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STRONG ASYMPTOTICS FOR
RELATIVISTIC HERMITE POLYNOMIALS

WOLFGANG GAWRONSKI AND WALTER VAN ASSCHE

ABSTRACT. Strong asymptotic results for relativistic Her-
mite polynomials HN

n (z) are established as n, N → ∞, for the
cases where N = an + α + 1/2, a ≥ 0, α > −1, or N/n → ∞,
thereby supplementing recent results on weak asymptotics for
these polynomials. Depending on growth properties of the ra-
tio N/n for the rescaled polynomials HN

n (cnz) (cn being suit-
able positive numbers, n, N → ∞), formulae of Plancherel-
Rotach type are derived on the oscillatory interval, in the
complex plane away from the oscillatory region, and near the
endpoints of the oscillatory interval.

1. Introduction and summary. In this paper we continue the
study of asymptotic properties of relativistic Hermite polynomials HN

n .
This set of polynomials has been introduced for the investigation of the
harmonic oscillator in the frame of relativistic quantum theory [1]. Here
n denotes the principal quantum number, being a nonnegative integer,
and N is a positive parameter describing the underlying relativistic
effect such that the system approaches the classical (nonrelativistic)
model as N → ∞. This transition is made precise by the limit relation

(1.1) lim
N→∞

HN
n (z) = Hn(z), z ∈ C, n ∈ N0,

where Hn denotes the well-known Hermite polynomials [17, Chapter
V]. Similar to Hn its relativistic counterpart can be characterized by
several properties, for instance as polynomial solution of the second
order linear differential equation [1, 11, 15, 19, 20]

(1.2)
(
1 +

z2

N

)
y′′ − 2

N
(N + n− 1)zy′ +

n

N
(2N + n− 1)y = 0,
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by the Rodrigues formula [20]

(1.3) HN
n (z) = (−1)n

(
1 +

z2

N

)N+n(
d

dz

)n 1

(1 + z2/N)N
,

by the three term recurrence relation [1, 15, 19]

(1.4)
HN

n+1(z) = 2
(
1 +

n

N

)
zHN

n (z)

− n

N
(2N + n− 1)

(
1 +

z2

N

)
HN

n−1(z), n ≥ 1,

with HN
0 (z) ≡ 1, HN

1 (z) = 2z, and through the orthogonality
formulae [1, 11, 19]

(1.5)
∫ ∞

−∞
xkHN

n (x)
dx

(1 + x2/N)N+n

=


0 k = 0, . . . , n− 1,

n!
√
πN

Γ(N − 1/2)
Γ(N)

k = n,
N>

1
2
,

(1.6)
∫ ∞

−∞
HN

n (x)HN
m (x)

dx

(1 + x2/N)N+1+(m+n)/2

= δn,m

√
πn!

√
NΓ(2N + n)Γ(N + (1/2))

(n+N)NnΓ(2N)Γ(N)
, n,m ∈ N0, N >

1
2
.

The two latter identities express the fact that the relativistic Hermite
polynomials form a system of orthogonal polynomials with respect to
a varying weight, that is, a weight function depending on the degree n
and the varying parameter N .

Recent publications which are concerned with the asymptotic theory
of the relativistic Hermite polynomials deal with weak asymptotics,
that is, the computation of the limit distribution of the zeros of HN

n .
More precisely, denoting by xN

nν , ν = 1, . . . , n, the zeros of HN
n , which

are all real and simple due to the orthogonality (1.5), and by

(1.7) ξN
n (x) :=

1
n

n∑
ν=1

δxN
nν

(x), x ∈ R,
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the corresponding normalized counting measure (δxN
nν

is the Dirac
measure at the point xN

nν), then among other theorems in [7, 11, 20]
the following results were established. Suppose that N depends on n
such that

(1.8) lim
n→∞

N

n
= a ∈ [0,∞],

then in the sense of weak convergence, n→ ∞,

(1.9) ξN
n

(√
Nx

) → ξ(x), if 0 < a <∞,

where the measure ξ is absolutely continuous with

(1.10)
d

dx
ξ(x) =

√
1 + 2a− a2x2

π(1 + x2)
for |x| < √

1 + 2a / a

and

(1.11) ξN
n

(√
2nx

) → ξ(x), if a = ∞,

where now the measure ξ is Wigner’s semicircle law with density

(1.12)
d

dx
ξ(x) =

2
π

√
1 − x2, |x| < 1.

The papers [11, 20] make use of logarithmic potential theory with
external fields, whereas the approach in [7, Theorem 3.2] is based on the
method of canonical moments essentially. It is worthwhile to mention
that both results (1.9) and (1.11) can be obtained from [13] using
the varying recurrence relation (1.4) and also from [8] on the basis of
the differential equation (1.2). A slight modification of the method in
[8] confirms the validity of (1.9) too in the case a = 0. Then (1.10)
is Cauchy’s density on the real line. If N = 1 (see problem 57 in [16,
Chapter V] for a very closely related case), then the zeros x1

nν ofH1
n can

be computed explicitly using (1.3) and then (1.9) follows immediately.
On the other hand the limit relation (1.1) suggests that the relativistic
polynomials HN

n should behave like its classical companion Hn if the
parameterN runs “far ahead” of the degree n. This speculation is made
precise by the relation (1.11) above saying that the limit distribution
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of the zeros for HN
n in this case is the same as for the standard Hermite

polynomials Hn [9].

In view of the weak asymptotics it is natural to ask for strong
asymptotics; that is, for asymptotic forms of the rescaled polynomials
HN

n (cnz), (cn) being a suitable sequence of positive numbers.

A direct approach to answer this question is to start from (1.3) which
gives the integral representation

(1.13) HN
n (

√
Nz) =

(−1)n

2πiNn/2
(1 + z2)N+n

∫
C

dt

(1 + t2)N (t− z)n+1
,

z ∈ C \ {i,−i}, where C is a simple closed contour with positive
orientation encircling t = z but not t = i,−i. A saddle point
approximation is very cumbersome, in particular concerning a control
of the uniform dependence on the variable z. Therefore in the sequel
we make use of the connection formula

(1.14) HN
n (

√
Nz) = cnN (1 + z2)n/2 P (N−(1/2),N−(1/2))

n

(
z√

1 + z2

)
derived by Nagel [14] using the differential equation (1.2) and sev-
eral transformation formulae for the hypergeometric function. Here
P

(N−(1/2),N−(1/2))
n denotes the Jacobi polynomial the definition of

which we take from Szegö’s book [17, Chapter IV] together with the
normalization and some standard formulae as well. The numbers cnN

are given by

(1.15) cnN =
n!
Nn/2

Γ(N + (1/2))Γ(n+ 2N)
Γ(2N)Γ(n+N + (1/2))

[14, 15], and the power (1 + z2)n/2 is defined through (1 + z2)n/2 =
exp

(
(n/2) log(1 + z2)

)
where the logarithm is the principal branch in

(1.16) Ci := C \
(
i[1,∞) ∪ i(−∞,−1]

)
,

that is log(1 + z2) reduces to 0 for z = 0 and is continuous throughout
Ci. Further

(1.17) ζ :=
z√

1 + z2
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is that branch mapping the domain Ci of the z-plane conformally onto
the cut ζ-plane

(1.18) C1 := C \
(
(−∞,−1] ∪ [1,∞)

)
such that the origins of both regions correspond to each other. Thus
the question of finding strong asymptotics for HN

n is transferred to the
same problem for the symmetric Jacobi polynomials P (N−(1/2),N−(1/2))

n

with varying weights. The connection of general relativistic orthogonal
polynomials and Jacobi polynomials with varying weights has been
pointed out systematically in a recent note by Ismail [12].

It is the main purpose of this paper to derive and to work out the
details of strong asymptotics for the relativistic Hermite polynomials.
We will consider the cases where N = an+ α+ 1/2, a ≥ 0, α > −1, or
N/n → ∞. For these special parameters N satisfying (1.8) the strong
asymptotics will be performed on the basis of known Darboux type
formulae for Jacobi polynomials with varying weights (Sections 3 and
4) which we take from [2, 3, 10] and by the use of a Riemann-Hilbert
approach (Section 5). The central results are formulae of Plancherel-
Rotach type for HN

n including Airy asymptotics.

2. Jacobi polynomials with varying weights. In this section we
collect some known Darboux type formulae which after some modifica-
tions we take from [2, 10]. In view of the general assumption (1.8) and
the connection formula (1.14) we consider the Jacobi polynomials in
ultraspherical form P

(αn,αn)
n where (αn) is a sequence of real numbers

satisfying

(2.1) αn = an+ α,

where a ≥ 0, α > −1, or

(2.2) lim
n→∞

αn

n
= ∞.

The assumption (2.1) is made in the light of the simplicity of some
formulae given by [10] although Darboux type asymptotic forms for
P

(αn,αn)
n are available from the recent literature [2] under the general

condition limn→∞ αn/n = a too.
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First we impose (2.1). After some easy computations from Theorem
1 in [10] we readily obtain

Lemma 2.1. Suppose that θ ∈ (0, π) is fixed and the sequence (αn)
is given by (2.1). Further assume that the function τ is defined by

(2.3)
τ (θ) := θ − arctan

(
1 + a+

√
1 + 2a

a
tan

θ

2

)
− arctan

(
a

1 + a+
√

1 + 2a
tan

θ

2

)
.

If

(2.4) ξ =
√

1 + 2a
1 + a

cos θ,

then

P (αn,αn)
n (ξ) =

(
πn

1 + 2a
1 + a

sin
θ

2
cos

θ

2

)−1/2

·
(

(1 + a)2

1 + 2a

)n/2( 1 + 2a
(1 + a)2

)−an−α

(2.5)

·
(

1
4

(
a2 + (1 + 2a) sin2 θ

))−(an+α)/2

·
{

sin
(
n(θ + aτ(θ)) +

θ

2
+
π

4
+ ατ (θ)

)
+ O

(
1
n

)}
,

as n → ∞. Moreover the remainder holds uniformly on [ε, π − ε] for
any ε ∈ (0, π).

In (2.3), “arctan” denotes the principal branch, that is, −π/2 <
arctanx < π/2 for real x and, if a = 0, then we use the relation
lima→0+ τ (θ) = θ − π/2.

Next, we provide the companion of Lemma 2.1, that is, the asymp-
totics on the complement of the interval of zeros. Here and throughout,
for real r, s with r < s, we use the notation

(2.6) C[r,s] := C \ [r, s],
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i.e., the complex plane with a cut along the interval [r, s], and the
generalized Jukowski function

(2.7) w = φs(ζ) :=
√
ζ + s+

√
ζ − s√

ζ + s−√
ζ − s =

1
s

(
ζ +

√
ζ2 − s2

)
with

(2.8) s :=
√

1 + 2a
1 + a

mapping C[−s,s] conformally onto the exterior of the unit circle |w| > 1
such that ζ = ∞ corresponds to w = ∞. For later reference here we
already mention the inverse of the function φs which is given by

(2.9) ζ = φ−1
s (w) = s

w + w−1

2
, |w| > 1.

Now Theorem 2 in [10] immediately implies

Lemma 2.2. Suppose that the real sequence (αn) is given by (2.1)
and that the function w is defined in (2.7). Then for ζ ∈ C[−s,s], the
Jacobi polynomial satisfies

(2.10)

P (αn,αn)
n (ζ) =

(
πn

1 + 2a
1 + a

)−1/2( (1 + a)2

1 + 2a

)n/2

·
(

4(1 + a)2 w2

(1 + 2a)2(w2 − 1
1+2a )

)an+α

· wn+1

(w2 − 1)1/2

{
1 +O

(
1
n

)}
,

as n→ ∞. Here the branches of the fractional powers are positive when
w is real and greater than 1. Moreover the remainder holds uniformly
on compact subsets of C[−s,s].

The reader who is interested in the general case limn→∞ αn/n = a ∈
[0,∞) is referred to [2, Section 4]. The next auxiliary results on Jacobi
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polynomials with varying weights deal with the assumption (2.2). To
this end we put

sn :=

√
(n+ 1)(2αn + n− 1)

n(2αn + n)
,(2.11)

Dn :=
n2 + 2nαn

(n+ αn)2
(2.12)

and observe that sn → 1, Dn → 0, by (2.2). Now Theorem 3.5 in [2]
reduces to

Lemma 2.3. Suppose that the real sequence (αn) satisfies (2.2) and
that sn, Dn are defined by (2.11), (2.12), respectively. Further, assume
that θ ∈ (0, π) is fixed and the functions ρn and an are defined through

(2.13)

ρn(θ) := nθ +
θ

2
+
π

4
+ αnθ

− αn

{
arctan

(√
n+ 2αn − 1 +

√
n+ 1√

n+ 2αn − 1 −√
n+ 1

tan
θ

2

)
+ arctan

(√
n+ 2αn − 1 −√

n+ 1√
n+ 2αn − 1 +

√
n+ 1

tan
θ

2

)}
,

(2.14)
an(θ) :=

2αn+(1/2)(n+ αn)2αn+n+(1/2)

(π sin θ)1/2(n+ 1)(n+1)/2(n+ 2αn − 1)αn+(n+1)/2

· ((αn − 1)2 + (n+ 1)(n+ 2αn − 1) sin2 θ
)−αn/2

.

If ξ = sn cos θ, then the rescaled Jacobi polynomial P (αn,αn)
n (

√
Dnζ)

satisfies

(2.15) P (αn,αn)
n

(√
Dnξ

)
= an(θ)

{
sin ρn(θ) + o(1)

}
,

as n → ∞. Moreover the remainder holds uniformly with respect to
θ ∈ [ε, π − ε] for any ε ∈ (0, π).

In (2.13) “arctan” is the principal branch as defined above. At this
stage we point out that only under stronger growth conditions than
(2.2) the expressions in Lemma 2.3 may be simplified.



STRONG ASYMPTOTICS 497

Finally in this section we derive asymptotics for P (αn,αn)
n

(√
Dnζ

)
from [2] for ζ belonging to the cut plane C[−sn,sn] (see (2.6), (2.11)).
Looking at (2.7) and (2.8), we consider the variables ζ ∈ C[−sn,sn] and
wn, |wn| > 1, being connected by

(2.16) ζ = sn
wn + w−1

n

2

and

(2.17) wn = φsn
(ζ) =

√
ζ + sn +

√
ζ − sn√

ζ + sn −√
ζ − sn

=
1
sn

(
ζ +

√
ζ2 − s2n

)
.

This means that the domain C[−sn,sn] is mapped conformally onto the
exterior of the unit circle in the wn-plane such that the points ζ = ∞
and wn = ∞ correspond to each other. Now from Theorem 3.3 in [2]
we readily obtain

Lemma 2.4. Suppose that the real sequence (αn) satisfies (2.2) and
that Dn is defined by (2.12). If the function wn is defined in (2.17),
then for ζ ∈ C[−1,1] the rescaled Jacobi polynomial satisfies

P (αn,αn)
n

(√
Dnζ

)
=

4αn(n+ αn)2αn+n+(1/2)

π1/2(n+ 1)(n+1)/2(n+ 2αn − 1)2αn+(n+1)/2

·
(

w2
n

w2
n − n+1

n+2αn−1

)αn wn+1
n

(w2
n − 1)1/2

(
1 + o(1)

)
,

as n→ ∞. Here the branches of the fractional powers are positive when
wn is real and greater than sn (see (2.11)). Moreover the o-term holds
uniformly on compact subsets of C[−1,1].

3. Asymptotics on the interval of zeros. In this section we use
the preparations given by Lemmata 2.1 and 2.3 to derive oscillating
asymptotics for the relativistic Hermite polynomialsHN

n on the interval
of zeros. For reasons explained above we restrict our considerations to
the cases

(3.1) N = an+ α+
1
2
,
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where a ≥ 0, α > −1 (see (1.14)) and

(3.2) lim
n→∞

N

n
= ∞.

In view of the basic connection formula (1.14) and besides the conformal
mapping ζ introduced in (1.17) we also consider its inverse given by

(3.3) z =
ζ√

1 − ζ2 .

According to the properties stated in the introduction we have to take
that branch which maps the cut ζ-plane C1 (see (1.18)), onto the
domain Ci (see (1.16)) in the z-plane such that the origins of both
regions correspond to each other.

First we consider the case (3.1). By (1.14), (1.17), (3.3) and (2.4), we
observe that the asymptotic interval of zeros for P (N−(1/2),N−(1/2))

n (ζ)
in the ζ-plane is given by (−√

1 + 2a/(1+a),
√

1 + 2a/(1+a)) which by
(3.3) is mapped onto the interval

(−√
1 + 2a/a,

√
1 + 2a/a

)
in the z-

plane. If a = 0, then we have the obvious correspondence of the interval
(−1, 1) to the whole real line. Now on the basis of (1.14) Lemma 2.1
gives the following asymptotics by straightforward computations.

Theorem 3.1. Suppose that θ ∈ (0, π) is fixed, N > 0, cnN are given
by (3.1), (1.15), respectively and that the function τ is defined in (2.3).
If

(3.4) x =
√

1 + 2a cos θ√
a2 + (1 + 2a) sin2 θ

,

then

HN
n

(√
Nx

)
= 2N−(1/2)cnN

(1 + a)2n+2N−1

(1 + 2a)(n/2)+N−(1/2)

·
(
πn

1 + 2a
1 + a

sin
θ

2
cos

θ

2

)−1/2

(3.5)

· (a2 + (1 + 2a) sin2 θ
)−(n+N)/2+(1/4)

·
{

sin
(
n(θ + aτ(θ)) +

θ

2
+
π

4
+ ατ (θ)

)
+ O

( 1
n

)}
,
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as n → ∞. Moreover the remainder holds uniformly on [ε, π − ε] for
any ε ∈ (0, π).

Second we deal with the case (3.2) which is handled by Lemma 2.3
via (1.14). After some easy computations we obtain

Theorem 3.2. Suppose that N > 0 satisfies (3.2) and that the
numbers cnN are given by (1.15). Further assume that θ ∈ (0, π) is
fixed and the functions ρ∗n and a∗n are defined through
(3.6)

ρ∗n(θ) := nθ +
θ

2
+
π

4
+

(
N − 1

2

)
θ

−
(
N − 1

2

){
arctan

(√
n+ 2N − 2 +

√
n+ 1√

n+ 2N − 2−√
n+ 1

tan
θ

2

)
+ arctan

(√
n+ 2N − 2 −√

n+ 1√
n+ 2N − 2 +

√
n+ 1

tan
θ

2

)}
,

(3.7)

a∗n(θ) :=
cnN

(π sin θ)1/2

·
2N/2

(
n+N− 1

2

)2N+n−(1/2)
{(
N− 3

2

)2

+(n+1)(n+2N−2)
}n/2

(n+1)(n+1)/2(n+2N−2)(N+n)/2

·
{(
N− 3

2

)2

+ (n+1)(n+2N−2) sin2 θ
}−(n+N−(1/2))/2

.

If

x =

√
(n+ 1)(n+ 2N − 2) cos θ√

(N − (3/2))2 + (n+ 1)(n+ 2N − 2) sin2 θ
,

then

(3.8) HN
n

(√
Nx

)
= a∗n(θ)

{
sin ρ∗n(θ) + o(1)

}
,

as n → ∞. Moreover the remainder holds uniformly with respect to
θ ∈ [ε, π − ε] for any ε ∈ (0, π).
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In (3.6) “arctan” is the principal branch as above. The weak
asymptotics in (1.11) supports the asymptotic equivalence of HN

n

and its classical companion Hn under the condition (3.2). This
fact also is made precise by the strong asymptotics (3.8), since
ρ∗n(θ) = (n/2)(2θ − sin 2θ)(1 + o(1)), n → ∞, which indicates the
close similarity to the corresponding Plancherel-Rotach formula in [17,
p. 201] for the Hermite polynomials Hn.

4. Asymptotics off the interval of zeros. In the sequel we derive
asymptotics for HN

n (dnz) where z belongs to the cut planes

C[−ca,ca] if (3.1) holds with a > 0,
C \R if (3.1) holds with a = 0,
C[−1,1] if (3.2) holds

and (dn) is a properly chosen sequence of positive numbers suggested
by the previous results. Here and throughout the paper for positive a
we use the abbreviation

ca :=
√

1 + 2a
a

.

Theorem 4.1. Suppose that N > 0 satisfies (3.1) with a > 0 and
cnN is given by (1.15). If the function w is defined in (2.7) and (1.17),
then for z ∈ C[−ca,ca] we have

(4.1)

HN
n (

√
Nz) = 4N+(n−1)/2cnN

(
(1 + a)2

1 + 2a

)n/2( 1 + a

1 + 2a

)2N−1

·
(
πn

1 + 2a
1 + a

)−1/2
wn+1

(w2 − 1)1/2

·
(

w2

(1 + 2a− w2)
(
w2 − 1

1+2a

))n/2

·
(

w2

w2 − 1
1+2a

)N−(1/2)(
1 +O

( 1
n

))
,

as n → ∞. Here the branches of the fractional powers are positive
when w is real and in the interval (1,

√
1 + 2a ). The remainder holds

uniformly on compact subsets of C[−ca,ca].
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Proof. We start from (1.14) and verify the identity

(4.2) 1 + z2 =
4(1 + a)2w2

(1 + 2a)(1 + 2a− w2)
(
w2 − 1

1+2a

)
by (3.3), (2.9), (2.8). Now an application of Lemma 2.2 completes the
proof.

The next result deals with the case a = 0 in (3.1).

Theorem 4.2. Suppose that α > −(1/2), N = α+(1/2) and cnN is
given by (1.15). Then we have

(4.3) HN
n

(√
Nz

)

=


cnN

(z+i)n

√
πn

(
z+i
2i

)1/2(2
i
(z+i)

)α (
1+O

( 1
n

))
if Im z>0

cnN
(z−i)n

√
πn

(
z−i
−2i

)1/2( 2
−i (z−i)

)α (
1+O

( 1
n

))
if Im z<0,

as n → ∞. Here the branches of the fractional powers are positive
for purely imaginary z. Moreover the remainders hold uniformly on
compact subsets of the upper and the lower half plane respectively.

Proof. Again we start from (1.14) and by Lemma 2.2 we obtain

HN
n

(√
Nz

)
=

cnN

(πn)1/2
(1+z2)n/2 wn+1

(w2−1)1/2

(
4w2

w2−1

)α(
1 +O

( 1
n

))
,

the variables z and w being connected by (1.17) and (2.9). According
to the determination of the fractional powers given above we have

w =


(
z + i

z − i
)1/2

if Im z > 0 and z ∈ Ci(
z − i
z + i

)1/2

if Im z < 0 and z ∈ Ci



502 W. GAWRONSKI AND W. VAN ASSCHE

(Ci is defined in (1.16)) where the square roots are such that, for z = it,

w =


i

√
1 + t

1 − t if 0 < t < 1

−i
√

1 − t
1 + t

if −1 < t < 0

and continuous throughout Ci

(√1 + t

1 − t > 0
)
. Now straightforward

computations yield (4.3) and the uniformity statements are provided
by Lemma 2.2 again.

Finally we establish the companion of Theorem 3.2.

Theorem 4.3. Suppose that N > 3/2 satisfies (3.2) and that the
numbers cnN are given by (1.15). Further assume that the quantities
rn, a∗∗n are defined through

(4.4) rn :=

√
(n+ 1)(n+ 2N − 2)

N − (3/2)
,

(4.5) a∗∗n :=
4N−(1/2)cnN (n+N − (1/2))2N+n−(1/2)

π1/2(n+ 1)(n+1)/2(n+ 2N − 2)2N+(n−1)/2
.

If the function wn is defined as in (2.17) with αn = N − (1/2), then for
z ∈ C[−1,1] we have

(4.6)

HN
n

(√
N rnz

)
= a∗∗n (1 + r2nz

2)n/2 wn+1
n

(w2
n − 1)1/2

·
(

w2
n

w2
n − n+1

n+2N−2

)N−(1/2)(
1 + o(1)

)
,

as n→ ∞. The determination of the fractional powers involving wn is
given in Lemma 2.3 and the branch of (1 + r2nz

2)n/2 is specified in the
introduction. Moreover the o-term holds uniformly on compact subset
of C[−1,1].
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Proof. With αn = N − 1/2 in (2.1) and (2.12) we have

sn =

√
(n+ 1)(n+ 2N − 2)
n(n+ 2N − 1)

, Dn =
n(n+ 2N − 1)
(n+N − 1/2)2

and replacing (3.3) by

(4.7) rnz =
√
Dnζ√

1 −Dnζ2

the cut z-plane C[−1,1] corresponds to C[−sn,sn] in the ζ-plane and
(1.14) can be rewritten as

HN
n

(√
N rnz

)
= cnN (1 + r2nz

2)n/2 P (N−(1/2),N−(1/2))
n

(√
Dnζ

)
.

Now Lemma 2.4 proves the theorem.

At this stage we mention the possibility of deriving the weak asymp-
totics described in the introduction from the strong asymptotics in
Theorems 4.1, 4.2, 4.3, provided that (3.1) and (3.2) hold. Due to
the uniform validity of (4.1), (4.3), (4.6) logarithmic differentiation of
these asymptotic forms immediately leads to the Stieltjes transforms
of the limit distributions of the zeros and a subsequent Stieltjes inver-
sion gives the densities of these distributions stated in the introduction.
For a worked out example following this approach, see [2, Section 3].
The “asymptotic similarity” of HN

n and Hn under the condition (3.2)
is expressed by the weak asymptotics (1.11). The final result in this
section establishes a relationship between these polynomials from the
viewpoint of strong asymptotics.

To this end we recall the Plancherel-Rotach asymptotics for Hn,
w = z +

√
z2 − 1 = φ1(z) (see (2.7)),

(4.8)

Hn

(√
2n+1z

)
=

2n/2
√
n!

(2πn)1/4

wn+1

(w2−1)1/2
exp

((
n+

1
2

)w2+1
2w2

)
(1 + o(1)),

as n → ∞, holding uniformly on compact subsets of C[−1,1], e.g., [9,
17, 18]. We restrict the comparison to two cases which are formulated
by the following relative asymptotics.
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Theorem 4.4. Suppose that w = z+
√
z2 − 1 is Jukowski’s function

as defined above. If the parameter N satisfies

lim
n→∞

n2

N
= 0,

and rn is defined in (4.4), then

(4.9) lim
n→∞

HN
n (

√
N rnz)

Hn(
√

2n+ 1z)
= exp

(
w2 + 1
4w2

)
,

whereas

(4.10) lim
n→∞

Hn2

n (nrnz)
Hn(

√
2n+ 1z)

= exp
(
w4 + 3w2 − 2

8w4

)
and both formulae (4.9), (4.10) hold uniformly on compact subsets of
C[−1,1].

Both limit relations of this theorem can be derived from Theorem 4.3
and (4.8) utilizing the substitutions (4.7) and (2.17). The computa-
tions make frequent use of Taylor approximations for several elemen-
tary functions and Stirling’s formula for Euler’s Γ-function. The verifi-
cations are tedious but straightforward; therefore, we omit the detailed
calculations.

5. Riemann-Hilbert approach. In this section we will use the
Riemann-Hilbert approach for orthogonal polynomials, as described
in [4], to obtain the strong asymptotics (3.5) on the interval of the
zeros, and (4.1) off the interval once more, but this time we also get
strong asymptotics in the neighborhood of the largest zeros, which will
turn out to be in terms of the Airy function. Uniform asymptotics
for orthogonal polynomials with a weight wn(x) = e−nV (x) have
been obtained earlier, using the Riemann-Hilbert approach, by Deift,
Kriecherbauer, McLaughlin, Venakides and Zhou, for the case when
V (x) is a polynomial of even degree [6] and the case when V (x) is real
analytic, with growth condition V (x)/ log(1 + x2) → ∞ as |x| → ∞
[5]. Relativistic Hermite polynomials correspond to the case where
V (x) = (1 + a) log(1 + x2), with a > 0. Even though this particular
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case is not covered by these authors, it turns out that the analysis
in [5] still works. We will repeat the analysis but in addition we get
explicit formulas in our asymptotic results. The analysis is facilitated
by the fact that the asymptotic density of the zeros is supported on
one interval.

Recall from (1.5) that HN
n (z) is a polynomial of degree n which is

orthogonal to all polynomials of degree < n with respect to the weight
function

1

(1 + (x2/N))N+n

on the real line (−∞,∞). Note that this weight function depends on the
degree n. The scaled polynomial HN

n (
√
N z) is therefore a polynomial

of degree n which is orthogonal to all polynomials of degree < n with
respect to the weight function

wn,N (x) =
1

(1 + x2)N+n
.

In a similar way we see that HN+1
n−1 (

√
N + 1 z) is a polynomial of degree

n − 1 which is orthogonal to all polynomials of degree < n − 1 with
respect to the same weight function wn,N (x). Furthermore, it is not so
difficult to show that the leading coefficient kn,N of HN

n (z) is given by

kn,N =
2Γ(2N + n)

Nn−1Γ(2N + 1)
,

hence the monic orthogonal polynomial of degree n for the weight
function wn(x) is

Pn,N (z) =
Nn/2Γ(2N)
Γ(2N + n)

HN
n

(√
N z

)
.

Consider the following Riemann-Hilbert problem. Find Yn(z) such that

1. Yn(z) is a 2× 2 matrix valued function which is analytic in C \R,

2. on the real line the following jump condition holds

Y +
n (x) = Y −

n (x)
(

1 wn,N (x)
0 1

)
, x ∈ R,
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3. near infinity Yn has the growth condition

Yn(z) =
(
I +O

(1
z

))(
zn 0
0 z−n

)
, z → ∞.

Then the solution of this Riemann-Hilbert problem is given by

Yn(z) =

 Pn,N (z)
1

2πi

∫ ∞

−∞

Pn,N (x)
x− z wn,N (x) dx

dnPn−1,N+1(z)
dn

2πi

∫ ∞

−∞

Pn−1,N+1(x)
x− z wn,N (x) dx

 ,

where dn is such that

− dn

2πi

∫ ∞

−∞
xn−1Pn−1,N+1 (x)wn,N (x) dx = 1,

which is achieved for

dn = − 2πi
(2N + 1)Γ(2N + n+ 1)

(n− 1)!4N+1Γ2(N + (3/2))
.

We will perform some transformations on this Riemann-Hilbert prob-
lem in order to be able to obtain strong asymptotics for the matrix Yn

uniformly over the complex plane. For the first transformation we need
some information about the complex logarithmic potential of the den-
sity (1.10) describing the asymptotic distribution of the zeros.

Lemma 5.1. Let

g(z) =
1
π

∫ ca

−ca

√
1 + 2a− a2x2

1 + x2
log(z − x) dx, z ∈ C[−ca,ca],

where log z is chosen to be analytic in C \ (−∞, 0] with log z > 0 for
z > 1, then

(5.1)
g(z) = log

z+ 1
a

√
a2z2−1−2a

2

+(a+1) log
(
1+

a2

(1+2a)2
(
z− 1

a

√
a2z2−1−2a

)2
)
,
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whenever z /∈ [−ca, ca], and for t ∈ [−ca, ca]

g±(t) = lim
ε→0+

g(t± iε)
(5.2)

= a log 2a− 1+2a
2

log(1+2a)+
1+a
2

log(1+t2)

± i
(
a arcsin

at√
1+2a

− (a+1) arctan
(1+a)t√

1+2a− a2t2
+
π

2

)
.

Moreover, for z > ca, we have

(5.3)
g(z) = a log 2a− 1 + 2a

2
log(1 + 2a)

+
1 + a

2
log(1 + z2)−

∫ z

ca

√
a2y2 − 1 − 2a

1 + y2
dy.

Proof. First we change variables and put

z = caξ, x = cay,

so that ξ ∈ C \ [−1, 1] and y ∈ [−1, 1]. This gives

g(z) =
a

π

∫ 1

−1

√
1 − y2

a2

1+2a + y2

(
log

√
1 + 2a
a

+ log(ξ − y)
)
dy.

If we use partial fractions and the integral

1
π

∫ 1

−1

1√
1 − y2

dy

ξ − y =
1√
ξ2 − 1

, ξ /∈ [−1, 1],

taking into account that our definition of the square root implies that√( ±ia√
1 + 2a

)2

− 1 =
±i(a+ 1)√

1 + 2a
,

one easily finds
a

π

∫ 1

−1

√
1 − y2

a2

1+2a + y2
dy = 1.
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Hence

g(z) = log
√

1 + 2a
a

+
a

π

∫ 1

−1

√
1− y2

a2

1+2a + y2
log(ξ − y) dy.

Now use the Fourier series

log(ξ − y) = log
ξ +

√
ξ2 − 1
2

− 2
∞∑

k=1

(ξ −
√
ξ2 − 1 )k

k
Tk(y),

where Tk(y) = cos kθ, for y = cos θ, is the Chebyshev polynomial of
the first kind of degree k, then
(5.4)
a

π

∫ 1

−1

√
1 − y2

a2

1+2a +y2
log(ξ − y) dy

= log
ξ+

√
ξ2− 1
2

− 2
∞∑

k=1

(ξ −
√
ξ2− 1)k

k

a

π

∫ 1

−1

Tk(y)

√
1 − y2

a2

1+2a +y2
dy.

This series is uniformly convergent, with respect to y, since |ξ −√
ξ2 − 1| < 1. A decomposition into partial fractions and the integral

1
π

∫ 1

−1

Tk(y)√
1 − y2

dy

ξ − y =
(ξ −

√
ξ2 − 1)k√
ξ2 − 1

, ξ /∈ [−1, 1],

now give

a

π

∫ 1

−1

Tk(y)

√
1 − y2

a2

1+2a + y2
dy =


0 if k is odd,

(−1)l a+ 1
(1 + 2a)l

, if k = 2l is even,

so that the infinite sum in (5.4) is

− 2(a+1)
∞∑

l=1

(ξ−
√
ξ2− 1)2l

2l
(−1)l

(1+2a)l
= (a+1) log

(
1+

(ξ−
√
ξ2− 1)2

1 + 2a

)
.

Returning to the original variable z then gives the required expression
(5.1).
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For the boundary values g± we observe that

lim
ε→0+

√
a2(t± iε)2 − 1 − 2a = ±i

√
1 + 2a− a2t2 ,

so that

g±(t) = log
t± i

a

√
1 + 2a− a2t2

2

+ (a+ 1) log
(
1 +

a2

(1 + 2a)2
(
t− i

a

√
1 + 2a− a2t2

)2
)
.

The real part of this expression is

log
|t± i

a

√
1 + 2a− a2t2 |

2

+ (a+ 1) log
∣∣∣1 +

a2

(1 + 2a)2
(
t− i

a

√
1 + 2a− a2t2

)2
∣∣∣

and the first term is easily evaluated as

log
|t± (i/a)

√
1 + 2a− a2t2 |
2

= log
√

1 + 2a
2a

.

The second term is

(a+ 1) log
∣∣∣1 +

a2

(1 + 2a)2
(
t− i

a

√
1 + 2a− a2t2

)2
∣∣∣

= (a+ 1) log
(

2a
1 + 2a

√
1 + t2

)
.

Combining both expressions gives the real part in (5.2). For the
imaginary part we observe that our choice of the logarithm gives

lim
ε→0+

log(t± iε− x) =
{

log |t− x| if t > x,
log |t− x| ± iπ if t < x,

and hence the imaginary part of g±(t) is given by

(5.5) Img±(t) = ±
∫ √

1+2a/a

t

√
1 + 2a− a2x2

1 + x2
dx.
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Some straightforward calculus gives∫ ca

t

√
1 + 2a− a2x2

1 + x2
dx = a arcsin

at√
1 + 2a

− (a+ 1)

· arctan (1 + a)t√
1 + 2a− a2t2

+
π

2
,

which can be verified by taking derivatives. This proves the expression
(5.2).

Finally, in order to prove (5.3) we use that for z > ca > x

log(z − x) =
∫ z

ca

dy

y − x + log(ca − x).

Use this in the definition of g(z) and interchange the order of integration
to find

g(z) = g(ca) +
∫ z

ca

1
π

∫ ca

−ca

√
1 + 2a− a2x2

1 + x2

dx

y − x dy.

The inner integral can be worked out using a partial fraction decom-
position and the integral

1
π

∫ 1

−1

√
1− x2

dx

z − x = z −
√
z2 − 1.

Furthermore, from (5.1) we can work out g(ca). Combining these
results then gives (5.3).

We transform the matrix Yn to a new matrix Mn by

(5.6)
Mn(z) =

(
enla/2 0

0 e−nla/2

)
Yn(z)

(
e−ng(z) 0

0 eng(z)

)
·
(
e−nla/2 0

0 enla/2

)
,

where g is given by Lemma 5.1 and

la = −2a log 2a+ (1 + 2a) log(1 + 2a).
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Clearly Mn(z) is a 2 × 2 matrix valued function which is analytic in
C \ R. Furthermore, since eng(z) = zn (1 +O(1/z)), we see that the
matrix Mn(z) is normalized as z → ∞

(5.7) Mn(z) = I + O
(

1
z

)
, z → ∞.

Some matrix algebra shows that the jump condition for Mn on the real
line is

M+
n (x) =M−

n (x)
(
en(g−(x)−g+(x)) wn,N (x)en(g−(x)+g+(x)+la)

0 en(g+(x)−g−(x))

)
,

x ∈ R .

On the interval [−ca, ca] we have, according to Lemma 5.1

g−(x) + g+(x) = 2a log 2a− (1 + 2a) log(1 + 2a) + (1 + a) log(1 + x2),

and since wn,N (x) = exp(−n(1 + a) log(1 + x2)) for N = na, we see
that

wn,N (x) en(g−(x)+g+(x)+la) = 1, − ca ≤ x ≤ ca.

Lemma 5.1 also gives
(5.8)

φ+(x) :=
g+(x)− g−(x)

2

= i

(
a arcsin

ax√
1+2a

− (a+1) arctan
(1+a)x√

1+2a−a2x2
+
π

2

)
,

− ca ≤ x ≤ ca,

which is purely imaginary. If we also define φ−(x) = −φ+(x) = φ+(x),
for x ∈ [−ca, ca], then the jump matrix for Mn on [−ca, ca] has the
form

V2(x) :=
(
en(g−(x)−g+(x)) wn,N (x) en(g−(x)+g+(x)+la)

0 en(g+(x)−g−(x))

)
=

(
e2nφ−(x) 1

0 e2nφ+(x)

)
, − ca ≤ x ≤ ca.
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For x > ca the function g(x) is analytic, hence g−(x) = g+(x) =
−U(x; ξ), where

U(x; ξ) =
∫

log
1

|x− t| dξ(t)

is the logarithmic potential of the measure ξ in (1.10). For x < −ca
we have g±(x) = −U(x; ξ) ± iπ. Hence the jump matrix for Mn on
R \ [−ca, ca] is

V1,3(x) :=
(
en(g−(x)−g+(x)) wn,N (x) en(g−(x)+g+(x)+la)

0 en(g+(x)−g−(x))

)
=

(
1 wn,N e

−n(2U(x;ξ)−la)

0 1

)
, x < −ca or x > ca.

If we use (5.3), then we find for x > ca

−2U(x; ξ) + la−(1 + a) log(1 + x2)
= 2g(x) + la − (1 + a) log(1 + x2),

= −2
∫ x

ca

√
a2y2 − 1 − 2a

1 + y2
dy < 0,

and a similar expression for x < −ca. Hence

V1,3(x) =
(

1 e2nφ(x)

0 1

)
, x < −ca or x > ca,

with

φ(x) = −
∫ x

ca

√
a2y2 − 1− 2a

1 + y2
dy < 0, x ∈ R \ [−ca, ca].

The matrix function Mn thus solves the normalized Riemann-Hilbert
problem (because (5.7) holds) on the three curves Σ1 = (−∞,−ca),
Σ2 = [−ca, ca], Σ3 = (ca,∞) with jumps respectively V1, V2, V3. The
jump V2 on [−ca, ca] factors into three simpler matrices:

V2(x) =
(

1 0
e−2nφ−(x) 1

)(
0 1
−1 0

)(
1 0

e−2nφ+(x) 1

)
,
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( )Σ1 1,V ( )Σ2 2, V̂ ( )Σ3 3,V

( )Σ4 4,V

( )Σ5 5,V

−ca ca

FIGURE 1. Riemann-Hilbert problem with 5 curves.

so that we can jump over this interval in three steps. Rather than
jumping over this interval in three steps, we prefer to open a lens (see
Figure 1) with upper curve Σ4 and lower curve Σ5 and jump over
Σ4,Σ2,Σ5 using the matrices in the product (5.9). For this, we need to
find an analytic continuation of φ±(x) to the upper and lower complex
plane. This is achieved by taking

(5.10) φ(z) =
∫ ca

z

√
a2y2 − 1 − 2a

1 + y2
dy,

where the path connecting z and ca does not intersect the interval
[−ca, ca]. This defines φ in a neighborhood of [−ca, ca] (modulo 2πi)
and φ is independent of the path connecting z and ca, as long as the
paths stay in the neighborhood of [−ca, ca] and do not cross [−ca, ca]
(the poles of 1/(1 + x2) will cause problems if paths are allowed to go
around ±i). Observe that

lim
ε→0+

φ(t± iε) = ±i
∫ ca

t

√
1+2a−a2x2

1 + x2
dx = φ±(t), −ca ≤ t ≤ ca,

so that the function defined in (5.10) has φ± as boundary values on
[−ca, ca]. We define a new matrix function M̂n by

(5.11) M̂n(z) =


Mn(z) z ∈ C \ (R ∪ Int (Σ4 ∪ Σ5)),
Mn(z)Φn(z)−1 z ∈ Int (Σ4 ∪ Σ2),
Mn(z)Φn(z) z ∈ Int (Σ2 ∪ Σ5),

where Int (Σ) is the (open) interior of a closed curve Σ and

Φn(z) =
(

1 0
e−2nφ(z) 1

)
,
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then M̂n(z) solves the normalized Riemann-Hilbert problem on the 5
curves (Σ1,Σ2,Σ3,Σ4,Σ5) with jumps given by

V1=V3 =
(

1 e2nφ(x)

0 1

)
, V̂2 =

(
0 1
−1 0

)
, V4=V5 =

(
1 0

e−2nφ(z) 1

)
.

The function φ(z) = u(x, y) + iv(x, y), with z = x + iy, has a
positive real part u on Σ4 because u(x + 0, 0) = 0 and ∂v/∂x =
−√

1 + 2a− a2x2/(1 + x2) < 0 on (−ca, ca), so that the Cauchy-
Riemann equation gives ∂u/∂y = −∂v/∂x > 0 and u(x, y) > 0 for
y small. This means that e−2nφ(z) decreases exponentially fast to zero
on Σ4. Similarly φ(z) has also a positive real part on Σ5 so that e−2nφ(z)

also decreases exponentially fast to zero on Σ5. This means that

lim
n→∞V1(x) = I, x ∈ Σ1,

lim
n→∞V3(x) = I, x ∈ Σ3,

lim
n→∞V4(x) = I, x ∈ Σ4,

lim
n→∞V5(x) = I, x ∈ Σ5,

so that we expect that M̂n for n → ∞ behaves like the solution M̂∞
of the normalized Riemann-Hilbert problem on Σ2 = [−ca, ca] with
jump V̂2. This particular matrix function is known (see, e.g., [4, pp.
200 201]) and is given by

(5.12) M̂∞(z) =


β + 1/β

2
β − 1/β

2i

−β − 1/β
2i

β + 1/β
2

 ,

where

β(z) =
(
az −√

1 + 2a
az +

√
1 + 2a

)1/4

.

However, in order to be able to compare M̂n with M̂∞, we need to
have uniform convergence of V1, V3, V4, V5 to the identity matrix on
Σ1,Σ3,Σ4,Σ5 respectively. This fails to be true in the neighborhood
of ±ca. To overcome this difficulty, we introduce a parametrix around
±ca. This consists of two small closed curves Σ6 and Σ7 around −ca
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( )Σ4 4,V

( )Σ3 3,V( )Σ2 2, V̂

( )Σ5 5,V

ca

7

FIGURE 2. The Riemann-Hilbert problem near ca.

and ca. Locally, the Riemann-Hilbert problem for M̂n inside Σ7 looks
like Figure 2. The jumps V3, V4 and V5 contain the function φ which
near ca behaves like

φ(z) = a

∫ ca

z

√
x− ca

√
x+ ca

1 + x2
dx

=
−2a
3

√
2ca

1 + c2a
(z − ca)3/2 +O((z − ca)5/2)

=: −(z − ca)3/2G(z),

whereG(ca) > 0, then clearly φ(z) tends to zero as z → ca; in particular
we have

V3(ca) =
(

1 1
0 1

)
, V4(ca) = V5(ca) =

(
1 0
1 1

)
,

and

Vj(z) =
(
enφ(z) 0

0 e−nφ(z)

)
−
Vj(ca)

(
e−nφ(z) 0

0 enφ(z)

)
+

, j = 3, 4, 5.

We will solve the problem in Int (Σ7) exactly using Airy functions, as
is explained in detail in [4, Section 7.6]. Let ω = e2πi/3 be a primitive
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region I

region II

region III

region IV

0

0 1
1 0−







1 0
1 1







1 1
0 1







1 0
1 1







2 3

4

5

FIGURE 3. The Riemann-Hilbert problem for Ψ.

third root of unity and put

Ψ(s) =
(

Ai(s) Ai(ω2s)
Ai′(s) ω2Ai′(ω2s)

)(
e−iπ/6 0

0 eiπ/6

)
, s ∈ region I,

Ψ(s) =
(

Ai(s) Ai(ω2s)
Ai′(s) ω2Ai′(ω2s)

)(
e−iπ/6 0
−eiπ/6 eiπ/6

)
, s ∈ region II,

Ψ(s) =
(

Ai(s) −ω2Ai(ωs)
Ai′(s) −Ai′(ωs)

)(
e−iπ/6 0
eiπ/6 eiπ/6

)
, s ∈ region III,

Ψ(s) =
(

Ai(s) −ω2Ai(ωs)
Ai′(s) −Ai′(ωs)

)(
e−iπ/6 0

0 eiπ/6

)
, s ∈ region IV,

then Ψ(s) solves the Riemann-Hilbert problem on the four curves
and the constant jump matrices given in Figure 3, with asymptotic
behavior that can be described using the asymptotic behavior of the
Airy function Ai(s) and its derivative Ai′(s).

Define the matrix function Mp by

(5.14) Mp(z) = E(z)Ψ(n2/3λ(z))
(
e−nφ(z) 0

0 enφ(z)

)
, z ∈ Int (Σ7),
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where E(z) is an analytic matrix function and λ(z) = (z − ca)G2/3(z)
with G as defined in (5.13). The function λ maps a neighborhood of
ca to a neighborhood of 0. Choose ε > 0 such that Dε = {|λ| < ε} is
in this neighborhood around 0. Then we choose Σ7 = λ−1(∂Dε) and
some matrix calculus shows that Mp has the jump conditions

Mp+(z) = Mp−(z)V2 z ∈ λ−1(γ2 ∩Dε) := Σ2 ∩ Int (Σ7),
Mp+(z) = Mp−(z)V3 z ∈ λ−1(γ3 ∩Dε) := Σ3 ∩ Int (Σ7),
Mp+(z) = Mp−(z)V4 z ∈ λ−1(γ4 ∩Dε) := Σ4 ∩ Int (Σ7),
Mp+(z) = Mp−(z)V5 z ∈ λ−1(γ5 ∩Dε) := Σ5 ∩ Int (Σ7).

The function E(z) can be chosen in such a way that Mp(z) is nearly
equal to M̂∞ on Σ7, by using the asymptotic behavior of the Airy
function (this is in fact the reason why we need Airy functions), as is
explained in detail in [4, Section 7.6]. The appropriate choice is
(5.15)

E(z) =
√
π eiπ/6

(
1 −1
−i −i

)
·
(
n1/6[(z + ca)G2/3(z)]1/4 0

0 n−1/6[(z + ca)G2/3(z)]−1/4

)
.

With this choice we have

Mp(z) = M̂∞(z)Vp(z), z ∈ Σ7,

with

Vp(z) = I +O
(

1
n

)
,

uniformly on Σ7.

A similar analysis can be done in the neighborhood of −ca with
contour Σ6, or one can just use the symmetry of the problem to obtain
the parametrix and the solution

Mp(z) =
(

1 0
0 −1

)
Mp(−z)

(
1 0
0 −1

)
around −ca in Int (Σ6). Outside Int (Σ6) ∪ Int (Σ7) we define Mp(z) =
M̂∞.
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6 7

−ca ca

3

5

4

1

FIGURE 4. The Riemann-Hilbert problem for L = M̂nM−1
p .

Now we can consider the matrix L(z) = M̂n(z)M−1
p (z). We see that

L solves the Riemann-Hilbert problem on the curves in Figure 4. Inside
Σ6 and Σ7 the functions Mp and M̂n have the same jumps, hence L
has no jumps. Similarly, on Σ2 the functions Mp and M̂n have the
same jump, hence L has no jumps on the interval [−ca, ca]. The only
remaining jumps are on the curves Σ6 and Σ7 and the curves Σ∗

1, Σ∗
3,

Σ∗
4 and Σ∗

5, which are the parts of the curves Σ1, Σ3, Σ4 and Σ5 outside
Σ6 and Σ7. Here the jumps are

VL(z) = M̂∞V1,3M̂
−1
∞ = O(e−cn), z ∈ Σ∗

1,3,

VL(z) = M̂∞V4,5M̂
−1
∞ = O(e−cn), z ∈ Σ∗

4,5,

VL(z) = M̂∞V −1
p M̂−1

∞ = O(1/n), z ∈ Σ6,7.

All the jumps now tend uniformly to the identity matrix I as n→ ∞.
We can then use a perturbation theorem, such as Theorem 7.103 or
Corollary 7.108 in [4], to conclude that L(z) = I + O(1/n) in the L2-
norm on the curves in Figure 4, and uniformly on compact subsets of
the complex plane away from these curves.

All of this now finally gives the following asymptotic results

Theorem 5.1. If N = an and n→ ∞, then

Nn/2Γ(2N)
Γ(2N + n)

HN
n

(√
Nz

)
=

(
z +

√
z2 − c2a
2

)n+(1/2)

·
(
1 +

( a

1+2a

)2(
z −

√
z2− c2a

)2
)n+N

· (z2− c2a)−1/4
(
1 +O(1/n)

)
,
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uniformly on compact subsets of C[−ca,ca].

This result coincides with the case α = −1/2 of Theorem 4.1. We
omit the somewhat tedious but straightforward verification.

Proof. We take the curves Σ4,Σ5,Σ6,Σ7 small enough so that
the compact set in C \ [−ca, ca] is outside these curves. Using the
transformations (5.6) and (5.11) we then see that

Pn,N (z) = (Yn)1,1 = (M̂n)1,1e
ng(z).

But
(M̂n)1,1 = L1,1(M̂∞)1,1 + L1,2(M̂∞)2,1,

and since L = I +O(1/n), we see that

(M̂n)1,1 = (M̂∞)1,1 +O(1/n).

The result now follows by using (5.1) and (5.12).

Theorem 5.2. On the interval (−ca, ca) we put x = ca cos θ and
have for N = an and n→ ∞

Nn/2Γ(2N)
Γ(2N + n)

HN
n

(√
N x

)
=

√
2 (2a)N (1 + 2a)−N−n/2

· (1 + x2)(n+N)/2(sin θ)−1/2

·
[
sin

(
n�g+(x) +

θ

2
+
π

4

)
+O(1/n)

]
,

uniformly on closed intervals of (−ca, ca), where g+(x) is given in (5.2).

Again this result corresponds to the case α = −1/2 of Theorem 3.1
but in somewhat different notation.

Proof. We are interested in Pn,N (x) = (Yn)1,1 on the interval
(−ca, ca). Since this is a polynomial, this is also equal to (Y +

n )1,1.
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Hence we will investigate Y +
n on the interval (−ca, ca). Using the

transformations (5.6) and (5.11) we get on (−ca, ca)

(Y +
n ) =

[
(M̂+

n )1,1e
nφ+(x) + (M̂+

n )1,2e
−nφ+(x)

]
en(g+(x)+g−(x))/2.

For a closed interval of (−ca, ca) we can always make the Σ6 and Σ7

small enough so that they don’t intersect this closed interval. Then on
this closed interval

(M̂+
n )1,1 = L1,1(M̂∞)1,1 + L1,2(M̂∞)2,1 = (M̂∞)1,1 +O(1/n),

(M̂+
n )1,2 = L1,1(M̂∞)1,2 + L1,2(M̂∞)2,2 = (M̂∞)1,2 +O(1/n).

If we put x = ca cos θ, then

(M̂+
∞)1,1 =

β+ + 1/β+

2

=
1
2

[
eiπ/4

(
1 − cos θ
1 + cos θ

)1/4

+ e−iπ/4

(
1 + cos θ
1 − cos θ

)1/4]
,

(M̂+
∞)1,2 =

β+ − 1/β+

2i

=
1
2

[
e−iπ/4

(
1 − cos θ
1 + cos θ

)1/4

+ eiπ/4

(
1 + cos θ
1 − cos θ

)1/4]
= (M̂+∞)1,1.

We thus get

(Y +
n )1,1 = 2en(g+(x)+g−(x))/2�

(
(M̂+

∞)1,1e
nφ+(x)

)
.

Recall that on one hand we have

g+(x) + g−(x)
2

= a log(2a)− 1+2a
2

log(1 + 2a) +
1+a
2

log(1 + x2),

which gives the amplitude in our asymptotic expression, and on the
other hand, simple trigonometry gives(

1 − cos θ
1 + cos θ

)1/4

=
(

sin θ/2
cos θ/2

)1/2

,
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so that the oscillatory part simplifies to

2�
(
(M̂+

∞)1,1e
nφ+(x)

)
=

sin θ/2 cos(π/4 + n�g+(x)) + cos θ/2 sin(π/4 + n�g+(x))
(cos θ/2 sin θ/2)1/2

=
√

2 sin(n�g+(x) + θ/2 + π/4)
(sin θ)1/2

.

A combination of these results gives the required asymptotic expression.

Finally, in the neighborhood of ±ca we get asymptotics in terms of
Airy functions.

Theorem 5.3. In the neighborhood of ca we have

Nn/2Γ(2N)
Γ(2N + n)

HN
n

(√
Nz

)
=

√
π

(
n1/6

[
(z+ca)G2/3(z)

]1/4

Ai(n2/3λ(z))

−n−1/6
[
(z+ca)G2/3(z)

]−1/4

Ai′(n2/3λ(z))
)

· [1 +O(1/n)] ,

where the functions G and λ are given in (5.13) and (5.14) respectively.

Proof. Again we will investigate Pn,N (z) = (Y +
n )1,1 but now for

z ∈ Int (Σ7). The analysis around −ca is similar. We will consider the
case z < ca; the case z > ca can be handled in the same way. For
z < ca we are in region II of Figure 3. This means that

(Y +
n )1,1 =

[
(M̂+

n )1,1 e
nφ+(z) + (M̂+

n )1,2 e
−nφ+(z)

]
en(g+(z)+g−(z))/2,

and M̂+
n = LM+

p . Since L = I +O(1/n) we therefore get

(M̂+
n )1,1 = L1,1(M+

p )1,1 + L1,2(M+
p )2,1 = (M∞

p )1,1 +O(1/n),

(M̂+
n )1,2 = L1,1(M+

p )1,2 + L1,2(M+
p )2,2 = (M∞

p )1,2 +O(1/n).
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This gives

(Y +
n )1,1 =

[
(M+

p )1,1 e
nφ+(z) + (M+

p )1,2 e
−nφ+(z) +O(1/n)

]
· en(g+(z)+g−(z))/2.

In region II we have

(M+
p )1,1 = (E1,1Ψ1,1 + E1,2Ψ2,1) e−nφ+(z)

(M+
p )1,2 = (E1,1Ψ1,2 + E1,2Ψ2,2) enφ+(z),

so that

(Y +
n )1,1 =

[
E1,1(Ψ1,1 + Ψ1,2) + E1,2(Ψ2,1 + Ψ2,2) +O(1/n)

]
· en(g+(z)+g−(z))/2

=
√
π eiπ/6n1/6[(z + ca)G2/3(z)]1/4(Ψ1,1 + Ψ1,2)

− √
π eiπ/6n−1/6[(z + ca)G2/3(z)]−1/4(Ψ2,1 + Ψ2,2).

Simple calculus now gives

Ψ1,1 + Ψ1,2 = e−iπ/6Ai(s),

Ψ2,1 + Ψ2,2 = e−iπ/6Ai′(s),

where s = n2/3λ(z) and λ(z) = (z−ca)G2/3(z). The result now follows
by combining these expressions.

6. Conclusion. Relativistic Hermite polynomials are basically
Jacobi polynomials, as was pointed out by Ismail [12]. Strong asymp-
totic formulae for Jacobi polynomials (with parameters depending on
the degree) have been worked out earlier and we have shown that these
results can be transferred to relativistic Hermite polynomials, which
gives strong asymptotics on the oscillatory region, Theorem 3.1 for
N = aN + α+ 1/2, a ≥ 0, α ≥ −1 and Theorem 3.2 when N/n → ∞.
Away from the oscillatory region, the strong asymptotics are given by
Theorem 4.1 for N = an + α + 1/2 with a > 0; Theorem 4.2 for
N = α+ 1/2 with α > −1/2; and Theorem 4.3 when N/n→ ∞.

These formulas cover the strong asymptotics on [−ca + ε, ca − ε] and
ε > 0, with ca =

√
1 + 2a/a (the oscillatory region) and compact
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subsets of C \ [−ca, ca]. The results are not valid in the neighborhood
of the endpoints ±ca. Classically, the strong asymptotic formulae
of Plancherel and Rotach for Hermite polynomials deal with three
regions [17, Theorem 8.22.9]: the oscillatory interval where the Hermite
polynomials behave like a trigonometric function; the region away from
this interval, where the Hermite polynomials behave like hyperbolic
functions; and the regions in the neighborhood of the endpoints of the
interval, where the Hermite polynomials behave like Airy functions.
Recently, a very interesting technique, based on a Riemann-Hilbert
problem for matrix valued functions, has been used to sharpen these
results for Hermite polynomials. The Riemann-Hilbert method gives
uniform strong asymptotics which hold everywhere in the complex
plane. Furthermore the method can be used for a much wider class
of orthogonal polynomials [4, 5, 6]. We use the same Riemann-Hilbert
approach in Section 5 and show that the analysis in [5] still works
for relativistic Hermite polynomials. All the details are worked out in
Section 5 for the case N = an, a > 0, and as a result we obtain the
strong asymptotics on closed intervals in (−ca, ca) (Theorem 5.2); the
strong asymptotics on C \ [−ca, ca] (Theorem 5.1), and the Airy type
asymptotics near the endpoints ±ca (Theorem 5.3). The three regions
are covered simultaneously with this Riemann-Hilbert approach.
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