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PRE-ABELIAN CLAN CATEGORIES

FRED RICHMAN

ABSTRACT. Categories of representations of clans without
special loops, and with a linear ordering at each vertex, are
studied with an eye toward identifying those that have kernels
and cokernels. A complete characterization is given for simple
graphs whose vertices have degree at most two.

1. Representations of clans. I’m not going to give the definition
of an arbitrary clan [1], but only a very restricted version which will
cover the cases I want to look at here. A (linear ordinary) clan consists
of

• A finite graph, possibly with multiple edges and loops,

• At each vertex v an enumeration e(v, 1), . . . , e(v, d) of the edges
incident to v in which each incident loop appears twice and the other
edges appear once. The integer d is the degree of the vertex.

We say that an edge e joins (v, i) with (w, j) if e = e(v, i) = e(w, j)
and (v, i) �= (w, j).

In contrast to the general notion of a clan, no field is mentioned
because we don’t allow “special loops.” Representations of clans
decompose canonically into representations of their components, so we
may assume that the graph is connected. As in [1], we will assume that
there are no vertices of degree 0 which, for a connected graph, simply
says that it has an edge.

If k is a field, then a k-representation M of a clan associates a finite-
dimensional vector space M(v) over k to each vertex v of the clan,
together with a filtration

0 = M(v)0 ⊂M(v)1 ⊂ · · · ⊂M(v)d(v) = M(v)

of M(v) where d(v) is the degree of v. Moreover, if the edge e joins
(v, i) with (w, j), thenM associates with e an isomorphism Me between
M(vi)/M(v)i−1 and M(w)j/M(w)j−1.

2000 AMS Mathematics Subject Classification. Primary 16G20.
Received by the editors on July 20, 2001, and in revised form on September 20,

2001.

Copyright c©2002 Rocky Mountain Mathematics Consortium

1605



1606 F. RICHMAN

A map f between representations consists of a linear transformation
between the vector spaces at each vertex that

• respects the filtrations, that is, f(M(v)i) ⊂M ′(v)i,

• respects the isomorphisms associated with the edges, that is, if the
edge e joins (v, i) with (w, j), then the diagram

M(v)i/M(v)i−1

u

u w

Me M(w)j/M(w)j−1

u

M ′(v)i/M ′(v)i−1 u w

M ′
e

M ′(w)j/M ′(w)j−1

commutes, where the vertical arrows are induced by f .

Let V be a function assigning a vector space Ve to each edge of a clan
C. We can construct a representation MV of C by setting

MV (v)i =
⊕

i′≤i

Ve(v,i′).

Every representation of C is isomorphic to one constructed in this
manner. If Ve = Ue ⊕ We for each edge e, then MV = MU ⊕MW .
So MV is indecomposable if and only if Ve = k, for some edge e, and
V is zero on the other edges. Thus the indecomposable representations
of C are in one-to-one correspondence with the edges of C. This also
follows from the general theory in [1].

What are the maps between indecomposables Ie and Ie′? For any
edge e the dimension of Ie(v)i is the number of i′ ≤ i such that
e = (v, i′). This is at most 1 if e is not a loop, and at most 2 if
e is a loop. If e is not a loop, then dimHom (Ie, Ie) = 1. If e is
a loop, then dimHom (Ie, Ie) = 2. If e �= e′, then for any v and i
either Ie(v)i/Ie(v)i−1 = 0 or Ie′(v)i/Ie′(v)i−1 = 0 so any putative map
f : Ie → Ie′ respecting the filtrations respects the edge isomorphisms
for trivial reasons. Thus if e �= e′, then dimHom(Ie, Ie′) is the number
of triples (v, i, i′) such that e = e(v, i), e′ = e(v, i′) and i′ < i.

The dual clan C∗ is obtained by reversing the order at each vertex of
C: the graph is unchanged and we set e∗(v, i) = e(v, d(v)− i+ 1).

Theorem 1. The category of representations of C∗ is dual to the
category of representations of C.



PRE-ABELIAN CLAN CATEGORIES 1607

Proof. The duality takes a representation M of C to a representation
M∗ of C∗ defined as follows:

• M∗(v) = M(v)∗, the space of linear functions on M(v),

• M∗(v)i = M(v)⊥d(v)−i = {ϕ ∈M(v)∗ : ϕ(M(v)d(v)−i) = 0}
• If e joins (v, i) with (w, j) in C, hence joins (v, d(v) − i + 1) with

(w, d(w) − j + 1) in C∗, then M∗
e is the isomorphism induced by Me

between

M∗(v)d(v)−i+1/M
∗(v)d(v)−i = M(v)⊥i−1/M(v)⊥i

∼= (M(v)i/M(v)i−1)∗

and

M∗(w)d(w)−j+1/M
∗(w)d(w)−j = M(w)⊥j−1/M(w)⊥j

∼= (M(w)j/M(w)j−1)∗.

Clearly

0 = M∗(v)0 ⊂M∗(v)1 ⊂ · · · ⊂M∗(v)d(v) = M∗(v)

because of the index reversal together with taking annihilators. A map
from M to N consists of maps from M(v) to N(v) for each vertex v,
and these correspond to maps from N(v)∗ to M(v)∗.

2. A category where idempotents don’t split. This paper was
provoked by a remark in [1] that it is not surprising that idempotents
split in clan categories because “a representation of a clan is a cross
between a representation of a poset and a representation of a quiver.”
The same reasoning suggests that clan categories are pre-abelian, that
is, all maps have kernels and cokernels, not just idempotents. That’s
not always the case, so the question arises as to what clans have pre-
abelian categories. Before looking at a clan category that is not pre-
abelian, we consider a class of categories where even idempotents need
not have kernels.

Theorem 2. Let C be the category of finite-rank free modules over
a commutative ring R. For a ∈ R, define fa : R → R by fa(x) = ax.
Then fa has a kernel in C if and only if a is regular or a = 0.
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Proof. If a is regular, then the inclusion 0→ R is a kernel of fa, and
if a = 0, then the identity map R → R is a kernel of fa. Conversely,
suppose g : Rn → R is a kernel of fa. As g(aRn) = ag(Rn) =
fag(Rn) = 0, and g is monic, we have aRn = 0. So if n > 0, then
a = 0. If n = 0, then Rn = 0, so fa is monic that is, a is regular.

In particular, if a is a nontrivial idempotent in R, then fa is an
idempotent in C without a kernel.

3. The smallest clan. Consider the clan C with one vertex and
one edge:

I want to change this picture to one that reflects the notation introduced
in Section 1. Each vertex v is expanded into an ascending vertical
column of vertices (v, 1), . . . , (v, d), each edge joining a unique pair of
the expanded vertices. Thus the clan C would be drawn as

Theorem 3. The category of k-representations of the clan C above
is equivalent to the category of finite-rank free modules over the ring
R = k[X]/(X2).

Proof. A representation M of the clan C consists of a finite-
dimensional vector space V , a subspace S of V and an isomorphism
Me between V/S and S/0 = S. The isomorphism Me gives V the
structure of a module over R = k[X]/(X2) with kerX = imM .

Such R-modules are exactly the free R-modules: Indeed, free R-
modules obviously have the property that kerX = imX. Conversely,
suppose A is an R-module with kerX = imX. Let Xai be a vector
space basis for XA and set B =

∑
Rai. We first show that this sum

is direct: if
∑

riai = 0, then
∑

riXai = 0 so ri = siX with si ∈ k
because the Xai are independent over k. So

∑
siXai = 0 whence
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si = 0 and thus ri = 0. Suppose a ∈ A. Then Xb = Xa for some
b ∈ B, so X(b− a) = 0 whence b− a ∈ XA = XB so a ∈ B.

Conversely, if A is a free R-module, then setting V = A and S = XA,
and letting Me be the isomorphism of A/XA and XA induced by X,
gives a representation of the clan C.

A map from a representation M to a representation M ′ is a linear
transformation f : V → V ′ such that f(S) ⊂ S′ and the diagram

V

S

u

u w

Ma S

u

V ′

S′ u w

M ′
a S′

where the vertical maps are induced by f , commutes. For V = A, this
is exactly the condition that Xf = fX, that is, that f is a map of
R-modules.

The element X ∈ R is a nonzero zero-divisor, hence by Theorem 2,
induces a map from R to R that does not have a kernel in the category
of free R-modules.

4. Simple degree-2 clans. We now restrict ourselves to clans
whose graphs are simple (no loops or multiple edges), and particularly
to those whose vertices have degree at most two. Here are the diagrams
of three such clans:

For simple clans, dimHom(A,B) ≤ 1 if A and B are indecomposable
representations. In fact, dimHom (Ie′ , Ie) = 1 exactly when e = e′

or e = e(v, i) and e′ = e(v, j) for some vertex v and i < j. Simple
degree-2 clans have the additional property that if f and g are maps
between irreducible representations, and fg �= 0, then either f or g is
an isomorphism.

In a representation of any one of the three clans above, we can ignore
the spaces on the end vertices because they are forced to be isomorphic
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to certain quotients. In the middle, denote the spaces on the top
vertices by V and W with subspaces S and T at the bottom vertices.
For the first clan we have an isomorphism between V/S and W/T ,
in the second an isomorphism between S and T , and in the third an
isomorphism between V/S and T . Representations of the third clan
may be identified with representations of the quiver ·→ · , hence form
an abelian category.

The second clan is clearly dual to the first. The third is self dual
because if we turn it upside down (duality) and then reverse the vertices
(just change the picture) we are back where we started. We leave it to
the reader to show directly that the category of the second clan is pre-
abelian kernels are easy, cokernels a little harder. This result will be
a consequence of the general theory developed in the following sections.
We will also see that

is pre-abelian, while

is not.

5. A more abstract setting. With the model of simple degree-2
clans in mind, the remainder of the paper is devoted to the study of an
arbitrary additive k-category C such that:

• C has a finite number of indecomposables I1, . . . , In up to isomor-
phism,

• dimHom(Ii, Ij) ≤ 1 for i, j ∈ N = {1, . . . , n}.
• Every object in C is a finite direct sum of indecomposables,

• the product of any two maps between indecomposables of C is zero
unless one of the maps is an isomorphism.

Let I be the full subcategory {I1, . . . , In} of C. We say that i ∈ N
is a predecessor of j ∈ N , or that j is a successor of i, if i �= j and
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Hom (Ii, Ij) �= 0. We write this as i → j. In this way we turn N into
a directed graph (digraph). For the five clans of the preceding section,
if we number the edges (and thus I) from left to right, these digraphs
are 1 ← 2 → 3, 1 → 2 ← 3, 1 ← 2 ← 3, 1 ← 2 ← 3 → 4 and
1← 2← 3← 4.

For i ∈ N , an object in C is said to be i-homogeneous if it is a
direct sum of indecomposables isomorphic to Ii. The full subcategory
Ci of i-homogeneous objects is abelian: in fact Ci is equivalent to the
category of finite-dimensional vector spaces over k. When operating
totally within Ci, we may proceed as if the objects were vector spaces.

Each object A in C can be decomposed as A =
⊕

i∈N Ai where Ai is i-
homogeneous. The summand Ai is not unique unless Aj = 0 whenever
i→ j, but it is unique up to isomorphism. The subset

sptA = {i ∈ N : Ai �= 0}
is independent of the particular decomposition of A.

Theorem 4. Every map in I has a kernel in C if and only if the
digraph N has no paths of length 3. In that case, if j → k, then

⊕
i→j Ii

is the kernel of any nonzero map Ij → Ik.

Proof. Let f : Ij → Ik be a nonzero map and ϕ : C =
⊕

i Ci → Ij . If
Ci has a summand isomorphic to Ii

⊕
Ii or if Ci �= 0 and ϕi = 0, then

the zero map Ii → Ij factors in two ways through ϕ. If ϕj �= 0, then
fϕ �= 0. If i→ j and ϕj = 0, and a nonzero map from Ii to Ij factors
through ϕ, then Ci �= 0. So if ϕ is a kernel of f , then C is isomorphic
to

⊕
i→j Ii.

If C is isomorphic to
⊕

i→j Ii and l→ i→ j, then the zero map from
Il to Ij factors in two ways through ϕ. So if ϕ is a kernel of f , then no
predecessor of j can have a predecessor. Hence, if every map in I has
a kernel in C, then there are no paths of length 3 in N .

Finally, suppose there are no paths of length 3 in N . To show that
ϕ :

⊕
i→j Ii → Ij is a kernel of f , it suffices to show that a map

θ : Il → Ij , such that fθ = 0, factors uniquely through ϕ. Because no
predecessor of j can have a predecessor, if λ : Il →

⊕
i→j Ii is nonzero,

then l→ j and ϕλ �= 0. So if θ = 0, then θ factors uniquely through ϕ.
If θ �= 0 and fθ = 0, then l→ j so θ factors uniquely through ϕ.
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As the path condition on the digraph N is self-dual, it is also
equivalent to the condition that every map in I has a cokernel in C. We
want to show that the path condition implies that every map in C has
a kernel, hence that every map in C has a cokernel, so C is pre-abelian.
This will give us a simple criterion for the category C to be pre-abelian.

6. Covers and kernels. LetM be a subset of N . A map g : K → A
is an M -kernel of the map f : A→ B if

(1) fg = 0,

(2) sptK ⊂M and

(3) if g′ : K ′ → A where fg′ = 0 and sptK ′ ⊂M , then g′ = gh for a
unique h : K ′ → K.

It follows easily that M -kernels are unique up to isomorphism (if they
exist). Note that it suffices to check Condition 3 forK ′ indecomposable.

Define λ(i) for i ∈ N to be the length of a maximal chain of successors
starting at i. Thus λ(i) = 0 if i has no successors, λ(i) =∞ if there is
a path from i to a circuit and λ(i) = supi→j(1 + λ(j)).

We will show that M -kernels exist when M = {i} and when M =
Nm = {i ∈ N : λ(i) ≤ m} for m = 0, 1 and 2. Proving that N2-kernels
exist will complete the proof that C is pre-abelian exactly when there
are no paths of length 3 in N .

For A ∈ C and i ∈ N , we say that ϕ : Ci(A)→ A is an i-cover if

(1) Ci(A) is i-homogeneous, and

(2) any map from an i-homogeneous object J to A factors uniquely
through ϕ.

It suffices to verify Condition 2 for J = Ii. Note that an i-cover of A
is the same as an i-kernel of the map A→ 0.

Theorem 5. For each A ∈ C and i ∈ N , there is an i-cover of A.

Proof. It suffices to take A indecomposable, say A = Ij . If
Hom (Ii, Ij) = 0, then let Ci(Ij) = 0. Otherwise, let Ci(Ij) = Ii

and ϕ : Ci(Ij) → Ij any nonzero map. Then ϕ induces a nonzero
linear transformation Hom(Ii, Ii) → Hom(Ii, Ij), which must be an
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isomorphism because both spaces have dimension 1.

Note that Ci(A) = Ai⊕
⊕

i→j Ci(Aj). If we choose a particular cover
for each object, we get a functor Ci because any map A→ B composes
to give a map Ci(A)→ B which factors uniquely through Ci(B).

Theorem 6. For each i ∈ N , every map in C has an i-kernel.

Proof. If A → B is a map in C, let Ki be the kernel in Ci of the
induced map Ci(A) → Ci(B). The composite map Ki → Ci(A) → A
is easily seen to be an i-kernel of A→ B.

That takes care of M -kernels for M = {i}. Just as easy are N0-
kernels.

Theorem 7. Every map in C has an N0-kernel.

Proof. Any map ϕ : A → B in C restricts to maps ϕk : Ak → Bk

for each k ∈ N0. Let Kk be the kernel in Ck of ϕk. The induced map⊕
k∈N0

Kk → A is an N0-kernel of ϕ.

Note that the N0-kernel, unlike the i-kernel, is always a summand of
A. The next theorem establishes that N1-kernels exist, and paves the
way to showing that N2-kernels exist.

Lemma 1. Let ϕ : A → B be a map in C and j ∈ N1. Let Kj be
the j-kernel of ϕ and Kk the kernel in Ck of the restriction of ϕ to Ak.
Then

(1) Kj ∩
⊕

j→k Cj(Ak) =
⊕

j→k Kj ∩ Cj(Ak),

(2) Cj(Kk) = Kj ∩ Cj(Ak) and

(3) if K ′
j is a complement of Kj∩

⊕
j→k Cj(Kk) in Kj, then K ′

j → A
is a summand (has a left inverse).

Moreover, we can choose Aj so that K ′
j is a summand of it.
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Proof. In Cj we have the diagram

Cj(A)

u

= Aj ⊕
⊕

j→k

Cj(Ak)

Cj(B) = Bj ⊕
⊕

j→k

Cj(Bk)

As k ∈ N0, the vertical map takes Cj(Ak) to Cj(Bk) because ϕ(Ak) ⊂
Bk. The kernel of the vertical map is Kj , so that establishes 1. To
see 2, note that Cj(Kk) is the kernel in Cj of Cj(Ak)→ Cj(Bk) as the
sequence Kk → Ak → Bk is split exact. For 3, as K ′

j∩
⊕

j→k Cj(Kk) =
0, the map K ′

j → Aj induced by Kj → A and projection onto Aj has
zero kernel. Let g be the left inverse of the map K ′

j → Aj , and define
the map θ : A→ K ′

j to be g on Aj and zero on Al for l �= j. Then θ is
a left inverse of K ′

j → A.

The final claim follows from a fact about vector spaces: If K ⊂ Q⊕R,
then there exists f : Q → R so that if (q, r) ∈ K, then (q, f(q)) ∈ K.
The function f gives another decomposition Q ⊕ R = Q′ ⊕ R where
Q′ = {(q, f(q)) : q ∈ Q}, so that K ∩ (Q′⊕R) = K ∩Q′⊕K ∩R.

Theorem 8. Let ϕ : A → B be a map in C, and decompose
A =

⊕
i∈N Ai in accordance with the last line of Lemma 1. Then

the summand KN1 =
⊕

k∈N0
Kk ⊕

⊕
j∈N1\N0

K ′
j of A is an N1-kernel

of ϕ.

Proof. Let j ∈ N1 and θ : Ij → A be such that ϕθ = 0. If j ∈ N0,
then θ maps Ij into the N0-kernel

⊕
k∈N0

Kk ⊂ KN1 . If j ∈ N1 \N0,
then θ lifts to a map into the j-kernel Kj = K ′

j ⊕Kj ∩
⊕

j→k Cj(Kk)
of ϕ, hence maps into KN1 .

Corollary 1. Let ϕ : A → B. Let K ′
k = Kk for k ∈ N0, so KN1 =⊕

j∈N1
K ′

j. For i ∈ N2\N1, define K ′
1 so that Ki = K ′

i⊕
⊕

i→j Ci(K ′
j).

then
KN2 =

⊕

i∈N2

K ′
i = KN1 ⊕

⊕

i∈N2\N1

K ′
i

is an N2-kernel of ϕ.
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Proof. Note that while KN1 is a summand of A, the external direct
sum

⊕
i∈N2\N1

K ′
i maps into A via K ′

i → Ki → Ci(A) → A, and this
latter map need not have any component in Ai. To show that KN2 is
an N2-kernel, let θ : Ii → A with ϕθ = 0. If i ∈ N1, then Ii can’t map
into

⊕
i∈N2\N1

K ′
i, so θ : Ii → A lifts uniquely to a map into KN2 . If

i ∈ N2 \N1, then θ lifts uniquely to map into Ki = K ′
i ⊕

⊕
i→j Ci(K ′

j)
hence toK ′

i⊕
⊕

i→j K
′
j ⊂ KN2 . The composite map into KN2 is unique

because any map of Ii into KN2 goes into K ′
i ⊕

⊕
i→j K

′
j .

If there are no paths of length 3 in N , then N2-kernels are kernels.
Hence Corollary 1, together with Theorem 4, gives us:

Theorem 9. The category C is pre-abelian if and only if there are
no paths of length 3 in N .

7. Abelian categories. We can also answer the question as to
when C is abelian.

Theorem 10. The category C is abelian if and only if N has no
paths of length 3 and every edge of N is in a path of length 2.

Proof. Suppose C is abelian. As C is pre-abelian, N can have no
paths of length 3. Suppose i → j with i having no predecessors and
j no successors. Then the kernel and cokernel of any nonzero map
Ii → Ij would be zero, whence C would not be abelian.

Conversely, suppose C is pre-abelian and every edge of N is in a path
of length 2. We will show that if the kernel and cokernel of ϕ : A→ B
are zero, then ϕ is an isomorphism.

We first show that if i → j → k, then the map λ = πBj
ϕιAj

: Aj →
Bj is an isomorphism. Suppose θ : Ij → Aj and λθ = 0. Let ξ : Ii → Ij

be nonzero. Then ϕιAj
θξ = 0 because any map from Ii through Aj

must go into Bj . As the kernel of ϕ is zero, the map θξ is zero whence
the map θ is also zero. Thus the kernel in Cj of λ is zero. Similarly the
cokernel in Cj of λ is zero, so λ is an isomorphism.

Now ϕ : Aj ⊕ C → Bj ⊕D, where C =
⊕

l 	=j Al and D =
⊕

l 	=j Bl,
and the induced map λ = πBj

ϕιAj
: Aj → Bj is an isomorphism. So
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there exist complementary summands C ′ of Aj and B′
j of D so that

ϕ maps Aj isomorphically onto B′
j and ϕ(C ′) ⊂ D. Indeed, C ′ is C

mapping into A = Aj ⊕ C by ι′C = ιC − ιAλ−1πBj
ϕ ιC and B′

j is Bj

mapping into B by ι′B = ϕ ιAi
λ−1.

Passing to C ′ and D, we may assume that Aj and Bj are zero. In-
ducting, we may assume that each element of sptA ∪ sptB either has
no predecessor or no successor. Thus any map between an indecom-
posable summand of A and an indecomposable summand of B is either
zero or an isomorphism. It follows that ϕ : A→ B is an isomorphism.

8. Prescribed digraphs. If N is any digraph without loops or
multiple edges, then there is a category C, of the type described in
Section 5, with N as its digraph. Indeed we can take the objects of
C to be finite sequences of vertices of N and the maps to be matrices
(aij) over the field whose rows and columns are labeled, via a function
ν, by vertices of N . The restriction on the matrices is that aij = 0
unless ν(i) = ν(j) or ν(j) → ν(i). Multiplication of matrices is given
by

cik =
∑

ν(i)=ν(j)
or

ν(j)=ν(k)

aijbjk.

If N is isomorphic to the digraph of a Section 5 category C, then this
construction produces a category equivalent to C.
Not every digraph without loops or multiple edges is the digraph of

a simple degree-2 clan category. Indeed, the latter are characterized
as those digraphs whose underlying graphs are simple, connected and
have vertices of degree at most two (lines and circles).
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