ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 33, Number 3, Fall 2003

EXTREMAL BOUNDED SLIT MAPPINGS FOR LINEAR FUNCTIONALS

DIMITRI V. PROKHOROV

ABSTRACT. Let S(M) be the class of holomorphic univalent functions $f(z) = z + a_2 z^2 + \ldots$, |f(z)| < M, |z| < 1and $L(f) = \sum_{k=2}^n \lambda_k a_k$, $(\lambda_2, \ldots, \lambda_n) \in \mathbf{R}^{n-1}$. We prove that under some conditions among all bounded slit mappings only the Pick functions can be extremal for $\Re L(f)$ in S(M)provided M is close to 1. In particular, if $\alpha > 0$, (n-1) and (m-1) are odd and relatively prime, then the Pick function maximizes $\Re(a_n + \alpha a_m)$ in S(M) for M close to 1.

1. Introduction. Let S(M), M > 1, be the class of holomorphic functions f in the unit disk $D = \{z : |z| < 1\}$,

$$f(z) = z + a_2 z^2 + \dots, \quad z \in D,$$

which are univalent and bounded by M in D, i.e., $|f(z)| < M, z \in D$.

Denote by $S^1(M)$ the class of functions $f \in S(M)$ which map D onto the disk D_M of radius M centered at the origin and slit along an analytic curve. An important member of $S^1(M)$ is the so-called Pick function $P_M(z)$ which maps D onto D_M slit along the segment $[-M, -M(2M - 1 - 2\sqrt{M(M - 1)})].$

Consider a linear continuous functional L on S(M) given by

$$L(f) = \sum_{k=2}^{n} \bar{\lambda}_k a_k, \quad \lambda_k \in \mathbf{C}, \quad k = 2, \dots, n.$$

So L is determined by the vector $\boldsymbol{\lambda} = (\lambda_2, \dots, \lambda_n) \in \mathbf{C}^{n-1}$.

We will prove the following

Theorem 1. Let $\lambda = (\lambda_2, \ldots, \lambda_n) \in \mathbb{R}^{n-1}$ and

$$\max_{f \in S(M)} \Re L(f) = \Re L(f_0)$$

Received by the editors on November 10, 2000.

Copyright ©2003 Rocky Mountain Mathematics Consortium

for $f_0 \in S^1(M)$. If (1) $\sum_{k=2}^n (k-1)\lambda_k \sin(k-1)u$

has only single zeros on $[0, 2\pi]$, then f_0 is either the Pick function $P_M(z)$ or $-P_M(-z)$ provided (M-1) is small enough.

Theorem 1 is applied to $L(f) = a_n + \alpha a_m$ where $\alpha > 0$, (n-1) and (m-1) are odd and relatively prime.

2. Loewner theory and optimization methods.

Theorem A (Loewner equation, see, e.g., [1]). Let w = w(z,t) be the solution of the Loewner equation

(2)
$$\frac{dw}{dt} = -w \frac{e^{iu} + w}{e^{iu} - w}, \quad w|_{t=0} = z, \quad 0 \le t \le \log M,$$

with a piecewise continuous function u = u(t). Then

(3)
$$w(z,t) = e^{-t}(z + a_2(t)z^2 + \cdots), \quad z \in D, \quad t \ge 0,$$

is holomorphic and univalent with respect to $z \in D$ for every $t \ge 0$. Moreover, the functions given by the formula

(4)
$$f(z) := Mw(z, \log M) \in S(M),$$

form a dense subclass of S(M).

Remark 1. In the case u(t) = const, the functions f(z) given by (4) are rotations of the Pick function $P_M(z)$. In particular, $u(t) = \pi$ corresponds to $P_M(z)$ while u(t) = 0 corresponds to $-P_M(-z)$. If u(t) is analytic, then $f \in S^1(M)$.

Remark 2. If a control function u(t) generates a function f(z) by (2)–(4), then -u(t) generates $\overline{f(\overline{z})}$.

Let $a_j(t)$ be given by (3), $a_j(t) = x_{2j-1}(t) + ix_{2j}(t)$, j = 2, ..., n, and $a(t) = (x_3(t), ..., x_{2n}(t))$. Comparing Taylor coefficients in both sides of the Loewner equation (2) we obtain the system of differential equations

(5)
$$\frac{dx_k}{dt} = g_k(t, \boldsymbol{a}, u), \quad x_k(0) = 0, \quad k = 3, \dots, 2n$$
$$x_{2j-1}(\log M) + ix_{2j}(\log M) = a_j, \quad j = 2, \dots, n.$$

The explicit formulas for g_k are given in [5]. Note that

$$g_{2j-1}(0, \mathbf{0}, u) + ig_{2j}(0, \mathbf{0}, u) = -2e^{-i(j-1)u}, \quad j \ge 2.$$

The coefficient region

$$V_n^M = \{ \boldsymbol{a} = (a_2, \dots, a_n) : f \in S(M) \}$$

is the closure of the attainable set for the system (5). Let $f^* \in S^1(M)$ be extremal for $\Re L$ in S(M), i.e., $\max_{f \in S(M)} \Re L(f) = \Re L(f^*)$ and correspond to a boundary point $a^* \in \partial V_n^M$. Then f is represented by (2)–(4) with $u^*(t)$ satisfying certain optimization conditions.

In fact, consider the Hamilton function

(6)
$$H(t, \boldsymbol{a}, \boldsymbol{\psi}, u) = \sum_{k=3}^{2n} g_k(t, \boldsymbol{a}, u) \psi_k,$$

where $\boldsymbol{\psi} = (\psi_3(t), \dots, \psi_{2n}(t))$ is the nonzero conjugate vector which satisfies the conjugate Hamiltonian system

(7)
$$\frac{d\psi_k}{dt} = -\frac{\partial H}{\partial x_k}, \quad \psi_k(0) = \xi_k, \quad k = 3, \dots, 2n.$$

The following theorem is a version of Pontryagin's maximum principle together with the corresponding transversality conditions both of which are necessary conditions for extremal trajectories in an optimal control problem (see, e.g., [4, pp. 254, 319] for the autonomous case).

Theorem B. Let $a^*(t)$ be a solution of the system (5) with a continuous control function $u^*(t)$. If $a^* = a^*(\log M)$ is a boundary point

of V_n^M which gives $\max_{f \in S(M)} \Re L(f)$, then there exists the solution $\psi^* = \psi^*(t)$ of the system (7) exists with the same control function $u^*(t)$ such that

$$\max_{u} H(t, \boldsymbol{a}^{*}(t), \boldsymbol{\psi}^{*}(t), u) = H(t, \boldsymbol{a}^{*}(t), \boldsymbol{\psi}^{*}(t), u^{*}(t)), \quad t \in [0, \log M],$$

and

(9)
$$\psi^*(\log M) = (\Re\lambda_2, \Im\lambda_2, \dots, \Re\lambda_n, \Im\lambda_n).$$

The condition (8) is called the *Pontryagin maximum principle* and (9) is called the *transversality condition* at a^* . Evidently $u^*(t)$ is a root of the equation

(10)
$$H_u(t, \boldsymbol{a}, \boldsymbol{\psi}, u) = 0$$

with $\boldsymbol{a} = \boldsymbol{a}^*$ and $\boldsymbol{\psi} = \boldsymbol{\psi}^*$.

Note that g_3, \ldots, g_{2n} in (5) do not depend on x_{2n-1} and x_{2n} . Hence

$$\frac{d\psi_{2n-1}}{dt} = \frac{d\psi_{2n}}{dt} = 0$$

and taking into account the transversality conditions (9) we assume that

$$\psi_{2n-1}(t) + i\psi_{2n}(t) = \xi_{2n-1} + i\xi_{2n} = \lambda_n.$$

Denote $\boldsymbol{\xi} = (\xi_3, \dots, \xi_{2n-2})$. In particular, at t = 0 we have

$$H(0, \mathbf{0}, \boldsymbol{\xi}, u) = -2\sum_{k=2}^{n} (\xi_{2k-1}\cos(k-1)u - \xi_{2k}\sin(k-1)u)$$

Let $\boldsymbol{\lambda} = (\lambda_2, \dots, \lambda_n) \in \mathbf{R}^{n-1}$. Since M is close to 1 and the functions $-(\partial H/\partial x_k)$ in the righthand side of (7) are bounded for $0 \leq t \leq \log M, \ \psi^*(0)$ is close to $\psi^*(\log M)$ and $H(t, \boldsymbol{a}^*, \psi^*, u)$ is close to $H(0, \mathbf{0}, \boldsymbol{\xi}, u) = -2\sum_{k=2}^n \lambda_k \cos(k-1)u$. According to (1) $H_u(0, \mathbf{0}, \boldsymbol{\xi}, u)$ has only single zeros on $[0, 2\pi]$ and this property is preserved for $H_u(t, \boldsymbol{a}^*, \psi^*, u)$ which means that $H_{uu}(t, \boldsymbol{a}^*, \psi^*, u^*) < 0$.

The last assertion guarantees that the control function u in the righthand side of (5) and (7) is the analytic branch of the implicit function $u = u(t, \boldsymbol{a}, \boldsymbol{\psi})$ determined by the equation (10) with the initial value $u(0, \mathbf{0}, \boldsymbol{\xi}^*) = u^*(0), \ \boldsymbol{\xi}^* = \boldsymbol{\psi}^*(0)$. Indeed, this follows from the analytical properties of the Hamilton function H and the inequality $H_{uu}(t, \boldsymbol{a}, \boldsymbol{\psi}, u) \neq 0$ which holds in a neighborhood of $(t, \boldsymbol{a}, \boldsymbol{\psi}, u) = (0, \mathbf{0}, \boldsymbol{\xi}^*, u^*(0))$.

Vectors \boldsymbol{a} and $\boldsymbol{\psi}$, being the solution of the systems (5) and (7) with $u = u(t, \boldsymbol{a}, \boldsymbol{\psi})$ in their righthand sides, depend only on t and $\boldsymbol{\xi}$, i.e., $\boldsymbol{a} = \boldsymbol{a}(t, \boldsymbol{\xi})$ and $\boldsymbol{\psi} = \boldsymbol{\psi}(t, \boldsymbol{\xi})$.

Denote

$$u(t,\boldsymbol{\xi}) = u(t,\boldsymbol{a}(t,\boldsymbol{\xi}),\boldsymbol{\psi}(t,\boldsymbol{\xi})).$$

Lemma A. Let $u = u(t, \boldsymbol{\xi})$ and $H(t, \boldsymbol{a}, \boldsymbol{\psi}, u)$ be the Hamilton function (6). Then $|H_{uu}(0, \boldsymbol{0}, \boldsymbol{\xi}, u)| \geq \delta > 0$ in a neighborhood of $\boldsymbol{\xi}^0 = (\lambda_2, 0, \dots, \lambda_{n-1}, 0)$.

Lemma A was proved in [3] for a partial case corresponding to the nonlinear functional $I(f) = \Re(a_2a_n)$. Therefore we will give here only a sketch of the proof which is very close to that of [3].

Since $H_u(0, \mathbf{0}, \boldsymbol{\xi}, u(0, \boldsymbol{\xi}))$ has a single zero at $u(0, \boldsymbol{\xi}^0)$,

$$r(\boldsymbol{\xi}) = H_{uu}(0, \mathbf{0}, \boldsymbol{\xi}, u(0, \boldsymbol{\xi})) < 0$$

in a neighborhood of $\boldsymbol{\xi}^0$. After differentiating $r(\boldsymbol{\xi})$ and the equation (10) at t = 0, we obtain

$$r'(\boldsymbol{\xi}) = H_{uu\boldsymbol{\psi}}(0, \boldsymbol{0}, \boldsymbol{\xi}, u) - H_{u\boldsymbol{\psi}}(0, \boldsymbol{0}, \boldsymbol{\xi}, u) H_{uuu}(0, \boldsymbol{0}, \boldsymbol{\xi}, u) / r(\boldsymbol{\xi}).$$

Due to boundedness of partial derivatives of $H(0, 0, \boldsymbol{\xi}, u)$ in a neighborhood of $\boldsymbol{\xi}^0$, the derivative $r'_{\mathbf{e}}(\boldsymbol{\xi})$ for any direction \mathbf{e} satisfies

(11)
$$|r'_{\mathbf{e}}(\boldsymbol{\xi})| \le \frac{A}{|r(\boldsymbol{\xi})|} + B$$

for some positive numbers A and B. Let l be the smallest number such that $r(\boldsymbol{\xi}) = r(\boldsymbol{\xi}^0)/2$ for a certain $\boldsymbol{\xi}$, $\|\boldsymbol{\xi} - \boldsymbol{\xi}^0\| = l$, i.e., $|r(\boldsymbol{\xi})| \geq$

 $|r(\boldsymbol{\xi}^0)|/2 = \delta$, if $\|\boldsymbol{\xi} - \boldsymbol{\xi}^0\| \leq l$. Integrating the differential inequality (11) from $\boldsymbol{\xi}^0$ to $\boldsymbol{\xi}$ in the direction $\mathbf{e} = \boldsymbol{\xi} - \boldsymbol{\xi}^0$, we obtain

$$|r(\boldsymbol{\xi}) - r(\boldsymbol{\xi}^0)| = |r(\boldsymbol{\xi}^0)|/2 \le \left(\frac{2A}{|r(\boldsymbol{\xi}^0)|} + B\right)l,$$

which gives a lower bound for l and completes the proof of Lemma A.

Lemma B [3]. Let $|H_{uu}(0, 0, \xi, u(0, \xi))| \ge \delta > 0$ for all ξ , $||\xi - \xi^0|| \le l$. *I. Then there exists* M > 1 such that the inequality

$$|H_{uu}(t, \boldsymbol{a}(t, \boldsymbol{\xi}), \boldsymbol{\psi}(t, \boldsymbol{\xi}), \boldsymbol{u}(t, \boldsymbol{\xi}))| \geq \delta/2$$

holds for all $t \in [0, \log M]$.

Lemma C [3]. Let $u = u(t, \boldsymbol{\xi})$. The partial derivatives u_t and $u_{\boldsymbol{\xi}}$ are bounded if $\boldsymbol{\xi}$ is close to $\boldsymbol{\xi}^0$ and t is close to 0.

3. Proof of Theorem 1.

Proof of Theorem 1. First we show that there exists a unique point $\boldsymbol{\xi}$ in a neighborhood of $\boldsymbol{\xi}^0$ for which the solution of the systems (5) and (7) satisfies the maximum principle (8) and the transversality condition (9).

Let us consider the mapping

$$\mathbf{F}: \boldsymbol{\xi} \longrightarrow (\psi_3(\log M, \boldsymbol{\xi}), \dots, \psi_{2n-2}(\log M, \boldsymbol{\xi})), \quad \|\boldsymbol{\xi} - \boldsymbol{\xi}^0\| \le l.$$

The function $\mathbf{F}(\boldsymbol{\xi})$ maps the initial data $\boldsymbol{\xi}$ onto the solution of the Cauchy problem (7) for $t = \log M$. Hence \mathbf{F} is an analytic function and its derivative $\mathbf{F}_{\boldsymbol{\xi}}$ is the Jacobi matrix $A(t, \boldsymbol{\xi})$ with the elements

$$a_{jk} = \frac{\partial \psi_j(\log M, \boldsymbol{\xi})}{\partial \psi_k}, \quad j, k = 3, \dots, 2n-2$$

Clearly, $A(0, \boldsymbol{\xi}^0)$ is the unit matrix. Hence det $A(\log M, \boldsymbol{\xi}^0) > 0$ if (M-1) is small enough. This means that the matrix $A(\log M, \boldsymbol{\xi}^0) =$

 $\mathbf{F}_{\boldsymbol{\xi}}(\boldsymbol{\xi}^0)$ is invertible and \mathbf{F} maps a neighborhood $U_{\varepsilon}(\boldsymbol{\xi}^0) = \{\boldsymbol{\xi} : \|\boldsymbol{\xi} - \boldsymbol{\xi}^0\| < \varepsilon\}, \ \varepsilon > 0$, of $\boldsymbol{\xi}^0$ one-to-one onto a neighborhood of $\mathbf{F}(\boldsymbol{\xi}^0)$. Therefore there exists a unique $\boldsymbol{\xi} \in U_{\varepsilon}(\boldsymbol{\xi}^0)$ for which the maximum principle (8) and the transversality condition (9) are satisfied.

Second, suppose to the contrary that the extremal function $f^*(z) \in S^1(M)$ for the functional L is different from $P_M(z)$ and $-P_M(-z)$. This means that f^* maps D onto D_M slit along an analytic curve which is nonsymmetrical with respect to the real axis. Hence $f^{**}(z) = \overline{f^*(\overline{z})}$ is different from $f^*(z)$. As soon as real parts of coefficients of f^* and f^{**} are equal, both of them are extremal for L.

Let, according to Theorem A, the functions f^\ast and $f^{\ast\ast}$ be represented as

 $f^*(z) = Mw^*(z, \log M), \quad f^{**}(z) = Mw^{**}(z, \log M),$

where $w^*(z,t)$ and $w^{**}(z,t)$ are the solutions of the Loewner differential equation (2) with $u = u^*(t)$ and $u = u^{**}(t)$ respectively.

Let $w^*(z,t)$ correspond to $\boldsymbol{a} = \boldsymbol{a}^*(t) = (x_3^*(t), \dots, x_{2n}^*(t)), u = u^*(t)$ and $\boldsymbol{\psi} = \boldsymbol{\psi}^*(t) = (\psi_3^*(t), \dots, \psi_{2n}^*(t))$ in (5), (7), $0 \le t \le \log M$. Then $w^{**}(z,t)$ corresponds to $\boldsymbol{a} = \boldsymbol{a}^{**}(t) = (x_3^*(t), -x_4^*(t), \dots, x_{2n-1}^*(t), -x_{2n}^*(t)), u = u^{**}(t) = -u^*(t)$ and $\boldsymbol{\psi} = \boldsymbol{\psi}^{**}(t) = (\psi_3^*(t), -\psi_4^*(t), \dots, \psi_{2n-1}^*(t), -\psi_{2n}^*(t))$ which implies that f^* and f^{**} correspond to the distinct data values $\boldsymbol{\xi}^* = (\xi_3^*, \xi_4^*, \dots, \xi_{2n-3}^*, \xi_{2n-2}^*)$ and $\boldsymbol{\xi}^{**} = (\xi_3^*, -\xi_4^*, \dots, \xi_{2n-3}^*, -\xi_{2n-2}^*)$ respectively.

But the transversality condition (9) means that

$$\boldsymbol{\psi}(\log M, \boldsymbol{\xi}^*) = \boldsymbol{\psi}^*(\log M) = \boldsymbol{\psi}^{**}(\log M)$$
$$= \boldsymbol{\psi}(\log M, \boldsymbol{\xi}^{**}) = (\lambda_2, 0, \dots, \lambda_n, 0).$$

If (M-1) is small enough, then $\boldsymbol{\xi}^*$ and $\boldsymbol{\xi}^{**}$ are close to $\boldsymbol{\xi}^0$ and belong to a neighborhood $U_{\varepsilon}(\boldsymbol{\xi}^0)$ of $\boldsymbol{\xi}^0$ where **F** has an inverse mapping \mathbf{F}^{-1} . This contradicts the statement that $\mathbf{F}(\boldsymbol{\xi}^*) = \mathbf{F}(\boldsymbol{\xi}^{**})$ and ends the proof of Theorem 1.

Remark 3. Requirement of Theorem 1 that the trigonometrical polynomial $\sum_{k=2}^{n} (k-1)\lambda_k \sin(k-1)u$ has only single zeros on $[0, 2\pi]$ can be weakened. Indeed, we need only the singleness of zeros which are maximum points of $H(0, 0, \xi^0, u)$.

4. Application to estimates for $\Re(a_n + \alpha a_m)$. Schiffer and Tammi [7] and Siewierski [6] showed that the Pick functions are not extremal for $\max_{f \in S(M)} \Re a_n$ if n > 2 and (M - 1) is small. More precisely, they showed that there exists $M_n > 1$ such that $\Re a_n$ is maximized in S(M)by the function

$$P_{M,n}(z) = [P_{M^{n-1}}(z^{n-1})]^{1/(n-1)} \in S(M)$$

for all $M \in (1, M_n)$.

Given $\alpha > 0$ and even m and n such that (m-1) and (n-1) are relatively prime, $n > m \ge 2$, consider the linear functional

$$L(f) = a_n + \alpha a_m$$

and the extremal problem

(12)
$$\Re L(f) \longrightarrow \max, \quad f \in S(M).$$

According to the Pontryagin maximum principle (8) and the transversality condition (9), the Hamilton function $H(t, \boldsymbol{a}(t, \boldsymbol{\xi}), \boldsymbol{\psi}(t, \boldsymbol{\xi}), u)$ is close to

$$H(0, \mathbf{0}, \boldsymbol{\xi}^{0}, u) = q(u) = -2(\cos(n-1)u + \alpha\cos(m-1)u)$$

if $\boldsymbol{\xi}$ is close to $\boldsymbol{\xi}^0 = (0, \dots, 0, \alpha, 0, \dots, 0, 1, 0)$ and (M-1) is small.

Since q(u) has only one absolute maximum in $[0, 2\pi]$ at $u = \pi$ and $q''(\pi) < 0$, the Hamilton function also has only one absolute maximum in $[0, 2\pi]$ at $u(t, \boldsymbol{\xi})$. This means that an extremal function f^* of the problem (12) belongs to $S^1(M)$ and all the conditions of Theorem 1 are satisfied.

So we proved

Theorem 2. Given $\alpha > 0$ and even m and n such that (m-1)and (n-1) are relatively prime, there exists $M(m, n, \alpha) > 1$ such that the Pick function $P_M(z)$ is extremal for the problem (12) for all $M \in (1, M(m, n, \alpha)).$

It is proved in [2] that the Pick function $-P_M(-z)$ is extremal for the nonlinear problem $\Re(a_m a_n) \to \max$ in S(M) if (m-1) and (n-1)are relatively prime and (M-1) is small enough.

Acknowledgment. During the preparation of this paper the author was a visiting professor at the University of Wyoming. He wishes to thank the administration and the faculty for creating good working conditions and a friendly atmosphere. This work was partially supported by the INTAS grant # 99-00089 and the RFBR grant # 01-01-00123.

REFERENCES

1. P.L. Duren, Univalent functions, Springer-Verlag, New York, 1983.

 A. Ganczar, D.V. Prokhorov and J. Szynal, A coefficient product estimate for bounded univalent functions, Ann. Univ. Mariae Curie-Skłodowska, Sec. A Math.
54 (2000), 27–44.

3. Z.J. Jakubowski, D.V. Prokhorov and J. Szynal, *Proof of a coefficient product conjecture for bounded univalent functions*, Complex Variables Theory Appl. **42** (2000), 241–258.

4. E.B. Lee and L. Marcus, *Foundations of optimal control theory*, John Wiley & Sons, New York, 1967.

5. D.V. Prokhorov, Sets of values of systems of functionals in classes of univalent functions, Math. USSR Sbornik **71**(1991), no. 2, 499–516.

6. L. Siewierski, Sharp estimation of the coefficients of bounded univalent functions close to identity, Dissertationes Math. (Rozprawy Mat.) 86 (1971), 1–153.

7. M. Schiffer and O. Tammi, On bounded univalent functions which are close to identity, Ann. Acad. Sci. Fenn. Ser. AI Math. (1968), 3–26.

DEPARTMENT OF MATHEMATICS & MECHANICS, SARATOV STATE UNIVERSITY, 410026, SARATOV, RUSSIA AND DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WYOMING, LARAMIE, WYOMING 82071-3036

 $\textit{E-mail address: ProkhorovDV@info.sgu.ru} \quad \text{and} \quad \texttt{dvprokh@uwyo.edu}$