ON THE FORM OF CORRELATION FUNCTION FOR A CLASS OF NONSTATIONARY FIELD WITH A ZERO SPECTRUM

RAE'D HATAMLEH

Abstract

The present paper is devoted to the derivation of an explicit form of linearly representable random fields in the form $h\left(x_{1}, x_{2}\right)=\exp \left\{i\left(x_{1} A_{1}+x_{2} A_{2}\right)\right\} h$, where $h \in H$, H is a Hilbert space, operators A_{1}, A_{2} are such that $A_{1} A_{2}=$ $A_{2} A_{1}$ and $C^{3}=0$ where $C=A_{1}^{*} A_{2}-A_{2} A_{1}^{*}$.

The results obtained are the generalization of theorem proved by Livshits and Yantsevitch [4] and Yantsevich and Abbaui [6].

It is shown that a rank of nonstationary of field $h\left(x_{1}, x_{2}\right)$ depends not only on a degree of nonself conjugation of A_{1}, A_{2} but on a degree of nilpotency of commutator $C\left(C^{3}=0\right)$. In the present paper an explicit form of correlation function when the spectrum of A_{1} and A_{2} lies in zero is derived.

1. Preliminary information.

1.1. Let us consider a vector field $h(x)$ depending of two variables $x=\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}$ with values in the Hilbert space H.

In this paper we will suppose that $h(x)$ depends on x as $h(x)=Z_{x} h$ where $Z_{x}=\exp \left[i\left(x_{1} A_{1}+x_{2} A_{2}\right)\right]$. In this case A_{1} and A_{2} are such operators in the Hilbert space H for which $A_{1} A_{2}=A_{2} A_{1}$. We shall call an operator function Z_{x} to be an two-parameter commutative semigroup. The main tool of correlation theory for vector fields in a Hilbert space H is a correlation function [4]:

$$
\begin{equation*}
K(x, y)=\langle h(x), h(y)\rangle \tag{1}
\end{equation*}
$$

where $x, y \in \mathbf{R}^{2}$. For twice permutational classes of linear operators $\left\{A_{1}, A_{2}\right\},\left(A_{1} A_{2}=A_{2} A_{1}, A_{1}^{*} A_{2}=A_{2} A_{1}^{*}\right)$. Generalizing the results

[^0]given by Livshits and Jantsevich [4], Yantsevich and Abbaui [6] have introduced partial infinitesimal correlation functions (ICF) by relations (under the assumption that $K\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is a twice differentiable function):
\[

$$
\begin{align*}
W_{1}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) & =-\left.\frac{\partial K\left(x_{1}+\tau_{1}, x_{2}, y_{1}+\tau_{1}, y_{2}\right)}{\partial \tau_{1}}\right|_{\tau_{1}=0} \tag{2}\\
W_{2}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) & =-\left.\frac{\partial K\left(x_{1}, x_{2}+\tau_{2}, y_{1}, y_{2}+\tau_{2}\right)}{\partial \tau_{2}}\right|_{\tau_{2}=0} \\
W\left(x_{1}, x_{2}, y_{1}, y_{2}\right) & =-\left.\frac{\partial^{2} K\left(x_{1}+\tau_{1}, x_{2}+\tau_{2}, y_{1}+\tau_{1}, y_{2}+\tau_{2}\right)}{\partial \tau_{1} \partial \tau_{2}}\right|_{\tau_{1} \tau_{2}=0}
\end{align*}
$$
\]

W_{1}, W_{2} and W are not independent.
Indeed:

$$
\begin{aligned}
& \int_{o}^{-y_{1}} W\left(x_{1}+\tau_{1}, x_{2}+\tau_{2}, y_{1}+\tau_{1}, y_{2}+\tau_{2}\right) d \tau_{1} \\
& =\left[\frac{\partial}{\partial \tau_{2}} K\left(x_{1}-y_{1}, x_{2}+\tau_{2}, 0, y_{2}+\tau_{2}\right)-\frac{\partial}{\partial \tau_{2}} K\left(x_{1}, x_{2}+\tau_{2}, y_{1}, y_{2}+\tau_{2}\right)\right] \\
& =-W_{2}\left(x_{1}-y_{1}, x_{2}+\tau_{2}, 0, y_{2}+\tau_{2}\right)+W_{2}\left(x_{1}, x_{2}+\tau_{2}, y_{1}, y_{2}+\tau_{2}\right)
\end{aligned}
$$

Similarly it is easy to get:

$$
\begin{aligned}
& \int_{o}^{-y_{2}} W\left(x_{+} \tau_{1}, x_{2}+\tau_{2}, y_{1}+\tau_{1}, y_{2}+\tau_{2}\right) d \tau_{2} \\
& =-W_{1}\left(x_{1}+\tau_{1}, x_{2}-y_{2}, y_{+} \tau_{1}, 0\right)+W_{1}\left(x_{1}+\tau_{1}, x_{2}, y_{1}+\tau_{1}, y_{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& \int_{0}^{-y_{1}} \int_{0}^{-y_{2}} W\left(x_{1}+\tau_{1}, x_{2}+\tau_{2}, y_{1}+\tau_{1}, y_{2}+\tau_{2}\right) d \tau_{1} d \tau_{2} \tag{3}\\
& =K\left(x_{1}-y_{1}, x_{2}, y_{2}, 0,0\right)-K\left(x_{1}-y_{1}, x_{2}, 0, y_{2}\right) \\
& \quad-K\left(x_{1}, x_{2}-y_{2}, y_{1}, 0\right)-K\left(x_{1}, x_{2}, y_{1}, y_{2}\right)
\end{align*}
$$

Let us remember that the field $h(x)$ in H is called dissipative if $\left(A_{1}\right)_{I} \geq 0$. As in the one-dimension case it is easy to establish [4, 6] that:

$$
\begin{align*}
\lim _{\tau_{1} \rightarrow \infty} K\left(x_{1}+\tau_{1}, x_{2}, y_{1}+\tau_{1}, y_{2}\right) & =K_{\infty}^{1}\left(x_{1}-y_{1}, x_{2}, y_{2}\right) \\
\lim _{\tau_{2} \rightarrow \infty} K\left(x_{1}, x_{2}+\tau_{1}, y_{1}, y_{2}+\tau_{1}\right) & =K_{\infty}^{2}\left(x_{2}-y_{2}, x_{1}, y_{1}\right) \tag{4}\\
\lim _{\tau_{1}, \tau_{2} \rightarrow \infty} K(x+\tau, y+\tau) & =K_{\infty}(x-y)
\end{align*}
$$

If the correlation function depends only on a difference in arguments then a field is called a stationary field [4] (in just this way a stationary was defined by Kolmogorov).

Then the formula (3) may be presented in the form:

$$
\begin{align*}
K(x, y)= & \int_{0}^{\infty} \int_{0}^{\infty} W(x+\tau, y+\tau) d \tau_{1} d \tau_{2} \\
& +K_{\infty}^{1}\left(x_{1}-y_{1}, x_{2}, y_{2}\right)+K_{\infty}^{2}\left(x_{2}-y_{2}, x_{1}, y_{1}\right) \tag{5}\\
& +K_{\infty}(x-y)
\end{align*}
$$

$K_{\infty}(x-y)$ is a Hermitian-positive function which may be considered as a stationary field correlation function, $K_{\infty}^{1}\left(x_{1}-y_{1}, x_{2}, y_{2}\right)$ (as well as $\left.K_{\infty}^{2}\left(x_{2}-y_{2}, x_{1}, y_{1}\right)\right)$ in variable $x_{1}-y_{1}$ is a Hermitian-positive function for each x_{2}, y_{2}, and, as a function of x_{2}, y_{2}, is a dissipative curve of one variable in H. Thus, essentially everything is determined by the infinitesimal correlation function $W(x, y)$.
1.2. Let us introduce as in $[4,6]$ a rank of nonstationarity.

We recall that the rank of nonstationary of function $h(x)$ of twice permutational system of linear operators A_{1}, A_{2} is the greatest rank of quadratic form

$$
\sum_{\alpha, \beta=1}^{n} W\left(x_{\alpha}, x_{\beta}\right) \zeta_{\alpha} \bar{\zeta}_{\beta}, \quad x_{\alpha} \in \mathbf{R}^{2}, \zeta_{\alpha} \in \mathbf{C}, \quad n<\infty
$$

It is not difficult to show that the rank of nonstationarity for the present case coincides with the dimension of space H_{0} where $H_{0}=$ $\overline{\left(A_{1}\right)_{I} H} \bigcap \overline{\left(A_{2}\right)_{I} H}$ (here as usual $\left.\left(A_{k}\right)_{I}=\left(A_{k}-A_{k}^{*}\right) /(2 i)[4]\right)$ and in addition

$$
\begin{equation*}
W(x, y)=4\left\langle\left(A_{1}\right)_{I}\left(A_{2}\right)_{I} h(x), h(y)\right\rangle \tag{6}
\end{equation*}
$$

The derivation of formula (6): From formula (2) it follows that

$$
\begin{aligned}
W_{1}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) & =-\left.\frac{\partial K\left(x+\tau_{1}, x_{2}, y_{1}+\tau_{1}, y_{2}\right)}{\partial \tau_{1}}\right|_{\tau_{1}=0} \\
& =-\left(\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial y_{1}}\right) K\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \\
& =-\left(\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial y_{1}}\right)\left\langle Z_{x} h, Z_{y} h\right\rangle \\
& =-\left\langle i A_{1} Z_{x} h, Z_{y} h\right\rangle-\left\langle Z_{x} h, i A_{1} Z_{y} h\right\rangle \\
& =\left\langle\frac{A_{1}-A_{1}^{*}}{i} Z_{x} h_{1} Z_{y} h\right\rangle=2\left\langle\left(A_{1}\right)_{I} h(x), h(y)\right\rangle
\end{aligned}
$$

Similarly,

$$
W_{2}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=2\left\langle\left(A_{2}\right)_{I} h(x), h(y)\right\rangle .
$$

Therefore,

$$
W\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=-\left(\frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial y_{2}}\right) W_{1}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)
$$

Then we get that

$$
\begin{aligned}
W\left(x_{1}, x_{2}, y_{1}, y_{2}\right) & =-\left(\frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial y_{2}}\right)\left\langle 2\left(A_{1}\right)_{I} h(x), h(y)\right\rangle \\
& =-\left\langle 2\left(A_{1}\right)_{I} i A_{2} h(x), h(y)\right\rangle-\left\langle 2\left(A_{1}\right)_{I} h(x), i A_{2} h(y)\right\rangle \\
& =2\left\langle\frac{\left(A_{1}\right)_{I} A_{2}-A_{2}^{*}\left(A_{1}\right)_{I}}{i} h(x), h(y)\right\rangle .
\end{aligned}
$$

As A_{1} and A_{2} are twice permutable then,

$$
W(x, y)=2\left\langle\left(A_{1}\right)_{I} \frac{A_{2}-A_{2}^{*}}{i} h(x), h(y)\right\rangle=4\left\langle\left(A_{1}\right)_{I}\left(A_{2}\right)_{I} h(x), h(y)\right\rangle
$$

For the case $\operatorname{dim} H_{0}=1$, i.e. when the rank of nonstationarity of vector field $h(x)$ is equal to one, we get

$$
\begin{equation*}
W(x, y)=\Phi(x) \overline{\Phi(y)} \tag{7}
\end{equation*}
$$

where $\Phi(x)=\left\langle h(x), h_{0}\right\rangle$

2. Correlation functions and spectral representation for the twice premutational fields of rank 1.

2.1. Let us consider a vector field $h\left(x_{1}, x_{2}\right)=\exp \left(i x_{1} A_{1}+i x_{2} A_{2}\right) h$, where $h \in H, H_{0}=\overline{\left(A_{1}\right)_{I} H} \cap \overline{\left(A_{2}\right)_{I} H}, \overline{\operatorname{dim} H_{0}}=1$ and operators A_{1} and A_{2} are twice permutable. As $H_{0}=\overline{\left(A_{1}\right)_{I} H} \cap \overline{\left(A_{2}\right)_{I} H}$ is univariable and the operator $4\left(A_{1}\right)_{I}\left(A_{2}\right)_{I}$ is self-adjoint, then general theory gives

$$
4\left(A_{1}\right)_{I}\left(A_{2}\right)_{I} h=\left\langle h, h_{0}\right\rangle h_{0}
$$

for any $h \in H$. Therefore from formula (6) it follows that

$$
\begin{aligned}
W\left(x_{1}, x_{2}, y_{1}, y_{2}\right) & =\left\langle 4\left(A_{1}\right)_{I}\left(A_{2}\right)_{I} h(x), h(y)\right\rangle \\
& =\left\langle\left\langle h\left(x_{1}, x_{2}\right), h_{0}\right\rangle h_{0}, h\left(y_{1}, y_{2}\right)\right\rangle \\
& =\left\langle h\left(x_{1}, x_{2}\right), h_{0}\right\rangle\left\langle h_{0}, h\left(y_{1}, y_{2}\right)\right\rangle \\
& =\Phi\left(x_{1}, x_{2}\right) \cdot \overline{\Phi\left(y_{1}, y_{2}\right)}
\end{aligned}
$$

where

$$
\Phi\left(x_{1}, x_{2}\right)=\left\langle h\left(x_{1}, x_{2}\right), h_{0}\right\rangle=\left\langle\exp \left(i x_{1} A_{1}+i x_{2} A_{2}\right) h, h_{0}\right\rangle .
$$

As it was shown in [6], then the ICF of vector field $h\left(x_{1}, x_{2}\right)$ has the form

$$
W\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\Phi\left(x_{1}, x_{2}\right) \overline{\Phi\left(y_{1}, y_{2}\right)}
$$

where $\Phi\left(x_{1}, x_{2}\right)=\left\langle\exp \left(i x_{1} A_{1}+i x_{2} A_{2}\right) h, h_{0}\right\rangle, h_{0} \in H_{0},\left\|h_{0}\right\|$ $=1,2 \operatorname{Im} A_{1} 2 \operatorname{Im} A_{2} h_{0}=\lambda_{0} h_{0}$ and λ_{0} is a real number.

Applying the well-known Risse-Danford representation for functions of operators $[\mathbf{4}, \mathbf{5}]$,

Using relation [4]

$$
\exp (t A)=-\frac{1}{2 \pi i} \int_{\Gamma} \exp (\lambda t)(A-\lambda I)^{-1} d \lambda
$$

where Γ is a closed path that contains all the spectrum of operator A, one can represent the function $\Phi\left(x_{1}, x_{2}\right)$ in the form

$$
\begin{align*}
\Phi\left(x_{1}, x_{2}\right) & =\left(\frac{1}{2 \pi i}\right)^{2} \oint_{\Gamma_{1}} \oint_{\Gamma_{2}} \exp \left(i \lambda_{1} x_{1}+i \lambda_{2} x_{2}\right) \tag{8}\\
& \left\langle\left(A_{1}-\lambda_{1} I\right)^{-1}\left(A_{2}-\lambda_{2} I\right)^{-1} h, h_{0}\right\rangle d \lambda_{1}, d \lambda_{2}
\end{align*}
$$

Closed path Γ_{k} includes the spectrum of operator $A_{k}, k=1,2$. When calculating integrals in (8) one can pass to any system of operators \dot{A}_{1}, \dot{A}_{2}, acting in Hilbert space $\stackrel{\bullet}{H}$, which are unitary equivalent to the original operators A_{1}, A_{2} :
$\left(\left(A_{1}-\lambda_{1} I\right)^{-1}\left(A_{2}-\lambda_{2} I\right)^{-1} h, h_{0}\right)_{H}=\left(\left({\left.\left.\stackrel{\bullet}{A_{1}}-\lambda_{1} I\right)^{-1}\left(\stackrel{\bullet}{A}_{2}-\lambda_{2} I\right)^{-1} g, g_{0}\right)_{\dot{H}},, ~}_{\bullet}\right.\right.$
where $\stackrel{\bullet}{A}_{k} U=U A_{k}, k=1,2$, and U is a unitary operator acting from H in $L^{2}(D)$,

$$
D=\left[0 \times l_{1}\right] \times\left[0, l_{2}\right], \quad U h_{0}=g_{0}
$$

Then the function $\Phi\left(x_{1}, x_{2}\right)$ is presented in the form

$$
\begin{aligned}
\Phi\left(x_{1}, x_{2}\right)= & \left(-\frac{1}{2 \pi i}\right)^{2} \oint_{\Gamma_{1}} \oint_{\Gamma_{2}} \exp \left(i \lambda_{1} x_{1}+i \lambda_{2} x_{2}\right) \\
& \left.\times\left\langle\left(\dot{A}_{1}-\lambda_{1} I\right)^{-1}\left(\dot{A}_{2}-\lambda_{2} I\right)^{-1}\right) g, g_{0}\right\rangle d \lambda_{1} d \lambda_{2}
\end{aligned}
$$

2.2. Let us consider a case when the function $h\left(x_{1}, x_{2}\right)$ belongs to class $K_{11}^{(1)}$, i.e., the spectrum of each operator $A_{k}, k=1,2$, is contracted in zero. Then $[\mathbf{7}]$ the model space $\stackrel{+}{H}$ coincides with $L^{2}(D), D=\left[0, l_{1}\right] \times\left[0, l_{2}\right], l_{1}, l_{2}<\infty$.

The operators \dot{A}_{1} and $\stackrel{\bullet}{A}_{2}$ are defined in $L^{2}(D)$ as follows:

$$
\dot{A}_{1} f(x, y)=-i \int_{x}^{l_{1}} f(t, y) d t ; \quad \dot{A}_{2} f(x, y)=-i \int_{y}^{l_{2}} f(x, \tau) d \tau
$$

where x and y are one dimensional. Due to the unitary equivalence H_{o} is mapped by operator U on $\dot{\bullet}_{0}=2 \overline{\operatorname{Im} \dot{\bullet}_{1} \stackrel{\bullet}{H}} \cap 2 \overline{\operatorname{Im} \dot{\bullet}_{2} \stackrel{\bullet}{H}}$ which is a subspace of constant functions from $L^{2}(D)$, therefore $h_{0}(x, y) \equiv 1$, and $\dot{h}_{0}=f(x, y)$.
It is not difficult to show that

$$
\left(\dot{A}_{1}^{*}-\lambda_{1} I\right)^{-1}\left(\dot{A}_{2}^{*}-\lambda_{2} I\right)^{-1} h_{0}(x, y)=\frac{1}{\lambda_{1} \lambda_{2}} \exp \left(\frac{i x}{\lambda_{1}}+\frac{i y}{\lambda_{2}}\right)
$$

Then

$$
\begin{aligned}
\Phi\left(x_{1}, x_{2}\right)= & \left(-\frac{1}{2 \pi i}\right)^{2} \oint_{\Gamma_{1}} \oint_{\Gamma_{2}} \exp \left(i \lambda_{1} x_{1}+i \lambda_{2} x_{2}\right) \\
& \times\left[\int_{D} \frac{1}{\lambda_{1} \lambda_{2}} \exp \left(\frac{i \zeta_{1}}{\lambda_{1}}+\frac{i \zeta_{2}}{\lambda_{2}}\right) f\left(\zeta_{1}, \zeta_{2}\right) d \zeta_{1} d \zeta_{2}\right] d \lambda_{1} d \lambda_{2} \\
= & \left(-\frac{1}{2 \pi i}\right)^{2} \int_{D}\left[\oint_{\Gamma_{1}} \oint_{\Gamma_{2}} \frac{1}{\lambda_{1}} \exp \left(i \lambda_{1} x_{1}+\frac{i \zeta_{1}}{\lambda_{1}}\right)\right. \\
& \left.\times \frac{1}{\lambda_{2}} \exp \left(i \lambda_{2} x_{2}+\frac{i \zeta_{2}}{\lambda_{2}}\right) d \lambda_{1} d \lambda_{2}\right] f\left(\zeta_{1}, \zeta_{2}\right) d \zeta_{1} d \zeta_{2}
\end{aligned}
$$

and finally

$$
\Phi\left(x_{1}, x_{2}\right)=\int_{0}^{l_{1}} \int_{0}^{l_{2}} J_{0}\left(2 \sqrt{x_{1} \zeta_{1}}\right) J_{0}\left(2 \sqrt{x_{2} \zeta_{2}}\right) f\left(\zeta_{1}, \zeta_{2}\right) d \zeta_{1} d \zeta_{2}
$$

where

$$
J_{0}\left(2 \sqrt{x_{1} \zeta_{1}}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n}\left(x_{1} \zeta_{1}\right)^{n}}{(n!)^{2}}
$$

3. Correlation functions for commutative systems of operators in case of nilpotentness of the commutator $C=$ $\left[A_{1}^{*}, A_{2}\right]\left(C^{3}=0\right)$.
3.1. Similar to the class of twice permutable system of linear operator for the vector field
$h(x)=Z_{x} h, \quad x=\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}, \quad Z_{x}=\exp \left[i\left(x_{1} A_{1}+x_{2} A_{2}\right)\right], \quad h \in H$,
where the system of operators $\left\{A_{1}, A_{2}\right\}$ is such that

$$
\begin{equation*}
\left[A_{1}, A_{2}\right]=0, \quad C=\left[A_{1}^{*}, A_{2}\right], \quad C^{3}=0, \quad C^{2} \neq 0 \tag{9}
\end{equation*}
$$

we introduce the correlation functions

$$
\begin{align*}
W_{1}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) & =-\left.\frac{\partial}{\partial \tau_{1}} K\left(x_{1}+\tau_{1}, x_{2}, y_{1}+\tau_{1}, y_{2}\right)\right|_{\tau_{1}=0} \tag{10}\\
W_{2}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) & =-\left.\frac{\partial}{\partial \tau_{2}} K\left(x_{1}, x_{2}+\tau_{2}, y_{1}, y_{2}+\tau_{2}\right)\right|_{\tau_{2}=0} \\
W\left(x_{1}, x_{2}, y_{1}, y_{2}\right) & =-\left.\frac{\partial^{2}}{\partial \tau_{1} \partial \tau_{2}} K\left(x_{1}+\tau_{1}, x_{2}+\tau_{2}, y_{1}+\tau_{1}, y_{2}+\tau_{2}\right)\right|_{\tau_{1}=\tau_{2}=0}
\end{align*}
$$

It is not difficult to see that for the case of vector field $h(x)$ one can obtain [3]

$$
\begin{align*}
W_{1}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) & =2\left\langle\left(A_{1}\right)_{I} h(x), h(y)\right\rangle \\
W_{2}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) & =2\left\langle\left(A_{2}\right)_{I} h(x), h(y)\right\rangle \tag{11}\\
W\left(x_{1}, x_{2}, y_{1}, y_{2}\right) & =\langle D h(x), h(y)\rangle
\end{align*}
$$

Here operator D is self-adjoint and is of the form

$$
\begin{equation*}
D=2 i\left(A_{2}^{*}\left(A_{1}\right)_{I}-\left(A_{1}\right)_{I} A_{2}\right)=2 i\left(A_{1}^{*}\left(A_{2}\right)_{I}-\left(A_{2}\right)_{I} A_{1}\right) \tag{12}
\end{equation*}
$$

Let us show that D may be represented as (12). From formula (10) using differentiation rules one can easily get

$$
\begin{aligned}
W_{1}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) & =-\left(\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial y_{1}}\right) K(x, y) \\
& =-\left\langle\frac{\partial}{\partial x_{1}} h(x), h(y)\right\rangle-\left\langle h(x), \frac{\partial}{\partial y_{1}} h(y)\right\rangle \\
& =\left\langle-i A_{1} h(x), h(y)\right\rangle+\left\langle h(x), i A_{1} h(y)\right\rangle \\
& =2\left\langle\left(\frac{A_{1}-A_{1}^{*}}{i}\right) h(x), h(y)\right\rangle
\end{aligned}
$$

Then we can find $W(x, y)$

$$
\begin{aligned}
W(x, y) & =-\frac{\partial}{\partial x_{2}} 2\left\langle\left(A_{1}\right)_{I} h(x), h(y)\right\rangle-\frac{\partial}{\partial y_{2}}\left\langle 2\left(A_{1}\right)_{I} h(x), h(y)\right\rangle \\
& =-\left\langle 2 i\left(A_{1}\right)_{I} A_{2} h(x), h(y)\right\rangle-\left\langle 2\left(A_{1}\right)_{I} h(x), i A_{2} h(y)\right\rangle
\end{aligned}
$$

that is the proof (12). Elementary evaluations show that the operator D in (12) can be reduced to

$$
\begin{equation*}
D=C+4\left(A_{2}\right)_{I}\left(A_{1}\right)_{I}=C^{*}+4\left(A_{1}\right)_{I}\left(A_{2}\right)_{I} \tag{13}
\end{equation*}
$$

In what follows, in order to render a concrete form of operator D we confine ourselves to the systems of linear operators that satisfy the next theorem proved in [7]. A system of operators A_{1}, A_{2} is called a simple system [4] if there is no subspace in H which, reducing the operators A_{1} and A_{2}, a contraction on which is self-adjoint at least for one of operator A_{k}.

Theorem 1. Let us assume that a simple commuting system of linear operators A_{1}, A_{2} is such that:

1. $C^{3}=0, \operatorname{dim} C H=2$
2. $\operatorname{dim} H_{0}=1, H_{0}=1, H_{0}=\overline{\left(A_{1}\right)_{I} H} \cap \overline{\left(A_{2}\right)_{I} H}$
3. $\overline{\left(A_{1}\right)_{I} C^{k} H} \subset C^{k} H,\left(A_{2}\right)_{I} C^{* p} H \subset C^{* p} H, k, p=1,2$.

Then the space H is decomposed into the orthogonal sum $H=$ $H_{1} \oplus H_{2} \oplus H_{3}$, where H_{k} reduces A_{1} and subspaces H_{3} and $H_{2} \oplus H_{3}$ are invariant relative to A_{2} and the contractions of system $\left\{A_{1}, A_{2}\right\}$ on H_{k} are twice permutable.
This theorem has been proved in $[7]$. In what follows we assume that a system of linear operators $\left\{A_{1}, A_{2}\right\}$ satisfies the assumption of Theorem 1. Let $C^{2} H=\left\{\lambda h_{3}\right\}, C H \ominus C^{2} H=\left\{\mu h_{2}\right\}$ and $C^{* 2} H=$ $\left\{\lambda g_{3}\right\}, C^{*} H \ominus C^{* 2} H=\left\{\mu g_{2}\right\}$. It is obvious that $h_{3} \perp g_{3}, g_{2}$ and $g_{3} \perp h_{3}, h_{2}$. This readily follows from the condition $C^{3}=C^{* 3}=0$. One can easily see that $H_{3} \cap H_{0}=\left\{\lambda h_{3}\right\}, H_{2} \cap H_{0}=\left\{2 h_{2}\right\}$. Let us denote by h_{1} a vector such that $\left\{\lambda \tilde{h}_{1}\right\}=H_{1} \cap H_{0}$ and introduce the following vectors:

$$
\begin{aligned}
& h_{1}=\tilde{h}_{1} \\
&=\left\langle\tilde{h}_{1}, g_{3}\right\rangle g_{3}, \\
& g_{1}=\tilde{g}_{1}=\left\langle\tilde{g}_{1}, h_{3}\right\rangle h_{3},
\end{aligned}
$$

where the vector g_{1} is such that $g_{1}+h_{3}+g_{2}+g_{3}=h_{0}$, where h_{0} is a basis vector of space H_{0}.

Then it is easy to see that

$$
D H=H_{D}=\operatorname{span}\left\{h_{3}, h_{2}, h_{1}, g_{1}, g_{2}, g_{3},\right\}
$$

Thus, the operator D, corresponding to the defect of being nonstationary, maps H into a six-dimensional space.

Let us find an explicit form of self-adjoint operator D defined in H_{D}. Really, it is easy to see that

$$
D h_{3}=C h_{3}+4\left(A_{2}\right)_{I}\left(A_{1}\right)_{I} h_{3}=4\left(A_{2}\right)_{I} \alpha_{3} h_{3}
$$

where $\left(A_{1}\right)_{I} h_{3}=\alpha_{3} h_{3}$. Therefore

$$
\left\langle D h_{3}, g_{2}\right\rangle=0 \quad \text { and } \quad\left\langle D h_{3}, g_{3}\right\rangle=0
$$

Similarly one can obtain

$$
D h_{2}=C h_{2}+4\left(A_{2}\right)_{I}\left(A_{1}\right)_{I} h_{2}=\mu h_{3}+4\left(A_{2}\right)_{I} \alpha_{2} h_{2}
$$

where $\left(A_{1}\right)_{I} h_{2}=\alpha_{2} h_{2}$. Thus $\left\langle D h_{2}, g_{3}\right\rangle=0$. By repeating the same arguments one can obtain

$$
\left\langle D h_{3}, h_{1}\right\rangle=0, \quad\left\langle D g_{3}, h_{2}\right\rangle=0, \quad\left\langle D g_{2}, h_{3}\right\rangle=0
$$

Hence, we have proved the following lemma.

Lemma 1. The matrix of the operator D in the basis $\left\{h_{1}, h_{2}, h_{3}, g_{1}, g_{2}, g_{3}\right\}$ of the space H_{D} can be written in the form

$$
\left(\begin{array}{cccccc}
d_{11} & d_{12} & d_{13} & d_{14} & 0 & 0 \tag{14}\\
d_{12} & d_{22} & d_{23} & d_{24} & d_{25} & 0 \\
d_{13} & d_{23} & d_{33} & d_{34} & d_{35} & d_{36} \\
d_{14} & d_{24} & d_{34} & d_{44} & d_{45} & d_{64} \\
0 & d_{25} & d_{35} & d_{45} & d_{55} & d_{56} \\
0 & 0 & d_{36} & d_{46} & d_{56} & d_{66}
\end{array}\right)
$$

where $d_{k, s} \in \mathbf{R}$ are real numbers.
Thus D is a generalization of Jacobian matrix, namely D is a semidiagonal matrix.

Consequently

$$
\begin{equation*}
D h=\sum_{\alpha, \beta=1}^{6}\left\langle h, l_{\alpha}\right\rangle d_{\alpha, \beta} l_{\beta} \tag{15}
\end{equation*}
$$

where $l_{1}=h_{3}, l_{2}=h_{2}, l_{3}=h_{1}, l_{4}=g_{1}, l_{5}=g_{2}, l_{6}=g_{3}$.
Here as above we denote $\left\|l_{k}\right\|=1, k=1, \ldots, 6$, and $d_{\alpha, \beta}=\left\langle D l_{\alpha}, l_{\beta}\right\rangle$.
3.2. Now let us consider the infinitesimal correlation function $W(x, y)(11)$:

$$
W(x, y)=\langle D h(x), h(y)\rangle
$$

Then by virtue of (15) one can obtain

$$
W(x, y)=\sum_{\alpha, \beta=1}^{6}\left\langle h(x), l_{\alpha}\right\rangle d_{\alpha, \beta}\left\langle\overline{h(y), l_{\beta}}\right\rangle .
$$

Denote $\Phi_{\alpha}(x)=\left\langle h, \exp \left[i\left(x_{1} A_{1}^{*}+x_{2} A_{2}^{*}\right)\right] l_{\alpha}\right\rangle, \alpha=1,2, \ldots, 6$, then

$$
\begin{equation*}
W(x, y)=\sum_{\alpha, \beta=1} \Phi_{\alpha}(x) \cdot d_{\alpha, \beta} \overline{\Phi_{\beta}(y)} \tag{16}
\end{equation*}
$$

Let us find the form of functions $\Phi_{\alpha}(x)$. Note, first of all, that the functions $\Phi_{\alpha}(x)$ are invariant relatively under unitary equivalence and hence we can use the model presentation which was derived in $[7]$. As is obvious from these models the vector-functions $\exp \left[-i\left(x_{1} A_{1}^{*}+x_{2} A_{2}^{*}\right)\right] l_{\alpha}$ generate subspaces L_{α} which are invariant relative to the operators A_{1}^{*} and A_{2}^{*} where the contractions of the operators A_{1}^{*} and A_{2}^{*} on L_{α} are twice permutable. Let us denote images of vectors $\left\{l_{\alpha}\right\}$ under unitary equivalence (which is realized by the model construction) by $\left\{h_{\alpha}\right\}$, and denote the image of h by $f\left(x_{1}, x_{2}\right)$ which is a function in the space $L_{2}(D)$, where domain D has the form

Then l_{1} is a function equal to zero outside domain $\left[0, a_{1}\right] \times\left[b_{2}, b_{3}\right]$ and is a constant in this domain. Similarly, l_{2} is a constant in $\left[0, a_{2}\right] \times\left[b_{1}, b_{2}\right]$, l_{3} is that in $\left[0, a_{3}\right] \times\left[0, b_{1}\right], l_{4}$ is that in $\left[0, a_{1}\right] \times\left[0, b_{2}\right], l_{5}$ is that in $\left[a_{1}, a_{2}\right] \times\left[0, b_{2}\right]$, and last l_{6} is a constant in $\left[a_{2}, a_{3}\right] \times\left[0, b_{1}\right]$.

Since the spectrum of each operator A_{1}, A_{2} lies in zero and we are in the frames of assumptions of Theorem 1, one obtains, in virtue of the
formulas given in Section 2

$$
\begin{aligned}
& \Phi_{1}\left(x_{1}, x_{2}\right)=\int_{0}^{a_{1}} \int_{b_{2}}^{b_{3}} f\left(\zeta_{1}, \zeta_{2}\right) J_{0}\left(2 \sqrt{x_{1} \zeta_{1}}\right) J_{0}\left(2 \sqrt{x_{2} \zeta_{2}}\right) d \zeta_{1} d \zeta_{2} \\
& \Phi_{2}\left(x_{1}, x_{2}\right)=\int_{0}^{a_{2}} \int_{b_{1}}^{b_{2}} f\left(\zeta_{1}, \zeta_{2}\right) J_{0}\left(2 \sqrt{x_{1} \zeta_{1}}\right) J_{0}\left(2 \sqrt{x_{2} \zeta_{2}}\right) d \zeta_{1} d \zeta_{2} \\
& \Phi_{3}\left(x_{1}, x_{2}\right)=\int_{0}^{a_{2}} \int_{0}^{b_{1}} f\left(\zeta_{1}, \zeta_{2}\right) J_{0}\left(2 \sqrt{x_{1} \zeta_{1}}\right) J_{0}\left(2 \sqrt{x_{2} \zeta_{2}}\right) d \zeta_{1} d \zeta_{2}
\end{aligned}
$$

$$
\begin{align*}
& \Phi_{4}\left(x_{1}, x_{2}\right)=\int_{0}^{a_{1}} \int_{0}^{b_{2}} f\left(\zeta_{1}, \zeta_{2}\right) J_{0}\left(2 \sqrt{x_{1} \zeta_{1}}\right) J_{0}\left(2 \sqrt{x_{2} \zeta_{2}}\right) d \zeta_{1} d \zeta_{2} \tag{17}\\
& \Phi_{5}\left(x_{1}, x_{2}\right)=\int_{a_{1}}^{a_{2}} \int_{0}^{b_{2}} f\left(\zeta_{1}, \zeta_{2}\right) J_{0}\left(2 \sqrt{x_{1} \zeta_{1}}\right) J_{0}\left(2 \sqrt{x_{2} \zeta_{2}}\right) d \zeta_{1} d \zeta_{2} \\
& \Phi_{6}\left(x_{1}, x_{2}\right)=\int_{a_{2}}^{a_{3}} \int_{0}^{b_{1}} f\left(\zeta_{1}, \zeta_{2}\right) J_{0}\left(2 \sqrt{x_{1} \zeta_{1}}\right) J_{0}\left(2 \sqrt{x_{2} \zeta_{2}}\right) d \zeta_{1} d \zeta_{2}
\end{align*}
$$

where $J_{0}(z)$ is the Bessel function

$$
J_{0}(z)=\sum_{0}^{\infty} \frac{(-1)^{n}(z / 2)^{2 k}}{(K!)^{2}}
$$

Thus, one can formulate the following theorem.

Theorem 2. Assume that a system of linear operators $\left\{A_{1}, A_{2}\right\}$ satisfies the propositions of Theorem 1 where the spectrum of each operator A_{k} lies in zero. Then the infinitesimal correlation function $W(x, y)(11)$ is represented in the form (16) where $d_{\alpha, \beta} \in \mathbf{R}$, and the functions $\Phi_{\alpha}(x)$ are defined in (17).

To evaluate $d_{k, s}$ we represent l_{k} graphically in the pictures

where l_{k} are normalized constants in indicated areas $\left(\left\|l_{k}\right\|_{L^{2}(D)}=1\right)$. So that

$$
l_{k}=\frac{S_{D_{k}}}{\sqrt{G_{D_{k}}}}
$$

where $S_{D_{k}}$ is the characteristic function of the domain D_{k}, which is shown in the pictures for l_{k} and $G_{D_{k}}$ is the area.
For example,

$$
l_{1}=\frac{S_{\left[0, a_{1}\right] \times\left[b_{2}, b_{3}\right]}}{\sqrt{a_{1}\left(b_{3}-b_{2}\right)}}, \quad l_{2}=\frac{S_{\left[0, a_{2}\right] \times\left[b_{1}, b_{2}\right]}}{\sqrt{a_{2}\left(b_{2}-b_{1}\right)}}
$$

etc.
Let us evaluate $D l_{1}$:

$$
D l_{1}=\left(C+4\left(A_{2}\right)_{I}\left(A_{1}\right)_{I}\right) l_{1}=4\left(A_{2}\right)_{I}\left(A_{1}\right)_{I} l_{1}=2\left(A_{2}\right)_{I} a_{1} b_{1}
$$

(as $2\left(A_{1}\right)_{I}$ realizes integration in variable $\left.x_{1}\right)$. After the integration x_{2} which is carried out by operator $\left(A_{2}\right)_{I}$ one can get

$$
D l_{1}=\frac{a_{1}\left(b_{3}-b_{3}\right)}{\sqrt{a_{1}\left(b_{3}-b_{2}\right)}} \cdot S_{\left[0, a_{1}\right] \times\left[0, b_{3}\right]}=\sqrt{a_{1}\left(b_{3}-b_{2}\right)} \sqrt{a_{1} b_{3}} l_{4}
$$

to evaluate $d_{1,1}$ it is necessary to find

$$
\begin{aligned}
d_{1,1} & =\left\langle D l_{1}, l_{1}\right\rangle \\
& =\left\langle\sqrt{a_{1}\left(b_{3}-b_{2}\right)} S_{\left[0, a_{1}\right] \times\left[0, b_{3}\right]}, \frac{S_{\left[0, a_{1}\right] \times\left[b_{2}, b_{3}\right]}}{\sqrt{a_{1}\left(b_{3}-b_{2}\right)}}\right\rangle \\
& =a_{1}\left(b_{3}-b_{2}\right)
\end{aligned}
$$

Then $d_{1,2}=\left\langle D l_{1}, l_{2}\right\rangle$ we can derive that

$$
\begin{aligned}
d_{1,2} & =\left\langle\sqrt{a_{1}\left(b_{3}-b_{2}\right)} S_{\left[0, a_{1}\right] \times\left[0, b_{3}\right]}, \frac{S_{\left[0, a_{2}\right] \times\left[b_{1}, b_{2}\right]}}{\sqrt{a_{2}\left(b_{2}-b_{1}\right)}}\right\rangle \\
& =\sqrt{\frac{a_{1}\left(b_{3}-b_{2}\right)}{a_{2}\left(b_{2}-b_{1}\right)}} \cdot \sqrt{a_{1}\left(b_{2}-b_{3}\right)} \\
& =a_{1} \sqrt{\frac{b_{3}-b_{2}}{a_{2}}}
\end{aligned}
$$

Let us evaluate

$$
\begin{aligned}
d_{1,3} & =\left\langle D l_{1}, l_{3}\right\rangle \\
& =\left\langle\sqrt{a_{1}\left(b_{3}-b_{2}\right)} S_{\left[0, a_{1}\right] \times\left[0, b_{3}\right]}, \frac{S_{\left[0, a_{3}\right] \times\left[0, b_{1}\right]}}{\sqrt{a_{3} b_{1}}}\right\rangle \\
& =\frac{\sqrt{a_{1}\left(b_{3}-b_{2}\right)}}{\sqrt{a_{3} b_{1}}} \sqrt{a_{1} b_{1}}=a_{1} \sqrt{\frac{b_{3}-b_{2}}{a_{3}}} .
\end{aligned}
$$

Also

$$
\begin{aligned}
d_{1,4} & =\left\langle D l_{1}, l_{4}\right\rangle=\left\langle\sqrt{a_{1}\left(b_{3}-b_{2}\right)} \sqrt{a_{1} b_{3}} l_{4}, l_{4}\right\rangle \\
& =a_{1} \sqrt{b_{3}\left(b_{3}-b_{2}\right)}
\end{aligned}
$$

Since $D l_{1}=a_{1} \sqrt{b_{3}\left(b_{3}-b_{2}\right)} l_{4}$ and $l_{4} \perp l_{5}$ and $l_{4} \perp l_{6}$ we derive that $d_{1,5}=d_{1,6}=0$. Finally

$$
\begin{aligned}
d_{1,1} & =a_{1}\left(b_{3}-b_{2}\right) \\
d_{1,2} & =a_{1} \sqrt{\frac{b_{3}-b_{2}}{a_{2}}} \\
d_{1,3} & =a_{1} \sqrt{\frac{b_{3}-b_{2}}{a_{3}}} \\
d_{1,4} & =a_{1} \sqrt{\left(b_{3}-b_{2}\right) b_{2}} \\
d_{1,5} & =0 \\
d_{1,6} & =0
\end{aligned}
$$

REFERENCES

1. José Luis Abreu and Fetter Helga, The shift operator of a nonstationary sequence in Hilbert space, Bol. Soc. Mat. Mexicana, no. 1, 2 (1983), 49-57.
2. P.K. Getoor, The shift operator for non-stationary stochastic processes, Duke Math. J. 23 (1956), 175-187.
3. Raed Hatamleh, Multidimensional triangular models for the system of linear operator with given properties of commutators, Ph.D. Dissertation, Kharkove, KhSU, 1995. (Russian)
4. M.S. Livshits and A.A. Yantsevich, Theory of operator colligation in Hilbert space, Wiley, New York, 1979. (Engl. transl.)
5. F. Riesz and B. Sz-Nagy, Lesons d'analyse functionally Akademiani Kiado, Budepest, 1972.
6. A.A. Yantsevich and L. Abbaui, Some classes of inhomogeneous random fields, Ukranian Research Instit. of Sci. and Tech.-Econom. Research of Ukranian SSR, State Planning, Report N2206YK-84 Dep., 1985, N4(162).
7. V.A. Zolotarev, Triangular models of system of two-commutative operators, Dokl. Akad. Nauk SSR, no. 3, 63 (1976), 130-140.

Irbid National University, Department of Mathematics, Irbid-Jordan
E-mail address: raedhat@yahoo.com

[^0]: Key Words: Correlation function, triangular model, nonstationary field, spectrum of zero.

 AMS Classification: Primary 47D38, Secondary 60GXX, 60G20.
 Received by the editors on November 1, 1999, and in revised form on May 21, 2001.

