I 1 : I 1
• : I 2 :, , ;
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(B3) m ≥ 2 and I is any of the following posets:

I 3 :

I5 :

I 6 :

I 7 :

I8 :

I 9 :

I10 :

I4
1 : I4

2 : I4
3 :

I6
• :

I8
• :

I9
• :

;

,

,

,

,

.

For this purpose we easily check that if (T, n) is of any of the types
above, then the infinite poset T̂n contains one of the critical posets
K1, . . . ,K5 of Kleiner. It then follows that the category fspr (T,R) is
of infinite representation type, as required.

Let us illustrate it by an example. Take I = I0 and m = 4. Then
the pair (I, 4) is of type (B1) and the infinite poset Î4 contains a finite
subposet 0̂I5 of the form

It contains a subposet isomorphic to the poset K2 = (2, 2, 2) marked
by the solid points.

Now assume that the category fspr (I, R) is of finite representation
type. Then (I,m) does not contain any pair (T, n) listed above and
simple combinatorial arguments show that the pair (I,m) satisfies any
of the conditions listed in the theorem. This finishes the proof.

Note that Theorem 3.4 can be also deduced from the main result of
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Plahotnik [13] by passing from fspr (I, R) to matrix R-representations
of I.

Remark 3.5. In case R is the K-algebra Fm = K[t]/(tm) and
fspr (I, Fm) is representation-finite, there is a simple algorithm for
determining the Auslander-Reiten quiver of the category fspr (I, Fm)
by applying the functor (3.1), Theorem 3.2 and [19, Theorem 4.5].
For this, one determines the projective component of the category
fspr−(Îm

∗
,K) = Îm − s̃p as in Examples 13.18, 13.28 and 13.29 of

[17], and then one glues it properly along F according to the Z-action
and then along the functor GI .

In particular, one shows in this way that, for m ≤ 5, the number of
isoclasses of indecomposable objects in fspr (A∗

2, Fm) equals 3, 6, 11, 21
and 51 in case m = 1, m = 2, m = 3, m = 4 and m = 5, respectively.
Hence we conclude the fact proved in [14] that the number of the
isoclasses of indecomposable objects in the chain category C(2, Fm)
equals 2, 5, 10, 20 and 50, respectively, because of Proposition 2.8(c).
By Theorem 3.6 below, the categories C(2, F7) and fspr (A∗

2, F7) are
of wild representation type, whereas C(2, F6) and fspr (A∗

2, F6) are
tame, representation-infinite of polynomial growth. The structure of
fspr (A∗

2, F6) is described in [15]. It is proved here that fspr (A∗
2, F6)

is tame of tubular type.

Theorem 3.6. Assume that I = A∗
s, m ≥ 1, Fm = K[t]/(tm) and

K is an algebraically closed field.

(a) The following three conditions are equivalent.

(i) The category fspr (I, Fm) is of tame representation type.

(ii) The category fspr (I, Fm) is tame of polynomial growth.

(iii) The pair (m, I) is of any of the types presented in Theorem 3.4
or (m, |I|) is any of the following four pairs (6, 3), (4, 4), (4, 5), (3.6).

(b) The category fspr (I, Fm) is of wild representation type if and
only if the pair (m, |I|) of integers satisfies any of the following four
conditions:

(W1+) m ≥ 7 and |I| ≥ 3, (W3+) m ≥ 4 and |I| ≥ 6,
(W2+) m ≥ 5 and |I| ≥ 4, (W4+) m ≥ 3 and |I| ≥ 7.
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Proof. Consider the functor F̃ : fspr−(Îm

∗
,K)→ fspr (I, Fm) (3.1).

It follows from [17, Theorem 15.99] that the category fspr−(Îm

∗
,K) =

Îm-s̃p is of wild representation type if and only if the infinite poset Îm

contains any of the hypercritical posets N1, . . . ,N6 of Nazarova [12]
presented in [17, p. 309]. On the other hand, by a simple combinatorial
checking we get the following two statements:

(A) The poset Îm contains any of the hypercritical posets N1, . . . ,N6

if and only if the pair (m, |I|) satisfies any of the conditions
(W1+) (W4+).

(B) The poset Îm does not contain the hypercritical posetsN1, . . . ,N6

if and only if the pair (m, I) satisfies any of the conditions stated in
the statement (iii).

For example, if I is the poset A∗
2 : · → · → ∗ and m = 7, then the

pair (I, 7) is of type (W1+) and the infinite poset Î7 contains a finite
subposet 0̂I7 of the form

It contains a subposet isomorphic to the poset N3 = (2, 2, 3) marked
by the solid points.

Next we prove the following statement:

(C) If the pair (m, I) satisfies any of the conditions stated in (iii),
then the category fspr (I, Fm) is tame of polynomial growth.

To prove (C) we consider two cases. First suppose that (m, I) is of
any of the types presented in Theorem 3.4. It follows from Theorem 3.4
that fspr (I, Fm) is representation-finite and consequently it is tame of
polynomial growth. Next suppose that fspr (I, Fm) is representation-
infinite. Then (m, |I|) is any of the following four pairs (6,3), (4,4),
(4,5), (3,6). In each of the four cases (6,3), (4,4), (4,5), (3,6), a simple
combinatorial analysis of the infinite poset Îm shows that Îm does not
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contain the hypercritical posets N1, . . . ,N6 of Nazarova [12] and does
not contain the poset

 :

of Nazarova and Zavadskij. By [17, Theorems 15.89 and 15.99], the
category Îm-s̃p is tame of polynomial growth. Moreover, it follows from
[17, Theorem 15.100] that fspr−(Îm

∗
,K) = Îm-s̃p is locally coordinate

support finite. Hence by applying Theorem 3.2 (f), we conclude that
fspr (I, Fm) is tame of polynomial growth and our claim (C) follows.

(b) Assume that the pair (m, |I|) satisfies any of the conditions
(W1+) (W4+). Since Îm = I(Λ), it follows from (A) and [17, The-
orems 15.3 and 15.99] that the category Îm-ŝp = fspr−(Îm

∗
,K) is of

wild representation type. Hence we conclude that fspr (I, Fm) is of
wild representation type, because we know from Theorem 3.2 that the
functor F̃ preserves the wild representation type.

Conversely, suppose that the category fspr (I, Fm) is of wild rep-
resentation type. By (A) it is sufficient to prove that the poset Îm

contains any of the hypercritical posets N1, . . . ,N6. Assume, to the
contrary, that Îm does not contain hypercritical posets. By (B) and
(C), the category fspr (I, Fm) is tame of polynomial growth, and we
get a contradiction with the tame-wild dichotomy of Proposition 2.5
(b).

(a) The implication (ii) ⇒ (i) is trivial. The statement (C) yields the
implication (iii) ⇒ (ii).

(i) ⇒ (iii). Assume that fspr (I, Fm) is of tame representation type.
By the tame-wild dichotomy of Proposition 2.5, fspr (I, Fm) is not of
wild representation type. It follows from (b) and (A) that Îm does not
contain the hypercritical posets N1, . . . ,N6. Then the statement (iii)
is a consequence of (B). This finishes the proof.

Remark 3.7. For m ≤ 6 and p ≥ 2 a prime, a description of the
Auslander-Reiten quiver of the category C(2,Z/pmZ) was presented by
C.M. Ringel and M. Schmidmeier during the Fifth Budapest-Chemnitz-
Praha-Toruń Conference in Algebra held in Budapest from 12 15
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June 2001 (see [15]). In particular, a complete classification of the
indecomposable objects of C(2,Z/p6Z) was given. This shows that the
2-chain category C(2,Z/p6Z) is tame of “tubular type.”

Remark 3.8. In the present paper we prove Theorem 3.6 only in case
the poset I is of the form A∗

s . In [20] Theorem 3.6 is extended to the
case I is an arbitrary poset with a unique maximal element.

We show in [20] that if I is not a chain and m ≥ 2, then:

(T1) The category fspr (I, Fm) is tame and representation infinite if
and only if

(1) m = 4 and I = I0, (see (B1)), or

(2) m = 3 and I = I1 or I = I•
1 , (see (B2)); or else

(3)m = 2, I is not a one-peak subposet or any of the posets presented
in (F6), and I is a one-peak subposet of any of the posets I3, I1

4 , I2
4 ,

I3
4 , I6 . . . , I10, I•

6 , I•
8 , I•

9 presented in (B3) or of any of the following
nine posets

I11 :

I12 :

I13 : I14 :

I15 :

Gn :

I11
• :

I12
• :

I14
• :

I15
• :

2 2 3n n+ ≥( ) points,  .
. . .

. . .

(T2) The category fspr (I, Fm) is tame of nonpolynomial growth if
and only if m = 2, I is a one-peak subposet of the garland Gn with
n ≥ 3 and I contains the garland G−

3 :

G3
− :

The characterizations (T1) and (T2) were presented in the Interna-
tional Conference on Representations of Algebras VIII in Geirenger,
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4 10 August 1996 (see the abstract [21]).

(3.9) Proof of Theorems 1.3 1.5. Let res : fspr (A∗
s, R) → C(s,R)

be the functor (2.7). By Proposition 2.5 (c) and (d), the functor
respreserves and respects the finite representation type, tame repre-
sentation type, wild representation type and the polynomial growth. It
follows that Theorem 1.3 is an immediate consequence of Theorem 3.4,
whereas Theorems 1.4 and 1.5 follow easily from Theorem 3.6.

4. Concluding remarks. Fix a prime integer p ≥ 2 andm ≥ 1. Let
Zp = Z/pZ be the finite field with p elements and denote by K = Zp

the algebraic closure of Zp. The study of the category fspr (I,Z/pmZ)
of subprojective representations of a finite poset I has an important
application to the study of the category rep (I, Ẑ(p),m) defined in [2,
Section 4.1] and related functorially with the category B(T,m)p of
isomorphism at p of finite rank Butler groups (see [2, Section 4.3]),
where Ẑ(p) is the ring of p-adic integers. In particular, the results
of this paper are strongly related with the open questions stated in
[2, pp. 142, 164, 168] and related problems discussed by Dugas and
Rangaswamy [8].

In the present paper we are interested in determining the representa-
tion type of the following three categories

(4.1) fspr (I,Z/pmZ) fspr (I,Zp[t]/(tm)) fspr (I,K[t]/(tm))

and in a complete classification of their indecomposable objects. Un-
fortunately we have defined tame representation type and wild repre-
sentation type only for the category fspr (I,K[t]/(tm)), because the
field K = Zp is algebraically closed and Proposition 2.5 applies.

However, our results of this paper might help to define and determine
a tame representation type and a wild representation type for the
categories fspr (I,Z/pmZ) and fspr (I,Zp[t]/(tm)). Without loss of
generality we may suppose that m ≥ 2, because in the case m = 1
the rings Z/pmZ, Zp[t]/(tm) and K[t]/(tm) are fields and the results of
Nazarova [12] presented in [17, Chapter 15] apply.

Assume that m ≥ 2 and note that, according to Theorem 3.4, each
of the categories in (4.1) is of infinite representation type if so is
fspr (I,K[t]/(tm)). Moreover, the pairs (I,m) for which fspr (I,K[t]/
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(tm)) is wild are determined by Theorem 3.6 and the statement (T1)
of Remark 3.8. It should not be difficult to show that, for any such a
pair (I,m) the categories fspr (I,Z/pmZ) and fspr (I,Zp[t]/(tm)) are
also “wild” in a reasonable sense, or at least are endo-wild in the sense
of [23, Definition 5.1].

It then remains to show that the categories fspr (I,Z/pmZ) and
fspr (I,Zp[t]/(tm)) are of “tame representation type” in a reasonable
sense, if (I,m) is any of the pairs (6,3), (4,4), (4,5), (3,6) in Theo-
rem 3.6 or (I,m) is any of the pairs described by the conditions (1) (3)
in (T1) of Remark 3.8, by carrying out a classification of indecompos-
ables from fspr (I,K[t]/(tm)) to the categories fspr (I,Z/pmZ) and
fspr (I,Zp[t]/(tm)). This idea was presented by Ringel in case s = 2
for the category C(2,Z/p6Z) in the Budapest Conference in Algebra in
June 2001 (see [15]). In view of Proposition 2.8, this applies to the
category fspr (I,Z/p6Z) with I = (1→ 2 → ∗).
We hope that an analogous procedure and a classification of indecom-

posables in categories fspr (I,Z/pmZ) might help us to find a proper
definition of tame representation type in this case.

It seems to us that field extension arguments and a geometrical and
a model theory technique developed for tame algebras by Kasjan in [9]
and [10] might help to build up a “bridge” between fspr (I,K[t]/(tm))
and fspr (I,Zp[t]/(tm)). To get a connection between the categories
fspr (I,Z/pmZ) and fspr (I,Zp[t]/(tm)) we note that the Zp-algebra
Zp[t]/(tm) is the associated graded ring gr (Z/pmZ) of Z/pmZ. This
obvious observation might also help to show that the Auslander-Reiten
quivers of the categories fspr (I,Z/pmZ) and fspr (I,Zp[t]/(tm)) are
isomorphic (see [19, Problem 5.21(c)]).

Acknowledgments. The results were presented at the Second Hon-
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1, 2001. The author would like to thank Baylor University and the
University of Hawaii for financial support. The author thanks the ref-
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sity, 87-100 Toruń, ul. Chopina 12/18, Poland
Email address: simson@mat.uni.torun.pl


