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EXTREMAL BOUNDED SLIT MAPPINGS
FOR LINEAR FUNCTIONALS

DIMITRI V. PROKHOROV

ABSTRACT. Let S(M) be the class of holomorphic uni-
valent functions f(z) = z + a2z2 + . . . , |f(z)| < M , |z| < 1

and L(f) =
∑n

k=2
λkak, (λ2, . . . , λn) ∈ Rn−1. We prove

that under some conditions among all bounded slit mappings
only the Pick functions can be extremal for �L(f) in S(M)
provided M is close to 1. In particular, if α > 0, (n − 1) and
(m − 1) are odd and relatively prime, then the Pick function
maximizes �(an + αam) in S(M) for M close to 1.

1. Introduction. Let S(M), M > 1, be the class of holomorphic
functions f in the unit disk D = {z : |z| < 1},

f(z) = z + a2z
2 + . . . , z ∈ D,

which are univalent and bounded by M in D, i.e., |f(z)| < M , z ∈ D.

Denote by S1(M) the class of functions f ∈ S(M) which map D
onto the disk DM of radius M centered at the origin and slit along
an analytic curve. An important member of S1(M) is the so-called
Pick function PM (z) which maps D onto DM slit along the segment
[−M,−M(2M − 1− 2

√
M(M − 1) )].

Consider a linear continuous functional L on S(M) given by

L(f) =
n∑

k=2

λ̄kak, λk ∈ C, k = 2, . . . , n.

So L is determined by the vector λ = (λ2, . . . , λn) ∈ Cn−1.

We will prove the following

Theorem 1. Let λ = (λ2, . . . , λn) ∈ Rn−1 and

max
f∈S(M)

�L(f) = �L(f0)
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for f0 ∈ S1(M). If

(1)
n∑

k=2

(k − 1)λk sin(k − 1)u

has only single zeros on [0, 2π], then f0 is either the Pick function
PM (z) or −PM (−z) provided (M − 1) is small enough.

Theorem 1 is applied to L(f) = an + αam where α > 0, (n− 1) and
(m− 1) are odd and relatively prime.

2. Loewner theory and optimization methods.

Theorem A (Loewner equation, see, e.g., [1]). Let w = w(z, t) be
the solution of the Loewner equation

(2)
dw

dt
= −w

eiu + w

eiu − w
, w|t=0 = z, 0 ≤ t ≤ logM,

with a piecewise continuous function u = u(t). Then

(3) w(z, t) = e−t(z + a2(t)z2 + · · · ), z ∈ D, t ≥ 0,

is holomorphic and univalent with respect to z ∈ D for every t ≥ 0.
Moreover, the functions given by the formula

(4) f(z) := Mw(z, logM) ∈ S(M),

form a dense subclass of S(M).

Remark 1. In the case u(t) = const, the functions f(z) given by
(4) are rotations of the Pick function PM (z). In particular, u(t) = π
corresponds to PM (z) while u(t) = 0 corresponds to −PM (−z). If u(t)
is analytic, then f ∈ S1(M).

Remark 2. If a control function u(t) generates a function f(z) by
(2) (4), then −u(t) generates f(z̄).



EXTREMAL BOUNDED SLIT MAPPINGS 1041

Let aj(t) be given by (3), aj(t) = x2j−1(t) + ix2j(t), j = 2, . . . , n,
and a(t) = (x3(t), . . . , x2n(t)). Comparing Taylor coefficients in both
sides of the Loewner equation (2) we obtain the system of differential
equations

(5)
dxk

dt
= gk(t,a, u), xk(0) = 0, k = 3, . . . , 2n

x2j−1(logM) + ix2j(logM) = aj , j = 2, . . . , n.

The explicit formulas for gk are given in [5]. Note that

g2j−1(0,0, u) + ig2j(0,0, u) = −2e−i(j−1)u, j ≥ 2.

The coefficient region

V M
n = {a = (a2, . . . , an) : f ∈ S(M)}

is the closure of the attainable set for the system (5). Let f∗ ∈ S1(M)
be extremal for �L in S(M), i.e., maxf∈S(M) �L(f) = �L(f∗) and
correspond to a boundary point a∗ ∈ ∂V M

n . Then f is represented by
(2) (4) with u∗(t) satisfying certain optimization conditions.

In fact, consider the Hamilton function

(6) H(t,a,ψ, u) =
2n∑

k=3

gk(t,a, u)ψk,

where ψ = (ψ3(t), . . . , ψ2n(t)) is the nonzero conjugate vector which
satisfies the conjugate Hamiltonian system

(7)
dψk

dt
= − ∂H

∂xk
, ψk(0) = ξk, k = 3, . . . , 2n.

The following theorem is a version of Pontryagin’s maximum principle
together with the corresponding transversality conditions both of which
are necessary conditions for extremal trajectories in an optimal control
problem (see, e.g., [4, pp. 254, 319] for the autonomous case).

Theorem B. Let a∗(t) be a solution of the system (5) with a con-
tinuous control function u∗(t). If a∗ = a∗(logM) is a boundary point
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of V M
n which gives maxf∈S(M) �L(f), then there exists the solution

ψ∗ = ψ∗(t) of the system (7) exists with the same control function
u∗(t) such that

(8)

max
u

H(t,a∗(t),ψ∗(t), u) = H(t,a∗(t),ψ∗(t), u∗(t)), t ∈ [0, logM ],

and

(9) ψ∗(logM) = (�λ2,
λ2, . . . ,�λn,
λn).

The condition (8) is called the Pontryagin maximum principle and
(9) is called the transversality condition at a∗. Evidently u∗(t) is a
root of the equation

(10) Hu(t,a,ψ, u) = 0

with a = a∗ and ψ = ψ∗.

Note that g3, . . . , g2n in (5) do not depend on x2n−1 and x2n. Hence

dψ2n−1

dt
=

dψ2n

dt
= 0

and taking into account the transversality conditions (9) we assume
that

ψ2n−1(t) + iψ2n(t) = ξ2n−1 + iξ2n = λn.

Denote ξ = (ξ3, . . . , ξ2n−2). In particular, at t = 0 we have

H(0,0, ξ, u) = −2
n∑

k=2

(ξ2k−1 cos(k − 1)u− ξ2k sin(k − 1)u).

Let λ = (λ2, . . . , λn) ∈ Rn−1. Since M is close to 1 and the
functions −(∂H/∂xk) in the righthand side of (7) are bounded for
0 ≤ t ≤ logM , ψ∗(0) is close to ψ∗(logM) and H(t,a∗,ψ∗, u) is
close to H(0,0, ξ, u) = −2

∑n
k=2 λk cos(k − 1)u. According to (1)

Hu(0,0, ξ, u) has only single zeros on [0, 2π] and this property is
preserved for Hu(t,a∗,ψ∗, u) which means that Huu(t,a∗,ψ∗, u∗) < 0.
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The last assertion guarantees that the control function u in the
righthand side of (5) and (7) is the analytic branch of the implicit
function u = u(t,a,ψ) determined by the equation (10) with the initial
value u(0,0, ξ∗) = u∗(0), ξ∗ = ψ∗(0). Indeed, this follows from the
analytical properties of the Hamilton function H and the inequality
Huu(t,a,ψ, u) �= 0 which holds in a neighborhood of (t,a,ψ, u) =
(0,0, ξ∗, u∗(0)).

Vectors a and ψ, being the solution of the systems (5) and (7) with
u = u(t,a,ψ) in their righthand sides, depend only on t and ξ, i.e.,
a = a(t, ξ) and ψ = ψ(t, ξ).

Denote
u(t, ξ) = u(t,a(t, ξ),ψ(t, ξ)).

Lemma A. Let u = u(t, ξ) and H(t,a,ψ, u) be the Hamilton function
(6). Then |Huu(0,0, ξ, u)| ≥ δ > 0 in a neighborhood of ξ0 =
(λ2, 0, . . . , λn−1, 0).

Lemma A was proved in [3] for a partial case corresponding to the
nonlinear functional I(f) = �(a2an). Therefore we will give here only
a sketch of the proof which is very close to that of [3].

Since Hu(0,0, ξ, u(0, ξ)) has a single zero at u(0, ξ0),

r(ξ) = Huu(0,0, ξ, u(0, ξ)) < 0

in a neighborhood of ξ0. After differentiating r(ξ) and the equation
(10) at t = 0, we obtain

r′(ξ) = Huuψ(0,0, ξ, u)−Huψ(0,0, ξ, u)Huuu(0,0, ξ, u)/r(ξ).

Due to boundedness of partial derivatives of H(0,0, ξ, u) in a neigh-
borhood of ξ0, the derivative r′e(ξ) for any direction e satisfies

(11) |r′e(ξ)| ≤
A

|r(ξ)| +B

for some positive numbers A and B. Let l be the smallest number
such that r(ξ) = r(ξ0)/2 for a certain ξ, ‖ξ − ξ0‖ = l, i.e., |r(ξ)| ≥
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|r(ξ0)|/2 = δ, if ‖ξ − ξ0‖ ≤ l. Integrating the differential inequality
(11) from ξ0 to ξ in the direction e = ξ − ξ0, we obtain

|r(ξ)− r(ξ0)| = |r(ξ0)|/2 ≤
(

2A
|r(ξ0)| +B

)
l,

which gives a lower bound for l and completes the proof of Lemma A.

Lemma B [3]. Let |Huu(0,0, ξ, u(0, ξ))| ≥ δ > 0 for all ξ, ‖ξ−ξ0‖ ≤
l. Then there exists M > 1 such that the inequality

|Huu(t,a(t, ξ),ψ(t, ξ), u(t, ξ))| ≥ δ/2

holds for all t ∈ [0, logM ].

Lemma C [3]. Let u = u(t, ξ). The partial derivatives ut and uξ
are bounded if ξ is close to ξ0 and t is close to 0.

3. Proof of Theorem 1.

Proof of Theorem 1. First we show that there exists a unique point ξ
in a neighborhood of ξ0 for which the solution of the systems (5) and
(7) satisfies the maximum principle (8) and the transversality condition
(9).

Let us consider the mapping

F : ξ −→ (ψ3(logM, ξ), . . . , ψ2n−2(logM, ξ)), ‖ξ − ξ0‖ ≤ l.

The function F(ξ) maps the initial data ξ onto the solution of the
Cauchy problem (7) for t = logM . Hence F is an analytic function
and its derivative Fξ is the Jacobi matrix A(t, ξ) with the elements

ajk =
∂ψj(logM, ξ)

∂ψk
, j, k = 3, . . . , 2n− 2.

Clearly, A(0, ξ0) is the unit matrix. Hence detA(logM, ξ0) > 0 if
(M − 1) is small enough. This means that the matrix A(logM, ξ0) =
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Fξ(ξ
0) is invertible and F maps a neighborhood Uε(ξ0) = {ξ :

‖ξ − ξ0‖ < ε}, ε > 0, of ξ0 one-to-one onto a neighborhood of F(ξ0).
Therefore there exists a unique ξ ∈ Uε(ξ0) for which the maximum
principle (8) and the transversality condition (9) are satisfied.

Second, suppose to the contrary that the extremal function f∗(z) ∈
S1(M) for the functional L is different from PM (z) and −PM (−z). This
means that f∗ maps D onto DM slit along an analytic curve which is
nonsymmetrical with respect to the real axis. Hence f∗∗(z) = f∗(z̄) is
different from f∗(z). As soon as real parts of coefficients of f∗ and f∗∗

are equal, both of them are extremal for L.

Let, according to Theorem A, the functions f∗ and f∗∗ be represented
as

f∗(z) = Mw∗(z, logM), f∗∗(z) = Mw∗∗(z, logM),

where w∗(z, t) and w∗∗(z, t) are the solutions of the Loewner differential
equation (2) with u = u∗(t) and u = u∗∗(t) respectively.

Let w∗(z, t) correspond to a = a∗(t) = (x∗
3(t), . . . , x

∗
2n(t)), u = u∗(t)

and ψ = ψ∗(t) = (ψ∗
3(t), . . . , ψ

∗
2n(t)) in (5), (7), 0 ≤ t ≤ logM .

Then w∗∗(z, t) corresponds to a=a∗∗(t)=(x∗
3(t),−x∗

4(t), . . . , x∗
2n−1(t),

−x∗
2n(t)), u = u∗∗(t) = −u∗(t) and ψ = ψ∗∗(t) = (ψ∗

3(t),−ψ∗
4(t), . . . ,

ψ∗
2n−1(t),−ψ∗

2n(t)) which implies that f∗ and f∗∗ correspond to the dis-
tinct data values ξ∗=(ξ∗3 , ξ

∗
4 ,. . ., ξ

∗
2n−3, ξ

∗
2n−2) and ξ

∗∗ = (ξ∗3 ,−ξ∗4 , . . . ,
ξ∗2n−3,−ξ∗2n−2) respectively.

But the transversality condition (9) means that

ψ(logM, ξ∗) = ψ∗(logM) = ψ∗∗(logM)
= ψ(logM, ξ∗∗) = (λ2, 0, . . . , λn, 0).

If (M−1) is small enough, then ξ∗ and ξ∗∗ are close to ξ0 and belong
to a neighborhood Uε(ξ0) of ξ0 where F has an inverse mapping F−1.
This contradicts the statement that F(ξ∗) = F(ξ∗∗) and ends the proof
of Theorem 1.

Remark 3. Requirement of Theorem 1 that the trigonometrical
polynomial

∑n
k=2(k − 1)λk sin(k − 1)u has only single zeros on [0, 2π]

can be weakened. Indeed, we need only the singleness of zeros which
are maximum points of H(0,0, ξ0, u).



1046 D.V. PROKHOROV

4. Application to estimates for �(an+αam). Schiffer and Tammi
[7] and Siewierski [6] showed that the Pick functions are not extremal
for maxf∈S(M) �an if n > 2 and (M − 1) is small. More precisely, they
showed that there exists Mn > 1 such that �an is maximized in S(M)
by the function

PM,n(z) = [PMn−1(zn−1)]1/(n−1) ∈ S(M)

for all M ∈ (1,Mn).

Given α > 0 and even m and n such that (m − 1) and (n − 1) are
relatively prime, n > m ≥ 2, consider the linear functional

L(f) = an + αam

and the extremal problem

(12) �L(f) −→ max, f ∈ S(M).

According to the Pontryagin maximum principle (8) and the transver-
sality condition (9), the Hamilton function H(t,a(t, ξ),ψ(t, ξ), u) is
close to

H(0,0, ξ0, u) = q(u) = −2(cos(n− 1)u+ α cos(m− 1)u)

if ξ is close to ξ0 = (0, . . . , 0, α, 0, . . . , 0, 1, 0) and (M − 1) is small.

Since q(u) has only one absolute maximum in [0, 2π] at u = π and
q′′(π) < 0, the Hamilton function also has only one absolute maximum
in [0, 2π] at u(t, ξ). This means that an extremal function f∗ of the
problem (12) belongs to S1(M) and all the conditions of Theorem 1
are satisfied.

So we proved

Theorem 2. Given α > 0 and even m and n such that (m − 1)
and (n − 1) are relatively prime, there exists M(m,n, α) > 1 such
that the Pick function PM (z) is extremal for the problem (12) for all
M ∈ (1,M(m,n, α)).
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It is proved in [2] that the Pick function −PM (−z) is extremal for
the nonlinear problem �(aman) → max in S(M) if (m−1) and (n−1)
are relatively prime and (M − 1) is small enough.
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