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A MORERA THEOREM FOR THE BOUNDARY
VALUES OF HOLOMORPHIC FUNCTIONS

IN THE UNIT BALL IN CN

DARJA GOVEKAR-LEBAN

1. Introduction and the result. Let BN ⊂ CN , N ≥ 2, be the
open unit ball. Suppose that an affine complex subspace Λ of complex
dimension k intersects bBN transversely. We say that f ∈ C(bBN )
has the Morera property with respect to Λ if the integral

∫
Λ∩bBN

fα

vanishes for each (k, k−1)-form α on CN with constant coefficients [3].

Functions that typically satisfy the Morera conditions are the ones
that belong to A(BN ), that is, are continuous on Bn and holomorphic
on BN . If f is such a function, then f |bBN has the Morera property
with respect to every affine linear subspace of complex dimension k,
1 ≤ k ≤ N − 1, which intersects bBN transversely.

A function f ∈ C(bBN ) is said to be a CR function if it satisfies
the weak tangential Cauchy-Riemann equations on bBN , that is, if∫

bBN
f∂̄α = 0 for every smooth (N,N − 2)-form α on CN . A function

f ∈ C(bBN ) extends through BN as a member of A(BN ) if and only if
f is a CR function [9].

Several Morera theorems are known [3], [6], [2], [4], [5]. These
theorems specify various open sets S of affine complex planes of complex
dimension k such that if f ∈ C(bBN ) has the Morera property with
respect to every λ ∈ S which intersects bBN transversely, then f is a
CR function on bBN .

The following theorem [1] shows that the Morera property of f ∈
C(bBN ) with respect to certain families of affine complex planes of
complex dimension k at a fixed distance from the origin is sufficient to
guarantee that f extends through BN as a member of A(BN ).
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Theorem 1.1 [1, Theorem 2.4]. Let N ≥ 2, 1 ≤ k ≤ N − 1 and
0 < r < 1. Assume that f ∈ C(bBN ) satisfies the Morera condition
with respect to every affine complex plane Λ of complex dimension k at
a fixed distance r from the origin.

If k < N − 1, then f extends through BN as a member of A(BN ).

In the case when k = N − 1, let E be the set of all r’s, 0 < r < 1,
such that r2/(1− r2) is a root of a polynomial of the form

βp,q(t) =
p∑

l=max (p+1−q,0)

(−1)ltl
l!(p− l)!(l + q − p− 1)!(N + p− l − 1)! ,

p ≥ 0, q ≥ 1.

If r �∈ E, then f extends through BN as a member of A(BN ). Moreover,
if r ∈ E then there exists a function f ∈ C(bBN ) which does not
continue through BN as a member of A(BN ) but satisfies the Morera
condition with respect to every affine complex hyperplane Λ at a distance
r from the origin.

For N = 2, Theorem 1.1 is a result of Globevnik and Stout [3,
Theorem 2.5.1]. The hypothesis in Theorem 1.1 is the weakest when
k = N − 1. The space A(bBN ), the restriction of the ball algebra
A(BN ) to bBN , is described in terms of the conditions on integrals over
intersections of the boundary bBN with complex affine hyperplanes in
CN at a fixed distance r from the origin, where r does not belong to an
exceptional set E. These intersections are submanifolds of bBN of real
codimension 2. Integral conditions over submanifolds of bBN of bigger
codimension are stronger. Conditions on integrals over submanifolds of
bBN of minimal real codimension 1 are in some sense the weakest. In
our context the natural submanifolds of bBN of minimal codimension
1 are the intersections of bBN with affine real hyperplanes in CN at a
fixed distance r from the origin.

The Morera property with respect to arbitrary affine real hyperplane
in CN was defined in a natural way in [4]. If an affine real hyperplane
H meets bBN transversely, then f ∈ C(bBN ) is said to have the Morera
property with respect to H, if

∫
H∩bBN

fα = 0 for every (N,N−2)-form
α with constant coefficients.
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Since the Morera theorem above for complex hyperplanes at a fixed
distance r from the origin holds only if r does not belong to an
exceptional set, one would expect that this is the strongest possible
result in the sense that one cannot replace the Morera conditions along
complex hyperplanes with the weaker Morera conditions along real
hyperplanes. However, this turns out to be possible and this is the
result of the present paper:

Theorem 1.2. Let N ≥ 2 and 0 < r < 1. Assume that f ∈
C(bBN ) satisfies the Morera condition with respect to every affine real
hyperplane at a fixed distance r from the origin. Let E be the set of
all r’s, 0 < r < 1 such that r/

√
1− r2 is a root of a polynomial of the

form

βp,q(t) =




p∑
l=0

(−1)l
(1 + l)(2 + l) · · · (N − 1 + l)

(
p

l

)(
q − 1
l

)

·
∫ 1

−1

(1− x2)N−1+l(x2 + t2)p−l(x− it)q−1−p dx

if p ≤ q − 1
q−1∑
l=0

(−1)l
(1 + l)(2 + l) · · · (N − 1 + l)

(
p

l

)(
q − 1
l

)

·
∫ 1

−1

(1− x2)N−1+l(x2 + t2)q−1−l(x+ it)p−q+1 dx

if p ≥ q − 1
where p is a nonnegative integer and q is a positive integer.

Suppose that r �∈ E. Then f extends through BN as a member of
A(BN ).

Moreover, if r ∈ E, then there exists a function f ∈ C(bBN ) which
does not continue through BN as a member of A(BN ), yet f satisfies
the Morera condition with respect to every affine real hyperplane at a
distance r from the origin.

2. Proof of Theorem 1.2. Let Y be the subspace of all functions
f ∈ C(bBN ) satisfying the Morera condition with respect to every affine
real hyperplane at a distance r from the origin, that is, the subspace
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of all functions f ∈ C(bBN ) satisfying the condition
∫

H∩bBN
fα = 0

for each (N,N − 2)-form α with constant coefficients and for each real
hyperplane H at a distance r from the origin. Indeed, Y is a closed
U-invariant subspace of C(bBN ), where U is the unitary group on CN :
if f ∈ Y , then f ◦ U ∈ Y for each U ∈ U since we have∫

H∩bBN

(f ◦ U)α =
∫

U(H)∩bBN

(U−1)∗((f ◦ U)α)

=
∫

U(H)∩bBN

f [(U−1)∗α] = 0

for each (N,N − 2)-form α with constant coefficients, for each real
hyperplaneH at a distance r from the origin and for each U ∈ U . Given
p ≥ 0, q ≥ 0, let H(p, q) be the space of all harmonic homogeneous
polynomials of total degree p in the variables z1, . . . , zN and of total
degree q in the variables z̄1, . . . , z̄N . By a result of Nagel and Rudin [7,
Theorem 4.4], every function in Y extends through BN as a member
of A(BN ) if and only if Y contains no H(p, q) with p ≥ 0 and q ≥ 1.
In fact, either H(p, q) ⊂ Y or H(p, q) ∩ Y = {0} [7].
To prove that every function in Y extends through BN as a member

of A(BN ), it is enough to show that for every p ≥ 0 and q ≥ 1 the
function f(z) = zp

N−1z̄
q
N does not belong to Y . We will show that

f ∈ Y if and only if βp,q(r/
√
1− r2 ) = 0. Consider the (N,N − 2)-

form αJ = dz1 ∧ · · · ∧ dzN ∧ dz̄1 · · · ∧ d̂z̄j1 ∧ · · · ∧ d̂z̄j2 ∧ · · · ∧ dz̄N , where
J = (j1, j2), 1 ≤ j1 < j2 ≤ N . Write ζj = xj + iyj , 1 ≤ j ≤ N , and
consider the real hyperplane Λ = U(Λ0) where Λ0 = {ζ ∈ CN , yN = r}
and U ∈ U . Then∫

Λ∩bBN

fαJ =
∫

Λ0∩bBN

(f ◦ U)U∗αJ

=
∫

Λ0∩bBN

(UN−1(ζ))p(UN (ζ))
q
dU1(ζ) ∧ · · · ∧ dUN (ζ)∧

∧ dU1(ζ) ∧ · · · ∧ ̂dUj1(ζ) ∧ · · · ∧ ̂dUj2(ζ) ∧ · · · ∧ dUN (ζ).

If (uj,l)j,l=1,... ,N is the matrix of U in the canonical basis of CN , then
we denote by ∆(U) the determinant of the matrix (uj,l)j,l=1,... ,N and
we denote by ∆((j1,j2);(l1,l2))(U), 1 ≤ l1 < l2 ≤ N , the determinant of
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the matrix obtained from the above matrix (uj,l)j,l=1,... ,N deleting the
j1th, j2th rows and the l1th, l2th columns. Then on Λ0 we have

Uj(ζ) = uj,1ζ1 + · · ·+ uj,N−1ζN−1 + uj,N (xN + ir),
dUj(ζ) = uj,1dζ1 + · · ·+ uj,N−1dζN−1 + uj,NdxN ,

dU1(ζ) ∧ · · · ∧dUN (ζ) ∧ dU1(ζ) ∧ · · · ∧ ̂dUj1(ζ) ∧ · · · ∧ ̂dUj2(ζ) ∧ · · · ∧ dUN (ζ)

= ∆(U)
N−1∑
l1=1

∆((j1,j2);(l1,N))(U) dζ1 ∧ · · · ∧ dζN−1∧

∧ dxN ∧ dζ̄1 ∧ · · · ∧ d̂ζ̄l1 ∧ · · · ∧ dζ̄N−1.

Thus∫
Λ0∩bBN

fαJ

= ∆(U)
[ N−1∑

l1=1

∆((j1,j2);(l1,N))(U)
] ∫

Λ0∩bBN

(UN−1(ζ))p(UN (ζ))
q

· dζ1 ∧ · · · ∧ dζN−1 ∧ dxN ∧ dζ̄1 ∧ · · · ∧ d̂ζ̄l1 ∧ · · · ∧ dζ̄N−1.

Then, by Stokes’ theorem,∫
Λ0∩bBN

fαJ

= ∆(U)
[ N−1∑

l1=1

∆((j1,j2);(l1,N))(U)
] ∫

Λ0∩BN

d[(UN−1(ζ))p(UN (ζ))
q
]

· dζ1 ∧ · · · ∧ dζN−1 ∧ dxN ∧ dζ̄1 ∧ · · · ∧ d̂ζ̄l1 ∧ · · · ∧ dζ̄N−1

= ∆(U)
[ N−1∑

l1=1

∆((j1,j2);(l1,N))(U)
]

·
∫

Λ0∩BN

N∑
i=1

(
∂

∂ζi
[(UN−1(ζ))p(UN (ζ))

q
] dζi

+
∂

∂ζ̄i
[(UN−1(ζ))p(UN (ζ))

q
] dζ̄i

)
∧
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∧ dζ1 ∧ · · · ∧ dζN−1 ∧ dxN ∧ dζ̄1 ∧ · · · ∧ d̂ζ̄l1 ∧ · · · ∧ dζ̄N−1

= ∆(U)
[ N−1∑

l1=1

∆((j1,j2);(l1,N))(U)
]

·
∫

Λ0∩BN

(
∂

∂ζ̄l1

[(UN−1(ζ))p(UN (ζ))
q
] dζ̄l1

)
∧

∧ dζ1 ∧ · · · ∧ dζN−1 ∧ dxN ∧ dζ̄1 ∧ · · · ∧ d̂ζ̄l1 ∧ · · · ∧ dζ̄N−1

= ∆(U)
[ N−1∑

l1=1

∆((j1,j2);(l1,N))(U)
]

·
∫

Λ0∩BN

q(UN−1(ζ))p(UN (ζ))
q−1

ūN,l1 dζ̄l1∧

∧ dζ1 ∧ · · · ∧ dζN−1 ∧ dxN ∧ dζ̄1 ∧ · · · ∧ d̂ζ̄l1 ∧ · · · ∧ dζ̄N−1

= ∆(U)
[ N−1∑

l1=1

∆((j1,j2);(l1,N))(U)
]

·
∫

Λ0∩BN

q(UN−1(ζ))p(UN (ζ))
q−1

ūN,l1(−1)N+l1−1

· dζ1 ∧ · · · ∧ dζN−1 ∧ dxN ∧ dζ̄1 ∧ · · · ∧ dζ̄l1 ∧ · · · ∧ dζ̄N−1.

This gives∫
Λ0∩bBN

fαJ = ∆(U)
[ N−1∑

l1=1

(−1)N+l1−1∆((j1,j2);(l1,N))(U) ūN,l1

]

·
∫

Λ0∩BN

q(UN−1(ζ))p(UN (ζ))
q−1

dζ1 ∧ · · · ∧ dζN−1 ∧ dxN

∧ dζ̄1 ∧ · · · ∧ dζ̄N−1.

If j2 < N , we have

N−1∑
l1=1

(−1)N+l1−1ūN,l1∆((j1,j2);(l1,N))(U) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1,1 · · · u1,N−1

· · · · · · · · ·
ûj1,1 · · · ̂uj1,N−1

· · · · · · · · ·
ûj2,1 · · · ̂uj2,N−1

· · · · · · · · ·
uN,1 · · · uN,N−1

uN,1 · · · uN,N−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.
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If j2 = N , we have

N−1∑
l1=1

(−1)N+l1−1ūN,l1∆((j1,j2);(l1,N))(U) =

∣∣∣∣∣∣∣∣∣

u1,1 · · · u1,N−1

· · · · · · · · ·
ûj1,1 · · · ̂uj1,N−1

· · · · · · · · ·
uN,1 · · · uN,N−1

∣∣∣∣∣∣∣∣∣
= ∆(j1;N)(U),

where we denote by ∆(j1;N)(U) the determinant obtained from the
matrix (uj,l)j,l=1,... ,N deleting the j1th row and the Nth column. It
remains to consider the case J = (j1, N) for 1 ≤ j1 < N . Now

∫
Λ∩bBN

fαJ = q∆(U)∆(j1;N)(U)

·
∫

Λ0∩BN

(UN−1(ζ))pUN (ζ)
q−1

· dζ1 ∧ · · · ∧ dζN−1 ∧ dxN ∧ dζ̄1 ∧ · · · ∧ dζ̄N−1.

Computing the powers and using the Fubini’s theorem we obtain that
the last integral is

AJp!(q − 1)!
(1)

·
∑

(uN−1,1)
p1 ···(uN−1,N−1)

pN−1 (uN−1,N )pN (uN,1)q1 ···(uN,N−1)qN−1 (uN,N )qN

p1!···pN !q1!···qN !

·
∫ √

(1−r2)

−
√

(1−r2)

(xN + ir)pN (xN − ir)qN dxN

·
∫
√

(1−r2−x2
N

) BN−1

ζp1
1 ζ

q1

1 ζp2
2 ζ

q2

2 · · · ζpN−1
N−1 ζ

qN−1

N−1

· dζ1 ∧ · · · ∧ dζN−1 ∧ dζ̄1 ∧ · · · ∧ dζ̄N−1,

where the summation is over all (p1, . . . , pN ), (q1, . . . , qN ) such that
0 ≤ pi ≤ p, 0 ≤ qi ≤ q − 1 (1 ≤ i ≤ N) and p1 + · · · + pN = p,
q1 + · · · + qN = q − 1 and where AJ is a nonzero constant. Since the
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last integral in (1) vanishes when (p1, . . . pN−1) �= (q1, . . . , qN−1) [8,
pp.15 16], (1) equals

AJp!(q − 1)!
(2)

·
∑

(uN−1,1)
p1 ···(uN−1,N−1)

pN−1 (uN−1,N )pN (uN,1)p1 ···(uN,N−1)pN−1 (uN,N )qN

p1!···pN !p1!···pN−1!qN !

·
∫ √

(1−r2)

−
√

(1−r2)

(xN + ir)pN (xN − ir)qN dxN

·
∫
√

(1−r2−x2
N

) BN−1

|ζ1|2p1 |ζ2|2p2 · · · |ζN−1|2pN−1 dζ1 ∧ · · ·

∧ dζN−1 ∧ dζ̄1 ∧ · · · ∧ dζ̄N−1,

where the summation is over all (p1, . . . , pN ), qN such that 0 ≤ qN ≤
q−1, 0 ≤ pi ≤ p, 1 ≤ i ≤ N , and p1+ · · ·+pN−1 = p−pN = q−1−qN .
Computing the last integral we get

∫
√

(1−r2−x2
N

) BN−1

|ζ1|2p1 |ζ2|2p2 · · · |ζN−1|2pN−1 dζ1 ∧ · · ·

∧ dζN−1 ∧ dζ̄1 ∧ · · · ∧ dζ̄N−1

= cN−1

(√
(1− r2 − x2

N )
)2(N−1+p1+···+pN−1)

·
∫

BN−1

|ζ1|2p1 |ζ2|2p2 · · · |ζN−1|2pN−1 dνN−1

= cN−1

(√
(1− r2 − x2

N )
)2(N−1+p−pN ) (N − 1)!p1! · · · pN−1!

(N − 1 + p− pN )!

[8, p. 17].

Here νN−1 is the Lebesgue measure on CN−1 = R2N−2 and cN−1 is a
nonzero constant.
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We have shown that
∫
Λ∩bBN

fαJ equals AJcN−1∆(U)∆(j1;N)(U)q×
(N − 1)!Fr(U), where

Fr(U) = p!(q − 1)!
·
∑

(uN−1,1)
p1 ···(uN−1,N−1)

pN−1 (uN−1,N )pN (uN,1)p1 ···(uN,N−1)
pN−1 (uN,N )qN

p1!···pN !qN !(N−1+p−pN )!

·
∫ √

(1−r2)

−
√

(1−r2)

(xN + ir)pN (xN − ir)qN

·
(√

1− r2 − x2
N

)2(N−1+p−pN )

dxN ,

where the summation is over all (p1, . . . , pN ), qN such that 0 ≤ qN ≤
q−1, 0 ≤ pi ≤ p, 1 ≤ i ≤ N , and p1+ · · ·+pN−1 = p−pN = q−1−qN .

We now simplify the expression for Fr(U). For each U ∈ U we have

uN−1,1ūN,1 + · · ·+ uN−1,N−1ūN,N−1 = −uN−1,N ūN,N .

Putting this into (3), we obtain

Fr(U) =
∑

p!(q − 1)! (−uN−1,NuN,N )p−pN (uN−1,N )pN (uN,N )qN

(p− pN )!(N − 1 + p− pN )!pN !qN !

·
∫ √

(1−r2)

−
√

(1−r2)

(xN + ir)pN (xN − ir)qN

·
(√

1− r2 − x2
N

)2(N−1+p−pN )

dxN ,

where the summation is over all pN , qN such that 0 ≤ pN ≤ p,
0 ≤ qN ≤ q − 1 and p− pN = q − 1− qN . Now

∫ √
(1−r2)

−
√

(1−r2)

(xN + ir)pN (xN − ir)qN

(√
1− r2 − x2

N

)2(N−1+p−pN )

dxN

= (
√
1− r2 )2(N−1)+p+q

∫ 1

−1

(1− x2)N−1+p−pN

·
(
x+ i

r√
1−r2

)pN
(
x− i

r√
1−r2

)qN

dx.
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We have shown that

Fr(U) =
(√

1− r2 )2(N−1)+p+q up
N−1,N uq−1

N,N βp,q

(
r√
1− r2

)
,

where

βp,q(t) =
∑

0≤pN≤p
0≤qN≤(q−1)

p−pN=q−1−qN

(−1)p−pN p!(q − 1)!
(p− pN )!(N − 1 + p− pN )!pN !qN !

·
∫ 1

−1

(1− x2)N−1+p−pN (x+ it)pN (x− it)qN dx,

that is,

βp,q(t)

=




p∑
l=0

(−1)l
(1 + l)(2 + l) · · · (N − 1l)

(
p

l

)(
q − 1
l

)

·
∫ 1

−1

(1− x2)N−1+l(x2 + t2)p−l(x− it)q−1−p dx

if p ≤ q − 1
q−1∑
l=0

(−1)l
(1 + l)(2 + l) · · · (N − 1 + l)

(
p

l

)(
q − 1
l

)

·
∫ 1

−1

(1− x2)N−1+l(x2 + t2)q−1−l(x+ it)p−q+1 dx

if p ≥ q − 1.

βp,q is a polynomial in t of degree p+ q − 1.
Recall that

∫
U(Λ0)∩bBN

fαJ = AJcN−1∆(U)∆(j1;N)(U)q(N−1)!Fr(U).

If βp,q[r/(
√
1− r2 )] = 0, then

∫
U(Λ0)∩bBN

fαJ = 0 for each U ∈ U ,
that is, f ∈ Y . Conversely, let f ∈ Y , that is,

∫
U(Λ0)∩bBN

fαJ = 0 for

all U ∈ U . Let Di = {U ∈ U ; ∆(i;N)(U) �= 0} and let D = ∪N−1
i=1 Di.

The set D is an open dense subset of U . The same holds for the set of all
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U ∈ U such that both uN−1,N and uN,N are different from zero. Thus,
there is a U ∈ D such that uN−1,N �= 0 and uN,N �= 0. This implies
that βp,q [r/(

√
1− r2 )] = 0. This completes the proof of Theorem 1.2.

Remark 2.1. Note that the exceptional set E in Theorem 1.2 is
not empty. For instance, if p = 0 and q = 4, then βp,q has a
positive root and the corresponding value for r is

√
2Γ(1/2 +N)/√

2Γ(1/2 +N) + 3Γ(3/2 +N).
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