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ON ∗-BANDS AND THEIR VARIETIES

MARIO PETRICH AND PEDRO V. SILVA

ABSTRACT. A ∗-band is a semigroup with a unary opera-
tion ∗ obeying the axioms (xy)∗ = y∗x∗, x∗∗ = x, x = xx∗x,
x2 = x. On a free involutorial semigroup F on a nonempty set
X, we define a family of operators δtn and prove that each of
them is a ∗-homomorphism of F onto its image with a suitable
multiplication and the ∗-operation of F . We then investigate
the interplay of this operator with several others occurring in
the literature as well as the relationship of the equivalence re-
lations they induce on F or on X+. In particular, we obtain
the structural description of all relatively free ∗-bands. We
conclude with a brief consideration of the problem of convert-
ing ∗-identities to equivalent star-free identities.

1. Introduction and summary. A ∗-band is a semigroup S
together with a unary operation ∗ satisfying the axioms:

(1) (xy)∗ = y∗x∗, x∗∗ = x, x = xx∗x, x2 = x.

By the first two axioms, ∗ is an involution, the third axiom makes it
“regular,” and by the fourth, S is a band (idempotent semigroup). The
class of all ∗-bands thus forms a variety of algebras whose members are
pairs (S, ∗) where S and ∗ satisfy the above axioms.

Adair [1] determined the lattice of all ∗-band varieties and provided
bases for identities for each variety. We characterized in [10] relatively
free ∗-bands, namely free objects in each ∗-band variety. This was
achieved by using the result in [7] that ∗-band varieties admit as bases
for their identities the system devised in [5] for join irreducible band
varieties. To this end, an operator γtn on the free involutorial semigroup
was defined which induces a congruence that solves the word problem
for the relevant free object.
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This provides rudimentary information concerning ∗-band varieties
but much remains to be done. We defined in [8] and [9] operators τpq
and θpq which were used for solving the word problem for relatively
free bands. An analogue of the latter was used in [10] for solving
the word problem for relatively free ∗-bands. Hence there remains an
analogue of the former operator and the accompanying deliberations.
The interesting interplay among all the operators devised in [8], [9] and
[10] also remains to be investigated.

In Section 2 we provide a few concepts and symbols needed through-
out. Section 3 consists of auxiliary results needed later. We consider in
Section 4 an operator on the free involutorial semigroup on a nonempty
set which produces a copy of a free object in most ∗-band varieties. The
free objects constructed in Section 4 and in [10] mentioned above are
faithfully represented in Section 5 by a construction of ∗-bands from a
collection of rectangular bands indexed by a semilattice. These results
are unified in Section 6. Section 7 consists of a study of the mutual
relationship of the operators tn and γtn introduced in [10]. This study
was initiated in Section 5 and is continued here and in Section 8 in the
context of congruences they induce on the free involutorial semigroup.
Section 9 contains considerations which are aimed at conversion of an
identity with stars to an equivalent one which is star-free.

This paper completes the cycle of articles [8], [9], [10] concerning
relatively free (∗)-bands.

2. Notation and terminology. For these, we follow the standard
texts in semigroups and [5] with the following supplements.

If Y is a set, |Y | stands for the cardinality of Y . We fix a nonempty
set X and consider a bijection x→ x∗ of X onto a disjoint copy X∗ of
X. Let I = X ∪X∗ and F be the free semigroup on I which consists
of all nonempty words over the alphabet I. We may view F as an
involutory semigroup by defining

(x∗)∗ = x, (y1 . . . yn)∗ = y∗n . . . y
∗
1

for all x ∈ X, n ≥ 2 and y1, . . . , yn ∈ I. We denote by F 1 the free
monoid on I obtained by adjoining the empty word 1 to F .

We refer to a homomorphism of ∗-bands as a ∗-homomorphism and
the induced congruence as a ∗-congruence. In this terminology, the



ON ∗-BANDS AND THEIR VARIETIES 219

terms homomorphism and congruence refer to multiplication alone. We
denote by

End (F ) the set of all ∗-endomorphisms of F ,

ϕ̂ the equivalence relation induced by a function ϕ,

ρc the ∗-congruence generated by a relation ρ.

For a ∗-band identity u = v, we denote by [u = v] the ∗-band variety
determined by u = v. We omit the covering identities (1).

Now let w ∈ F ; following [10], we define:

c(w) the set of all letters x ∈ X such that either x or x∗ occurs in
w, c(1) = ∅ (in [3] the notation cX(w) is used),

�(w) = |c(w)|,
u a prefix of w if w = uv for some v ∈ F 1,

w̄ the word obtained from w by reversing the order of letters, that
is, if w = x1x2 . . . xn, then w̄ = xn . . . x2x1, 1̄ = 1,

s(w) and σ(w) there is a unique factorization w = uyv with
u, v ∈ F 1, y ∈ I and c(u) ⊂ c(uy) = c(w); we write s(w) = u and
σ(w) = y (in [3] the notation sX(w) and σX(w) is used),

e(w) the left-right dual of s(w),

ε(w) the left-right dual of σ(w).

For any operator t on F , we set t(1) = 1 thereby extending it to F 1,
and define operators t̄ and t∗ on F by

t̄(w) = t(w̄), t∗(w) = (t(w∗))∗.

For any w ∈ F , we have ¯̄w = w∗∗ = w and thus ¯̄t = t∗∗ = t.

Let w ∈ F . If w = yz with y ∈ I and z ∈ F 1, we write h2(w) = y.
The operator i2 is defined on F inductively on �(w) by the formula

i2(w) = i2s(w)σ(w).

Hence i2(w) is the word obtained from w by retaining only the first
occurrence of each letter regarding x and x∗ as the same letter.

The next set of operators is also defined on F inductively: for
t ∈ {h, i} and n > 2, let

(2) tn(w) = tns(w)σ(w)tn−1(w).
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It is important to note that this formula harbors two inductions: one is
on n and the other is on �(w). For �s(w) = �(w)− 1 unless w = 1. The
proofs will generally be by (primary) induction on n and occasionally,
for the first and/or the inductive step, also by (secondary) induction
on �(w).

In several proofs by induction, the following notation will come in
handy:

(3) i1(w) = 1, w ∈ F ; χn = hn+1, n ≥ 1.

This device will make it possible to start the induction process at n = 1.
The case χ1 = h2 is generally easy to check while the instance i1 usually
holds trivially. Observe that the inductive formula (2) remains valid
for operators χn and in for n > 1.

For t ∈ {χ, i} and n ≥ 3, in [10, Section 4] we defined an operator
γtn on F by

γtn(w) = tn−1s(w)σ(w)ε(w)tn−1e(w).

Under the same circumstances, we now define an operator δtn by

δtn(w) = tn−1(w)tn−1(w).

These operators are akin, respectively, to θpq and τpq defined in [9,
Section 3] and [8, Section 5], but note the technical difference that
both γtn and δtn are defined by means of tn−1 and not of tn. Also let

Γ = {γtn | t ∈ {χ, i}, n ≥ 3}, ∆ = {δtn | t ∈ {χ, i}, n ≥ 3}.

The following system of words was introduced in [5]:

G2 = x2x1, H2 = x2, I2 = x2x1x2

and, for n > 2, defined inductively

Gn = xnGn−1, Tn = GnxnTn−1, T ∈ {H, I}.

We assume that t = h if and only if T = H and t = i if and only if
T = I.
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x x

G4 I4

G4 H4

G3 H3

G3 I3

G2 I2 x xyx

x y

Diagram 1.

The lattice of all ∗-band varieties, depicted in Diagram 1, was deter-
mined in [1]. That the bases for these varieties are as shown in the
diagram was proved in [7].

The bottom five varieties are usually named as follows.

• [G3 = I3] regular ∗-bands,

• [G3 = H3] normal ∗-bands,

• [G2 = I2] ∗-semilattices,
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• [x = xyx] rectangular ∗-bands,

• [x = y] trivial ∗-bands.

3. Preliminaries. We start with the following simple statement.

Lemma 3.1. Let f and g be operators on F . Then f̄ ḡ = fg and
f∗g∗ = (fg)∗.

Proof. For any w ∈ F , we have

fg(w) = fg(w̄) = f(ḡ(w)) = f̄ ḡ(w).

The same argument is valid for the star.

We now state several auxiliary results taken from paper [10] except
the last one which is taken from [3]. With the exception of Lemma
3.12 and Theorem 3.14, in the remainder of this section we assume
that t ∈ {χ, i}.

Lemma 3.2. We have s̄ = s∗ = e and σ̄ = σ∗ = ε.

Lemma 3.3. For n ≥ 2 and w ∈ F , we have

tn(w) = tn−1(w)ε(w)tne(w).

Lemma 3.4. For n ≥ 2, we have ctn = c, stn = tns, σtn = σ.

Lemma 3.5. For n ≥ 2 and w = uyv where u, v ∈ F 1, y ∈ I and
c(y) ∩ c(u) = ∅, we have tn(w) ∈ tn(u)yF 1.

Lemma 3.6. For n ≥ 1, we have tn = t∗n.

We thus could either use tn or t∗n throughout; our choice is t̄ for
typographical reasons.
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Lemma 3.7. For m ≥ n ≥ 1 and u, v, w ∈ F 1, we have

tn(u tm(v)w) = tn(u tm+1(v)w) = tn(uvw).

Lemma 3.8. If ϕ ∈ End (F ), then ϕ̄ ∈ End (F ).

Lemma 3.9. Let n ≥ 1, u, v, w, z ∈ F 1 and ϕ ∈ End (F ) be such
that tn(u) = tn(v). Then tn(wϕ(u)z) = tn(wϕ(v)z).

Lemma 3.10. For γ ∈ Γ, we have γ = γ̄ = γ∗ = γ2.

Lemma 3.11. For 1 ≤ n < m ≥ 3 and u, v, w ∈ F 1, we have

tn(u γtm(v)w) = tn(uvw).

Lemma 3.12. For t ∈ {h, i} and n ≥ 2, we have

tn(Gn) = tn(Tn), tn(Gn+1) = tn(Tn+1).

Lemma 3.13. For n ≥ 3, we have

γχn(Gn) �= γχn(In), γin(Gn) �= γin(Hn).

Theorem 3.14. Let X be a nonempty set and let γ ∈ Γ, say γ = γtn ,
t ∈ {h, i}. Let V = [Gn = Tn]. On the set γ(F ) define a multiplication
by u ' v = γ(uv) and consider the unary operation on F restricted to
γ(F ). Then γ is a ∗-homomorphism of F onto γ(F ) which induces the
least V-congruence on F . Therefore γ(F ) is a V-free ∗-band on X.

Define an operator b on F inductively on �(w) by

(4) b(w) = bs(w)σ(w)[bs(w∗)σ(w∗)]∗
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(this is taken from [3, Section 4], where b, s and σ are denoted by b∗,
sX and σX , respectively). Let B be the variety of ∗-bands. On the set
b(F ) define a multiplication by u ' v = b(uv) and consider the unary
operation on F restricted to b(F ).

Theorem 3.15. Let X be a nonempty set. Then b is a ∗-
homomorphism of F onto b(F ) which induces the least B-congruence
on F . Therefore b(F ) is a free ∗-band on X.

4. Operators δtn . We shall prove that δtn , defined in Section 2, is a
∗-homomorphism of F onto its range on which a suitable multiplication
is defined. This is preceded by a sequence of lemmas which may be
compared to some concerning γ ∈ Γ. The first lemma is an analogue
of a part of Lemma 3.10.

Lemma 4.1. For δ ∈ ∆, we have δ = δ̄ = δ∗.

Proof. Let δ = δtn and w ∈ F . Then
δ̄(w) = δ(w̄) = tn−1(w̄) tn−1(w̄) = tn−1(w̄) tn−1(w̄)

= tn−1(w) tn−1(w) = δ(w)

so that δ̄ = δ; the argument for the star is the same.

The first part of the second lemma is an analogue of Lemma 3.11.

Lemma 4.2. For t ∈ {χ, i}, 1 ≤ n < m ≥ 3 and u, v, w ∈ F 1, we
have

tn(u δtm(v)w) = tn(uvw), tn(u δtm(v)w) = tn(uvw).

Proof. First we note that

tn(u δtm(v)w) = tn(uvw) ⇐⇒ tn(u δtm(v)w) = tn(uvw)

⇐⇒ tn (u δtm(v)w) = tn (uvw)
⇐⇒ tn (w̄ δtm(v̄)ū) = tn (w̄v̄ū)
⇐⇒ tn (w̄ δtm(v̄)ū) = tn (w̄v̄ū)
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by Lemma 4.1 and thus

(5) tn(u δtm(v)w) = tn(uvw) ⇐⇒ tn(w̄ δtm(v̄)ū) = tn(w̄v̄ū).

The case n = 1 is trivial for t = i and follows easily from Lemma 3.7
for t = χ, hence we may assume that n > 1. By (5), we only need to
show that tn(u δtm(v)w) = tn(uvw). Consider first the case m > n+1.
We wish to prove that tn(u tm−1(v)tm−1(v)w) = tn(uvw). Double
application of Lemma 3.7 yields the desired equality.

Hence it remains to show that

(6) tn(u δtn+1(v)w) = tn(uvw).

By (5) and Lemma 3.7, we have

(7) tn−1 (u δtn+1(v)w) = tn−1 (uvw).

Next we use induction on d = |c(w) \ c(uv)|.
Let d = 0, that is, c(w) ⊆ c(uv). In view of (7), we only have to show

that p(uδtn+1(v)w) = p(uvw) for p ∈ {tns, σ}. Note that t2n = tn by
Lemma 3.7 and so ptn = p by Lemma 3.4. Thus,

p(u δtn+1(v)w) = p(u tn(v)tn(v)w) = p(u tn(v)) since d = 0
= ptn(u tn(v)) = ptn(uv) by Lemma 3.7
= p(uv) = p(uvw) since d = 0.

Now let d > 0 and assume that (6) holds for all values smaller than
d. We can write w = zxr with s(uvw) = uvz and σ(uvw) = x. We
have

tns(u δtn+1(v)w) = tn(u δtn+1(v)z) since cδtn+1(v) = c(v)
= tn(uvz) by induction on d
= tns(uvw),

and cδtn+1(v) = c(v) yields also

σ(u δtn+1(v)w) = x = σ(uvw).
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By (7) it follows that tn(u δtn+1(v)w) = tn(uvw).

The third lemma is an analogue of [10, Lemma 4.3].

Lemma 4.3. For t ∈ {χ, i}, 3 ≤ n ≤ m and u, v, w ∈ F 1, we have

δtn(u δtm(v)w) = δtn(uvw).

Proof. This follows immediately from Lemma 4.2.

The fourth lemma together with the first lemma completes the
analogue of Lemma 3.10.

Lemma 4.4. For δ ∈ ∆, we have δ2 = δ.

Proof. This follows from Lemma 4.3 by taking u = w = 1.

The fifth lemma is an analogue of [10, Lemma 4.4].

Lemma 4.5. For δ ∈ ∆ and u, v ∈ F 1, we have δ(δ(u)δ(v)) = δ(uv).

Proof. Apply Lemma 4.3 twice.

We are now able to prove the main result of this section.

Theorem 4.6. Let X be a nonempty set, and let δ ∈ ∆. On the set
δ(F ) define a multiplication by u ' v = δ(uv) and consider the unary
operation on F restricted to δ(F ). Then δ is a ∗-homomorphism of F
onto δ(F ).

Proof. In view of Lemma 4.1, the unary operation on F maps δ(F )
into itself. Hence we may keep the unary operation of F restricted
to δ(F ). It now follows from Lemmas 4.5 and 4.1 that δ is a ∗-
homomorphism of F onto δ(F ) with modified multiplication.
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The above theorem is an analogue of a part of Theorem 3.14. That the
remaining part of that theorem has a faithful analogue in the context
of the ∗-homomorphism δ will be a consequence of Theorem 5.4 (iii).

5. Structure. The purpose of this section is to provide a repre-
sentation of γtn(F ) in terms of the structure of general ∗-bands. The
latter can be found in [3] but we shall improve upon it by using the no-
tation in [4] for general bands. This will make it possible to construct
a ∗-homomorphism π mapping F onto such a ∗-band. In addition, we
explore the relationship of π with the ∗-homomorphisms γtn , δtn and b
studied earlier.

We start with the structure of general ∗-bands.

Lemma 5.1. Let Y be a semilattice. For every α ∈ Y , let Xα
be a nonempty set, fix an element of Xα and denote it by α, and let
Bα = Xα ×Xα. Let

〈, 〉 : Bα ×Xβ −→ Xβ

be a function defined whenever α ≥ β. Assume that Xα ∩ Xβ = ∅ if
α �= β. On B = ∪α∈YBα define a unary operation by (x, y)∗ = (y, x)
and a multiplication by: for a ∈ Bα, b ∈ Bβ, let

(8) a ◦ b = (〈a, 〈b, αβ〉〉, 〈b∗〈a∗, αβ〉〉).

Assume

(a) if x, y, z ∈ Xα, then 〈(x, y), z〉 = x,
(b) if γ < αβ, a ∈ Bα, b ∈ Bβ, x ∈ Xγ, then 〈a, 〈b, x〉〉 = 〈a ◦ b, x〉.

Then B is a ∗-band. Conversely, every ∗-band is ∗-isomoprhic to one
so constructed.

Proof. This is a reformulation of [3, Theorem 5.5] in the notation of
[4, Theorem 6.1].

Denote the ∗-band constructed in Lemma 5.1 by B(Y ;Bα, 〈, 〉). Recall
that a projection in a ∗-band S is an element fixed by the involution.
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Note that all projections in S are of the form aa∗ for any a ∈ S. Denote
by P (S) the set of all projections in S.

The proof of the converse of Lemma 5.1 is made explicit in the
following useful result. By S = (Y ;Sα) we mean that S is a semigroup
which is a semilattice Y of semigroups Sα.

Lemma 5.2. Let S = (Y ;Sα) be a ∗-band. For each α ∈ Y , let
Xα = Sα ∩ P (S) and Bα = Xα × Xα. For any α, β ∈ Y such that
α ≥ β, define: for (p, q) ∈ Bα, r ∈ Xβ, let

(9) 〈(p, q), r〉 = pqrqp.

The conditions in Lemma 5.1 are satisfied so B = B(Y ;Bα, 〈, 〉) is a
∗-band. The mapping

ξ : a −→ (aa∗, a∗a), a ∈ S,

is a ∗-isomorphism of S onto B.

Proof. This is [3, Lemma 5.3] in different notation.

We now turn to our concrete situation.

Example 5.3. Let X be a nonempty set and γ ∈ Γ, say γ = γtn .
On

Sγ = {(γ(uu∗), γ(v∗v)) | u, v ∈ F, c(u) = c(v)}
define a multiplication by

(u, v)(w, z) = (γ(uvwz wvu), γ(zwvu vwz))

and a unary operation by (u, v)∗ = (v, u). Finally define a mapping πγ
on F by

πγ : w −→ (γ(ww∗), γ(w∗w)).

In the above notation, c(u) = c(v) and c(w) = c(z) imply that
c(uvwz wvu) = c(zwvu vwz) and u, v, w, z being projections, it follows
at once that both uvwz wvu and zwvu vwz are also. Hence Sγ is closed
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under the above multiplication making it a groupoid. Clearly Sγ is
closed under the unary operation ∗.

We prove next that πγ is a ∗-homomorphism of F onto Sγ and explore
the mutual relationship of the function πγ and the operators γ, δ and
b. Here γ = γtn , d = δtn , πγ = πγtn

and Sγ = Sγtn
. In the next

theorem, for the sake of simplicity of notation, we omit the subscript
for all functions and for S.

Theorem 5.4. Let X be a nonempty set, t ∈ {χ, i} and n ≥ 3.

(i) The mapping π is a ∗-homomorphism of F onto S.

(ii)
πγ = πδ = πb = π, bγ = bδ �= b2 = b,
γ2 = γδ = γb = γ, δγ = δ2 = δb = δ.

(iii) Define a relation ρ on F by

u ρ v ⇐⇒ tn−1(u) = tn−1(v), tn−1(ū) = tn−1(v̄).

Then π, γ and δ induce ρ on F .

(iv) For ψ ∈ {π, γ, δ}, the mapping

ψ |ζ(F ): ζ(F ) −→ ψ(F ),

with respective multiplications, is a ∗-isomorphism for ζ ∈ {γ, δ} and a
noninjective ∗-epimorphism for ζ = b.

Proof. (i) We show that the construction of S conforms with that of
B in Lemma 5.1 and that the mapping π is the composition of γ and
the mapping corresponding to ξ in Lemma 5.2.

The ∗-band γ(F ) corresponds to the semigroup S in Lemma 5.2.
Since γ is a ∗-homomorphism, it follows easily that

P (γ(F )) = {γ(ww∗) | w ∈ F}

is the set of all projections in γ(F ). For every A ∈ Y , let

XA = {w ∈ P (γ(F )) | c(w) = A}
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and SA = XA ×XA. For A,B ∈ Y such that A ⊆ B and u, v, w ∈ F
with c(u) = c(v) = A, c(w) = B, in view of (9), we set

〈(u, v), w〉 = γ(uvw vu).

We now impose a total order on X and for every A ∈ Y , let
Ã = x1x2 . . . xn if A = {x1, x2, . . . , xn} and x1 < x2 < · · · < xn. Let
S = ∪A∈Y SA with unary operation (u, v)∗ = (v, u) and multiplication
as in (8). The latter simplifies as follows. Let a = (u, v) ∈ SA and
b = (w, z) ∈ SB . Note that

{w ∈ γ(F ) | c(w) = A ∪B}

is a rectangular band and so the identity xyz = xz holds in it. Letting
C = Ã ∪B, we have

a ◦ b = (〈a, 〈b, C〉〉, 〈b∗, 〈a∗, C〉〉)
= (〈a, γ(wzCzw)〉, 〈b∗, γ(vuCuv)〉)
= (γ(uvwzCzwvu), γ(zwvuCuvwz))
= (γ(uvwz wvu), γ(zwvu vwz)) by the above remark

as in Construction 5.3.

Finally, for any w ∈ F ,

ξγ(w) = (γ(w)(γ(w))∗, (γ(w))∗γ(w))
= (γ(ww∗), γ(w∗w)) by Theorem 3.14
= π(w).

By Lemma 5.2, ξ is a ∗-isomorphism of γ(F ) onto S and hence π is a
∗-homomorphism of F onto S.

(ii) The equality γ2 = γ is part of Lemma 3.10. By Theorem 3.14,
γ induces the least V-congruence ηV on F for some ∗-band variety
V strictly contained in B. By Theorem 3.15, b induces the least B-
congruence ηB on F . In particular, b2 = b. Since V ⊂ B, we have
ηB ⊂ ηV and so γb = γ. Since bγ = b would imply ηV ⊆ ηB, we
conclude that bγ �= b.
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Let t = tn−1 and w ∈ F . Then

γδ(w) = tsδ(w)σδ(w) εδ(w) t̄eδ(w) = tst(w)σt(w) εt̄(w) t̄et̄(w)
= t2s(w)σ(w) ε(w) t̄2e(w) by Lemma 3.4
= ts(w)σ(w) ε(w) t̄e(w) by Lemma 3.7
= γ(w)

and thus γδ = γ.

Since π = ξγ by the proof of part (i), we obtain the equalities
πγ = πδ = πb = π.

We have δ2 = δ by Lemma 4.4. Also

δγ(w) = tγ(w)t̄γ(w) = tγ(w)t̄γ̄(w) by Lemma 3.10
= tγ(w)tγ(w) by Lemma 3.1
= t(w)t̄(w) by Lemma 4.2
= δ(w)

so that δγ = δ. It follows that also δb = δγb = δγ = δ.

Finally, we have

bγ(w) = bsγ(w)σγ(w) εγ(w) beγ(w) = bts(w)σ(w) ε(w) bt̄e(w)
= bst(w)σt(w) εt̄(w) bet̄(w) by Lemma 3.4
= bsδ(w)σδ(w) εδ(w) beδ(w) = bδ(w)

whence bγ = bδ.

(iii) It follows from part (ii) that γ̂ = δ̂ ⊆ π̂. Let π(u) = π(v). Then
γ(uu∗) = γ(vv∗) and γ(u∗u) = γ(v∗v). Since γ̂ is a ∗-band congruence,
it follows that

γ(u) = γ(uu∗u∗u) = γ(vv∗v∗v) = γ(v)

and so γ̂ = π̂.

The inclusion ρ ⊆ δ̂ is trivial. Conversely, let δ(u) = δ(v). By
Lemma 4.2, we have tn−1δ = tn−1 and tn−1δ = tn−1. Thus

tn−1(u) = tn−1(v), tn−1(u) = tn−1(v).
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The latter equality is clearly equivalent to tn−1(ū) = tn−1(v̄) and so
we obtain u ρ v.

(iv) For ν ∈ {π, γ, δ, b}, we denote the product in ν(F ) by u 'ν v. In
the case ν �= π, this means that u 'ν v = ν(uv); for ν = π, this signifies
that the product in S is denoted by 'π.

Now let ψ ∈ {π, γ, δ}, ζ ∈ {γ, δ, b} and u, v ∈ ζ(F ). The homomor-
phism property has the form

ψ(u 'ζ v) = ψ(u) 'ψ ψ(v),

equivalently, except for ψ = π,

ψζ(uv) = ψ(ψ(u)ψ(v)).

In view of Theorem 3.14 and Lemma 4.5, this is equivalent to

(10) ψζ(uv) = ψ(uv)

which, by part (i), is also valid for ψ = π. We now invoke part
(ii) to conclude that (10) indeed takes place. Therefore, ψ|ζ(F ) is a
homomorphism of ζ(F ) into ψ(F ). It follows easily from the definitions
and part (i) that ψ|ζ(F ) preserves the ∗ operation.

Given w ∈ ψ(F ), then ζ(w) ∈ ζ(F ) and, by part (ii), we obtain
ψζ(w) = ψ(w) = w. Thus ψ|ζ(F ) is surjective.

Let ζ �= b and assume that ψ(u) = ψ(v) for some u, v ∈ ζ(F ). By
part (iii), we get ζ(u) = ζ(v) and thus u = v since u, v ∈ ζ(F ). Hence
ψ|ζ(F ) is injective.

Finally, let ζ = b. By part (iii), we may assume that ψ = γ. By
Theorem 3.14, γ induces the least V-congruence ηV on F for some ∗-
band variety V strictly contained in B. Let u, v ∈ F be such that V
satisfies the identity u = v but B does not. It follows that γ(u) = γ(v)
and b(u) �= b(v). Since γb = γ by part (ii), it follows that γb(u) = γb(v)
and so γ|b(F ) : b(F ) → γ(F ) is not injective.

6. Free objects. From Diagram 1 we see that we have not discussed
the four varieties of normal ∗-bands, at the bottom of the diagram, and
the variety B of all ∗-bands, at the top of the diagram.
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There is nothing to say about the variety of trivial ∗-bands. For
the rest, we fix a nonempty set X, set up the needed notation for each
variety separately and then state the results in a single theorem. Recall
that I = X ∪X∗.

Let RB = [x = xyx] and XRB be the set I × I with multiplication
(x, y)(w, z) = (x, z) and unary operation (x, y)∗ = (y, x). Define a
mapping πRB on F by

πRB : w −→ (h2(w), h2(w∗)).

Let S = [G2 = I2] and XS be the set of all finite nonempty subsets of
X with set theoretical union as multiplication and the identity mapping
as a unary operation. Define a mapping πS on F by

πS : w −→ c(w).

Let NB = [G3 = H3] and

XNB = {(x,A, y) ∈ I ×XS × I | c(x), c(y) ⊆ A}

with multiplication

(x,A, y)(w,B, z) = (x,A ∪B, z)

and unary operation (x,A, y)∗ = (y,A, x). Define a mapping πNB on
F by

πNB : w −→ (h2(w), c(w), h2(w∗)).

For t = h, n ≥ 4 and t = i, n ≥ 3, let π[Gn=Tn] = πtn and
X[Gn=Tn] = Stn .

For the variety B of ∗-bands, we formally follow the development in
Construction 5.3 where we write b for γ throughout. Here we let XB
denote the ∗-band S and πB the relevant mapping.

We are now ready for the desired result.

Theorem 6.1. Let X be a nonempty set and V be a nontrivial ∗-band
variety. Then πV is a ∗-homomorphism of F onto XV which induces
the least V-congruence on F . Therefore, XV is a V-free ∗-band on X.
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Proof. We consider several cases.

V = RB. Straightforward verification shows that πRB is a ∗-
homomorphism of F onto XRB and that XRB is a rectangular ∗-band.
Let ρ be a rectangular ∗-band congruence on F and u, v ∈ F such that
h2(u) = h2(v) and h2(u∗) = h2(v∗). It follows that

u ρ h2(u)uh2(u∗) ρ h2(u)h2(u∗) = h2(v)h2(v∗) ρ h2(v) v h2(v∗) ρ v

proving the required minimality.

V = S. Straightforward verification shows that πS is a ∗-homo-
morphism of F onto XS and that XS is a ∗-semilattice. Let ρ be a
∗-semilattice congruence on F and u, v ∈ F such that c(u) = c(v) =
{x1, x2, . . . , xn}. Since F/ρ satisfies the identities xy = yx and x∗ = x,
we obtain u ρ x1x2 . . . xn ρ v, which proves the desired minimality.

V = NB. Straightforward verification shows that πNB is a ∗-
homomorphism of F onto XNB and that XNB is a normal ∗-band.
Let ρ be a normal ∗-band congruence on F and u, v ∈ F be such that
h2(u) = h2(v), c(u) = c(v) = {x1, x2, . . . , xn} and h2(u∗) = h2(v∗). It
is well known that then F/ρ satisfies the identity axyb = ayxb. By [1,
Lemma 4.5], it satisfies the identity axb = ax∗b. Using these identities,
we obtain

u ρ h2(u)x1x2 . . . xn h2(u∗) ρ h2(v)x1x2 . . . xn h2(v∗) ρ v

which proves the desired minimality.

For the remaining varieties, except B, we refer to Theorems 3.14 and
5.4 (i). These deliberations carry over to the case of the variety B with
minor modifications.

Several observations regarding Theorem 6.1 are in order. Except
in the case of RB, the relatively free ∗-bands are semilattices XS of
rectangular bands. The latter are necessarily square and thus may be
termed “square bands” as in [11].

In the case of NB, we know that the semilattice must be strong,
but from above we may deduce more than that. In fact, XNB is
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a semilattice XS of square bands ARB. Moreover, if A ⊆ B, then
the corresponding homomorphism of ARB into BRB is the natural
embedding of free objects. It then follows easily thatXNB is a subdirect
product of XS and XRB.

In view of Lemma 5.2 and Theorem 5.4 (i), we have

Sγ = {(γ(uu∗), γ(u∗u)) | u ∈ F}.

For the variety B, the development in [3, Section 5], (where different
notation is used) runs along the same lines as for general bands. One
defines a mapping λ on F by λ(w) = bs(w)σ(w). This is used to define
a mapping µ on F by

µ : w −→ (λ(w), λ(w∗)).

It is asserted in [3, Theorem 5.7] that the mapping µ is a ∗-homo-
morphism of F onto its image, where the multiplication is defined by

(u, v)(w, z) = (λ(uvw), λ(zwv)).

Hence, for any u, v ∈ F , we must have µ(uv) = µ(u)µ(v), and thus

λ(uv) = λ(λ(u)λ(u∗)λ(v))

in the first component.

Let x, y ∈ X be distinct. Then

λ(xy) = bs(xy)σ(xy) = b(x) y = x2y,

λ(λ(x)λ(x∗)λ(y)) = λ(xx∗y) = bs(xx∗y)σ(xx∗y) = b(xx∗) y = xx∗y.

Since these two elements are different, [3, Theorem 5.7] is false.

The above constructions give concrete copies of relatively free ∗-bands
up to the variety [G3 = H3] of normal ∗-bands. In the next result, we
carry this one step further by constructing free objects in the variety
[G3 = I3] of regular ∗-bands.

Proposition 6.2. Let X be a nonempty set. Then

S = {(u, v) ∈ i2(F )× i2(F ) | c(u) = c(v)}



236 M. PETRICH AND P.V. SILVA

with multiplication

(u, v)(w, z) = (i2(uw), i2(zv))

and unary operation (u, v)∗ = (v, u), is a free regular ∗-band on X.

Proof. Let γ = γi3 . Then, for any w ∈ F , we have
γ(ww∗) = i2s(ww∗)σ(ww∗) ε(ww∗) i2e(ww∗)

= i2s(w)σ(w) ε(w∗) i2e(w∗)
= i2(w) i2(w∗) = i2(w) i∗2(w

∗) by Lemma 3.6
= i2(w)(i2(w))∗.

Using this, [10, Theorem 6.1] and Theorem 5.4 give the free object in
[G3 = I3] in the form

Sγ = {(γ(uu∗), γ(vv∗)) | u, v ∈ F, c(u) = c(v)}
= {(i2(u)(i2(u))∗, i2(v)(i2(v))∗) | u, v ∈ F, c(u) = c(v)}
= {(pp∗, qq∗) | p, q ∈ i2(F ), c(p) = c(q)}

with multiplication

(pp∗, qq∗)(rr∗, ss∗)
= (γ(pp∗qq∗rr∗ss∗rr∗qq∗pp∗), γ(ss∗rr∗qq∗pp∗qq∗rr∗ss∗))
= (i2(pr)(i2(pr))∗, i2(sq)(i2(sq))∗)

and unary operation (pp∗, qq∗)∗ = (qq∗, pp∗).

Note that the set S in the statement of the proposition is closed for
the given operations. Define a mapping

η : (p, q) −→ (pp∗, qq∗), (p, q) ∈ S.
Clearly η maps S into Sγ . If p, q ∈ i2(F ) are such that pp∗ = qq∗,
then p = q. It follows that the inverse mapping of η is single valued
whence we conclude that η is a bijection. For any (p, q), (r, s) ∈ S, by
the above we obtain

(p, q)η (r, s)η = (pp∗, qq∗)(rr∗, ss∗)
= (i2(pr)(i2(pr))∗, i2(sq)(i2(sq))∗)
= (i2(pr), i2(sq))η
= ((p, q)(r, s))η,

(p, q)∗η = (q, p)η = (qq∗, pp∗) = (pp∗, qq∗)∗ = ((p, q)η)∗
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and η is also a ∗-homomorphism. The ∗-isomorphism of S and Sγ
implies the assertion of the proposition.

7. Joins and meets of t̂n and t̂n. The operators tn play an
important role in the definition of the fully invariant congruences on
F discussed in the previous section. In this section we explore the
multiple relationships among these congruences and the equivalences
induced by the operators tn.

Our first lemma is of interest for general ∗-semigroups. It represents
an analogue of a well-known result for semigroups.

Lemma 7.1. Let θ be an equivalence relation on a ∗-semigroup S.
Define a relation θ0 on S by

a θ0 b ⇐⇒ xay θ xby, xa∗y θ xb∗y for all x, y ∈ S1.

Then θ0 is the greatest ∗-congruence contained in θ.

Proof. Clearly θ0 is an equivalence relation and θ0 ⊆ θ. Let a θ0 b
and c ∈ S. For any x, y ∈ S1, we have

x(ac)y θ x(bc)y, x(ac)∗y = xc∗a∗y θ xc∗b∗y = x(bc)∗y

and thus ac θ0 bc; dually ca θ0 cb. Interchanging the roles of a and a∗

and also of b and b∗, we see that a∗ θ0 b∗. Hence θ0 is a ∗-congruence.

Let ρ be a ∗-congruence on S contained in θ, and let a ρ b. Then for
any x, y ∈ S1, we have xay ρ xby and also xa∗y ρ xb∗y. This yields
xay θ xby and xa∗y θ xb∗y which implies that a θ0 b. Therefore ρ ⊆ θ0

proving the maximality of the latter.

We turn next to our concrete situation.

Lemma 7.2. For any operator t on F , t̂ is a congruence if and only
if ˆ̄t is a congruence.

Proof. Assume that t̂ is a congruence and t̄(u) = t̄(v). Let x, y ∈ F 1.
Then t(ū) = t(v̄) and so, since t̂ is a congruence, we have t(ȳūx̄) =
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t(ȳv̄x̄). It follows that t(xuy) = t(xvy) and thus t̄(xuy) = t̄(xvy).
Hence ˆ̄t is a congruence. The converse implication follows by symmetry.

Lemma 7.3. For t ∈ {χ, i} and n ≥ 1, t̂n and t̂n are congruences.

Proof. Using Lemma 7.2 without explicit reference, we prove that t̂n
is a congruence by induction on n. The case n = 1 is trivial for t = i
and almost trivial for t = χ. Assume that t̂n−1 is a congruence with
n > 1. We show that

tn(u) = tn(v) =⇒ tn(wu) = tn(wv), tn(uw) = tn(vw)

for all u, v, w ∈ F 1 by secondary induction on �(uw). The case
�(uw) = 0 is trivial. Assume that �(uw) > 0 and that the claim holds
for all values smaller than �(uw). We have to show that

(a) tns(wu) = tns(wv), σ(wu) = σ(wv),

(b) tn−1(wu) = tn−1(wv),

(c) tns(uw) = tns(vw), σ(uw) = σ(vw),

(d) tn−1(uw) = tn−1(vw).

(a) We note first that tn(u) = tn(v) implies that c(u) = c(v) by
Lemma 3.4. If c(u) ⊆ c(w), then tns(wu) = tns(w) = tns(wv) and
σ(wu) = σ(w) = σ(wv), thus we may assume that c(u) �⊆ c(w). We
can write u = u1xu2 with wu1 = s(wu) and x = σ(wu). Similarly, we
can write v = v1yv2 with wv1 = s(wv) and y = σ(wv). By Lemma 3.5,
we have tn(u) ∈ tn(u1)xF 1 and tn(v) ∈ tn(v1)yF 1. Lemma 3.5 implies
that the ordering of the first occurrences of the letters is the same in
tn(u) and u (also in tn(v) and v). Thus

i2(u) = i2tn(u) = i2tn(v) = i2(v)

and so x = y, that is, σ(wu) = σ(wv). Therefore, tn(u) = tn(v) yields
tn(u1) = tn(v1). Since �(u1w) < �(uw), the induction hypothesis on �
yields tn(wu1) = tn(wv1), that is, tns(wu) = tns(wv).

(b) By Lemma 3.7, we have tn−1tn = tn−1 which by Lemma 3.1 gives

(11) tn−1tn = tn−1tn = tn−1.
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Thus tn(u) = tn(v) implies that tn−1(u) = tn−1(v) and the induction
hypothesis on n yields tn−1(wu) = tn−1(wv).

(c) If c(w) ⊆ c(u), then Lemma 3.4 gives

tns(uw) = tns(u) = stn(u) = stn(v) = tns(v) = tns(vw),
σ(uw) = σ(u) = σtn(u) = σtn(v) = σ(v) = σ(vw),

thus we may assume that c(w) �⊆ c(u). We can write w = w1xw2

with uw1 = s(uw) and x = σ(uw). Since c(v) = c(u), we also have
vw1 = s(vw) and x = σ(vw). Thus σ(uw) = σ(vw). Since �(uw1) <
�(uw), the induction hypothesis on � yields tn(uw1) = tn(vw1), that is,
tns(uw) = tns(vw).

(d) Similar to (b).

Lemma 7.4. For t ∈ {χ, i} and n ≥ 3, ρ = t̂n∨ t̂n is a fully invariant
∗-congruence on F .

Proof. Let u p v. Then

u = w0 ρ1 w1 ρ2 w2 . . . ρn wn = v

for some w0, w1, . . . , wn ∈ F and ρi ∈ {t̂n, t̂n}, i = 1, 2, . . . , n. To see
that u∗ρ v∗, it is enough to note that

tn(w) = tn(z) ⇐⇒ tn(w∗) = tn(z∗),

which follows directly from Lemma 3.6. Thus ρ is a ∗-congruence.

Let ϕ ∈ End (F ). To prove that ϕ(u)ρϕ(v), it suffices to show that,
for all w, z ∈ F ,

tn(w) = tn(z) ⇐⇒ tnϕ(w) = tnϕ(z),
tn(w) = tn(z) ⇐⇒ tnϕ(w) = tnϕ(z).

The first equality follows from Lemma 3.9. To prove the second,
assume that tn(w) = tn(z). Then tn(w̄) = tn(z̄). By Lemma 3.8,
we have ϕ̄ ∈ End (F ) and hence Lemma 3.9 gives tnϕ̄(w̄) = tnϕ̄(z̄). By
Lemma 3.1, we obtain

tnϕ(w) = tnϕ̄(w) = tnϕ̄(w̄) = tnϕ̄(z̄) = tnϕ̄(z) = tnϕ(w).
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Therefore ρ is fully invariant.

We are now ready for the theorem of this section. Recall the notation
ρc from Section 2 and θ0 from Lemma 7.1.

Theorem 7.5. For t ∈ {χ, i} and n ≥ 3, we have

γ̂tn = t̂n ∨ t̂n = t̂n−1 ∩ t̂n−1 = (t̂n)c = (t̂n)c = (t̂n−1)0 = (t̂n−1)0.

Proof. Denote the seven relations above by ρ1, ρ2, . . . , ρ7, respec-
tively.

ρ1 = ρ3. Since tn−1(u) = tn−1(v) is equivalent to tn−1(ū) = tn−1(v̄),
the equality ρ1 = ρ3 follows from Theorem 5.4 (iii).

ρ1 = ρ6. Since ρ1 is a ∗-congruence and ρ1 = ρ3 ⊆ t̂n−1, it follows
that ρ1 ⊆ ρ6. Conversely, let u(t̂n−1)0v. By Lemma 7.1, we have
tn−1(u) = tn−1(v) and tn−1(u∗) = tn−1(v∗). Hence,

tn−1(u∗) = tn−1(v∗) ⇐⇒ t∗n−1(u) = t
∗
n−1(v)

⇐⇒ tn−1(u) = tn−1(v) by Lemma 3.6
⇐⇒ tn−1(ū) = tn−1(v̄)

and so, by Theorem 5.4 (iii), γtn(u) = γtn(v). Thus ρ6 ⊆ ρ1.
ρ1 ⊆ ρ2. Suppose that ρ1 �⊆ ρ2. By Theorem 3.14 and Lemma 7.4,

both ρ1 and ρ2 are fully invariant ∗-congruences. Hence the structure
of Diagram 1 allows us to conclude that ρ2 ⊂ ρ1.
Consider first the case t = χ. In view of Diagram 1, we must have

χ̂n ∪ χ̂n ⊆ γ̂in+1 . Since χn(Gn+1) = χn(Hn+1) by Lemma 3.12,
it follows that γin+1(Gn+1) = γin+1(Hn+1) and so γin+i

(Gn+1) =
γin+1(Hn+1) by Lemma 3.10. Thus γin+1(Gn+1) = γin+1(Hn+1), which
contradicts Lemma 3.13.

Now consider the case t = i. In view of Diagram 1, we must have
în ∪ în ⊆ γ̂χn

. Since in(Gn) = in(In) by Lemma 3.12, it follows that
γχn

(Gn) = γχn
(In) and so γχn

(Gn) = γχn
(In) by Lemma 3.10. Thus,

γχn(Gn) = γχn(In), which contradicts Lemma 3.13.
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We reached a contradiction in both cases. Therefore, ρ1 ⊆ ρ2.
ρ2 ⊆ ρ1. Since ρ1 = ρ3 is a ∗-congruence, we only need to prove that

t̂n ∪ t̂n ⊆ ρ3. By duality, it is enough to show that t̂n ⊆ t̂n−1 ∩ t̂n−1.
By Lemma 3.7, we have tn−1tn = tn−1 and also tn−1tn = tn−1

by (11). Thus tn(u) = tn(v) implies that tn−1(u) = tn−1(v) and
tn−1(u) = tn−1(v), as required.

ρ2 = ρ4. Since ρ2 is a ∗-congruence by Lemma 7.4, the inclusion
ρ4 ⊆ ρ2 holds trivially. To prove the opposite containment, we only
need to show that t̂n ⊆ (t̂n)c. Let tn(u) = tn(v). By Lemma 3.6, we
have t∗n(u) = t

∗
n(v), and thus

tn(u∗) = (t∗n(u))
∗ = (t∗n(v))

∗ = tnv∗.

Hence u∗t̂nv∗ and so u(t̂n)c as required.

ρ2 = ρ5. This follows from ρ2 = ρ4 by duality.

ρ3 = ρ7. This follows from ρ3 = ρ6 by duality.

8. The relationship of t̂n and t̂′n. In [5], a family of operators on
the free semigroup X+, denoted by tn, was devised to solve the word
problem for relatively free bands. In order to avoid confusion with the
notation used in the present paper, we denote them by t′n. Conforming
with this convention, we now define

t′n = tn |X+ , t ∈ {χ, i}, n ≥ 2.

A natural question to ask at this point is: what is the relationship
between the congruences t̂n on F and t̂′n on X+? It follows that t̂′n is
the restriction of t̂n toX+. In this section we show how t̂n, respectively,

γ̂tn , can be obtained from t̂′n, respectively t̂′n−1∩ t̂′n−1. Toward this end,
we need some notation and preliminary lemmas.

Lemma 8.1. For t ∈ {χ, i}, n ≥ 1 and w ∈ F , we have
tn(w) = tn(ww∗w).

Proof. We use induction on n. The case n = 1 is trivial. Let n > 1,
w ∈ F , and assume that the lemma holds for n−1. By Lemma 3.6 and
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the induction hypothesis, we obtain

tn−1(ww∗w) = t∗n−1(ww
∗w) = (tn−1((ww∗w)∗))∗ = (tn−1(w∗ww∗))∗

= (tn−1(w∗))∗ = t∗n−1(w) = tn−1(w)

and thus

tn(ww∗w) = tns(ww∗w)σ(ww∗w)tn−1(ww∗w)
= tns(w)σ(w)tn−1(w) = tn(w).

For w ∈ F , we let
c′(w) = {i ∈ I | w = u i v for some u, v ∈ F 1}

and define an endomorphism η of F by the requirement

η : i −→ ii∗i, i ∈ I.

Until the end of this section, we assume that X is infinite.

Given u, v ∈ F , we denote by J(u, v) the set of all injective mappings
f : c′(uv) → X such that f(x) = x for every x ∈ c′(uv)∩X. Also by f
we denote the homomorphism from (c′(uv))+ into X+ induced by the
mapping f : c′(uv) → X.

Lemma 8.2. Let t ∈ {χ, i}, n ≥ 1, u, v ∈ η(F 1), f ∈ J(u, v) and
tn(u) = tn(v). Then t′nf(u) = t′nf(v).

Proof. We use induction on n. For n = 1, the case t = i is trivial and
the case t = χ is straightforward and may be safely omitted.

Let n > 1 and assume that the lemma holds for n − 1. We use
secondary induction on �(u). The case �(u) = 0 is trivial. Let
u, v ∈ η(F 1), f ∈ J(u, v), and assume that tn(u) = tn(v) and that the
lemma holds for all values smaller than �(u). Without loss of generality,
we may assume that u, v ∈ η(F ).
Let w∈{u, v}. Suppose that s(w)=x1x2 . . . xm, where x1, x2, . . . , xm

∈ I, and σ(w) = y. Since w ∈ η(F ), we have
c′s(w) = {xj , x∗j | j = 1, . . . ,m}
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and w = x1x2 . . . xm yy
∗z for some z ∈ F 1. Now f ∈ J(u, v) implies

that
sf(w) = f(x1x2 . . . xmy)

and σf(w) = f(y∗). Hence

sf(u) = fs(u)fσ(u), sf(v) = fs(v)fσ(v),(12)
σf(u) = f((σ(u))∗), σf(v) = f((σ(v))∗).(13)

The equality tn(u) = tn(v) implies that

tns(u) = stn(u) = stn(v) = tns(v)

by Lemma 3.4. We also have s(u), s(v) ∈ η(F ). Since
f |c′(s(u)s(v))∈ J(s(u), s(v))

and �(s(u)) < �(u), the induction hypothesis on � yields that

(14) t′nfs(u) = t
′
nfs(v).

In addition, Lemma 3.4 gives

(15) σ(u) = σtn(u) = σtn(v) = σ(v).

Since t′n is a restriction of tn, it follows from Lemma 7.3 that t̂′n is a
congruence on X+. Thus (14) and (15) yield

t′n(fs(u)fσ(u)) = t
′
n(fs(v)fσ(v)).

Thus, by (12), we get

(16) t′nsf(u) = t
′
nsf(v).

Further, σ(u) = σ(v) implies by (13) that

(17) σf(u) = f((σ(u))∗) = f((σ(v))∗) = σf(v).

Finally, tn(u) = tn(v) is equivalent to tn(ū) = tn(v̄). Since tn−1tn =
tn−1 by Lemma 3.7, we obtain tn−1(ū) = tn−1(v̄). Clearly ū, v̄ ∈ η(F )
and f ∈ J(ū, v̄). By the induction hypothesis on n, we get

(18) t′n−1f(ū) = t
′
n−1f(v̄).
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Since f sends letters to letters, direct verification shows that f̄ = f .
Therefore

t′n−1f(w) = t
′
n−1(f(w)) = t

′
n−1f(w̄)

for every w ∈ F and (18) gives t′n−1f(u) = t′n−1f(v). Together with
(16) and (17), this implies t′nf(u) = t′nf(v).

Given a congruence τ on X+, let τ+ denote the least congruence ρ
on F relative to the properties:

(i) ρ ⊇ τ ∪ {(u, uu∗u) | u ∈ F},
(ii) ρ is invariant under ∗-endomorphism of F .

We are finally ready for the theorem of this section.

Theorem 8.3. Let X be an infinite set and t ∈ {χ, i}.
(i) For n ≥ 1, we have t̂n = t̂′n

+
.

(ii) For n ≥ 3, we have γ̂tn = (t̂′n−1 ∩ t̂′n+1)
+.

Proof. (i) Let ρ = t̂′n
+
. The inclusion t̂′n ⊆ t̂n holds trivially and by

Lemma 8.1 we have

{(u, uu∗u) | u ∈ F} ⊆ t̂n.

Since t̂n is invariant for ∗-endomorphisms of F by Lemma 3.9, it follows
that ρ ⊆ t̂n.
Conversely, let (u, v) ∈ t̂n. Since i ρ ii∗i for every i ∈ I and ρ is a

congruence, we have

(19) w ρ η(w), w ∈ F.

Further, ρ ⊆ t̂n implies that tn(w) = tnη(w) for every w ∈ F . Thus

tnη(u) = tn(u) = tn(v) = tnη(v).

Our assumption of X being infinite implies that there exists some
f ∈ J(η(u), η(v)). By Lemma 8.2, we obtain t′nfη(u) = t′nfη(v) and
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so fη(u)ρ fη(v). Let g ∈ End (F ) be an extension of the mapping
f−1. Since ρ is closed for ∗-endomorphisms of F , it follows that
gfη(u)ρ g fη(v), that is, η(u) ρ η(v). By (19) we conclude that u ρ v
and t̂n ⊆ ρ. Therefore, t̂n = ρ, as required.

(ii) Let ρ = (t̂′n−1 ∩ t̂′n−1)
+. By Theorem 7.5, we have

t̂′n−1 ∩ t̂′n−1 ⊆ t̂n−1 ∩ t̂n−1 = γ̂tn .

Theorem 3.14 yields {(u, uu∗u) | u ∈ F} ⊆ γ̂tn , and also that γ̂tn is
invariant for ∗-endomorphisms of F . Thus ρ ⊆ γ̂tn .
Conversely, let (u, v) ∈ γ̂tn . We note that (19) also holds in this case.

Since ρ ⊆ γ̂tn , we have that γtn(w) = γtnη(w) for every w ∈ F . Thus

γtnη(u) = γtn(u) = γtn(v) = γtnη(v).

By Theorem 5.4 (iii), we get

tn−1η(u) = tn−1η(v), tn−1η(u) = tn−1η(v).

The hypothesis of X being infinite implies the existence of some
f ∈ J(η(u), η(v)). By Lemma 8.2, we obtain

(20) t′n−1fη(u) = t
′
n−1fη(v).

We have η(F ) = η(F ) and J(η(u), η(v)) = J(η(u), η(v)). Hence we
also get t′n−1f(η(u)) = t

′
n−1f(η(v)). Since

t′n−1fη(w) = t
′
n−1(fη(w)) = t

′
n−1f̄(η(w)) = t

′
n−1f(η(w))

for every w ∈ F , we obtain t′n−1fη(u) = t′n−1fη(v). Together with
(20), this implies that fη(u)ρfη(v). Let g ∈ End (F ) be an extension
of the mapping f−1. Since ρ is closed for ∗-endomorphisms of F , we get
gfη(u) ρ gfη(v), that is, η(u) ρ η(v). By (19), we conclude that u ρ v
and γ̂tn ⊆ ρ. Therefore, γ̂tn = ρ, as required.

The content of Theorem 8.3 (i) can be paraphrased thus: the +-
operation applied to the restriction of t̂n to X+ gives t̂n back, that is,
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0 0

0 0

+ +

+ +

+

+

c c

c c

Diagram 2.

(t̂n |X+)+ = t̂n. As a consequence of Theorem 8.3 (ii), we obtain the
following interesting formulae.

Corollary 8.4. Let t ∈ {χ, i} and for n ≥ 2, let λn = t̂′n, ρn = t̂′n.
Then

(λn ∩ ρn)+ = (λn)+ ∩ (ρn)+ for n ≥ 2,
(λn ∨ ρn)+ = (λn)+ ∨ (ρn)+ for n ≥ 3.

Proof. The first part follows directly from Theorems 7.5 and 8.3
and the dual of Theorem 8.3 (i). The second part follows similarly by
observing that λn ∨ ρn = λn−1 ∩ ρn−1.
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We illustrate the situation in Theorems 7.5 and 8.3 by Diagram 2.

That the full lines in Diagram 2 represent meets and joins follows
from Theorem 7.5. That the broken lines represent meets and joins
follows from [8, Theorem 5.4] and [9, Theorem 5.4 (iii)]. The dotted
lines connecting ts represent the transition described in Theorem 8.3

(i), those connecting t̂′n−1 ∩ t̂′n−1 and γ̂tn are given in Theorem 8.3 (ii).

We can double Diagram 2 by drawing the cases t = h and t = i
separately and completing its upper part. Then glue the resulting
diagram onto the diagram of fully invariant congruences on a free band
with countably infinite number of generators as indicated in Diagram
2 for a part of it. We thus may observe the genesis of the lattice of
∗-band varieties from the lattice of band varieties. This is illustrated
by Diagram 3.

For an infinite set X, in Diagram 3 we have the following situation.
The broken lines connect the points t̂′n and t̂′n for t ∈ {h, i} which
represent (some) fully invariant band congruences on X+; this is the
diagram of band varieties turned upside down. Full lines connect the
points representing the congruences în and în, dash-dot lines those for
ĥn and ĥn. Dotted lines represent the transition from some of the
points of the first kind above to those of the second kind. The heavy
dots in the central column represent fully invariant ∗-congruences on
F ; this is the diagram of ∗-band varieties turned upside down.

9. Identities. For every ∗-band variety, Adair [1] provided an
identity which serves as a basis for the identities valid in that variety.
She then devised an algorithm which converts an arbitrary identity on
∗-bands to one in her system of identities. It was proved in [7] that her
system of identities is equivalent to the system of star-free identities
depicted in Diagram 1. Combining Adair’s algorithm with this result,
we obtain an algorithm which, given an arbitrary identity on ∗-bands,
produces an equivalent star-free identity.

However, the transition from a starred identity to an equivalent star-
free identity is quite subtle. For ∗-semilattices given by the identity
x = x∗, we get

xy = (xy)∗ = y∗x∗ = yx.
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For normal ∗-bands given by the identity axa = ax∗a, we get

axya = a(xy)∗a = ay∗x∗a = ay∗ay∗x∗ax∗a
= ay(ay∗x∗a)xa = ayax yaxa

which is equivalent to the identity axya = ayxa on bands. In the case
of regular ∗-bands given by the identity axa∗a = aa∗xa, a somewhat
longer derivation is required to deduce the validity of axya = axaya,
see [6, Lemma 7.3]. Conversely, one still must show that each of the
star-free identities obtained implies the given starred identity. Hence
the direct conversion does not seem very promising.

By now there exist several systems of identities serving as bases for
identities satisfied by various (∗)-band varieties. The one of Gerhard
and Petrich [5] was compared with that of Fennemore [2] in [5, Propo-
sition 9.3] by means of a transformation, mapping the words figuring in
the former onto those figuring in the latter. We shall now devise a func-
tion which maps the words in the Adair system to the corresponding
ones in the Gerhard-Petrich system. This will establish intimate prox-
imity of these three systems even though on the surface they appear
quite different.

The Adair system of words runs as follows. Let

R1 = x1, S1 = x∗1x1, R2 = x1x2, S2 = x1x
∗
2x1x2,

Rn = Rn−2x(n+1)/2, Sn = Sn−2x(n+1)/2Rn−2x(n+1)/2

for n ≥ 3 odd,
Rn = Rn−2x(n+2)/2, Sn = Sn−2x(n+2)/2Rn−2x(n+2)/2

for n ≥ 4 even.

The identities are Rn = Sn for n ≥ 1.

For our final theorem, we shall need the following notation. Let
n ≥ 1. First let n be odd. On the semigroup {x1, x2, . . . , x

∗
1}+ define

an endomorphism ϕ by the requirement

ϕ :



x1 →

{
x1x2 if n ≡ 1 (mod 4)

x2x1 if n ≡ 3 (mod 4),
x∗1 → x2

xi → xi+1 otherwise.
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Next let n be even. On the semigroup {x1x2, . . . , x
∗
2}+ define an

endomorphism ϕ by the requirement

ϕ :



x2 →

{
x3x1 if n ≡ 0 (mod 4)

x1x3 if n ≡ 2 (mod 4),
x∗2 → x3

xi → xi+1 otherwise.

Theorem 9. For n ≥ 1, we have

ϕ(Rn) = G(n+3)/2, ϕ(Sn) = I(n+3)/2 if n is odd,

ϕ(Rn) = G(n+4)/2, ϕ(Sn) = H(n+4)/2 if n is even,

and the identities Rn = Sn and ϕ(Rn) = ϕ(Sn) are equivalent.

Proof. Let n be odd. We use induction on n. For a given n we
may denote the mapping ϕ defined above by ϕn. Straightforward
verification shows that ϕn = ϕn−2 for every n ≥ 3 odd. First

ϕ1(R1) = ϕ1(x1) = x1x2 = G2.

Assuming the statement true for n− 2 where n ≥ 3, we get

ϕn(Rn) = ϕn(Rn−2x(n+1)/2) = ϕn(Rn−2)ϕn
(
x(n+1)/2

)
= ϕn−2(Rn−2)x(n+3)/2

= G(n+1)/2x(n+3)/2 = x(n+3)/2G(n+1)/2 = G(n+3)/2.

Next
ϕ1(S1) = ϕ1(x∗1x1) = x2x1x2 = I2.

Assuming the statement true for n− 2, we obtain

ϕn(Sn) = ϕn(Sn−2x(n+1)/2Rn−2x(n+1)/2)

= ϕn(Sn−2)ϕn(x(n+1)/2)ϕn(Rn)

= ϕn−2(Sn−2)x(n+3)/2G(n+3)/2

= I(n+1)/2x(n+3)/2G(n+3)/2

= G(n+3)/2x(n+3)/2I(n+1)/2 = I(n+3)/2.
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The argument for n even is similar.

For n odd, letting n = 2m + 1, we get (n + 3)/2 = m + 2, where
m = 0, 1, . . . , thereby obtaining the identities I2, I3, . . . . For n even,
letting n = 2m, we get (n+ 4)/2 = m+ 2 where m = 1, 2, . . . , thereby
obtaining the identities H3, H4, . . . . On ∗-bands, any identity u = v
is equivalent to its dual ū = v̄. Hence the identities In and In, as
well as the identities Hn and Hn, are equivalent. The main result of [7,
Sections 3 6] asserts that the identities R1 = S1, R2 = S2, R3 = S3, . . .
are equivalent to the identities G2 = I2, G3 = H3, G3 = I3, . . . in that
order. This establishes the final assertion of the theorem.

Theorem 9.1 covers all ∗-band varieties except for the varieties of:
trivial ∗-bands, rectangular ∗-bands and ∗-bands. These varieties
generally require different treatment.
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