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THE ASYMPTOTIC OF SOLUTIONS FOR
A CLASS OF DELAY DIFFERENTIAL EQUATIONS

JAN ČERMÁK

ABSTRACT. We study the asymptotic properties of solu-
tions of the differential equation

ẋ(t) = −c(t)[x(t) − Lx(τ(t))]

with a positive continuous function c(t), a nonzero real con-
stant L and unbounded lag. We establish conditions under
which each solution of this equation approaches a solution of
the auxiliary functional equation

ψ(t) = Lψ(τ(t)).

Moreover, we investigate some modifications of the studied
equation and give comparisons with the known results.

1. Introduction. We investigate the asymptotic behavior of
solutions of the delay differential equation

(1.1) ẋ(t) = −c(t)[x(t)− Lx(τ (t))], t ∈ I = [t0,∞),

where c(t) is a positive continuous function on I, L is a nonzero
real scalar and τ (t) is a continuously differentiable function such that
τ (t)→ ∞ as t → ∞, τ (t) < t and 0 < τ̇ (t) ≤ λ < 1 for every t ∈ I.

Our assumptions imply that the lag t− τ (t) must be necessarily un-
bounded on I. Equations with this type of a delay have diverse applica-
tions in areas ranging from the number theory to industrial problems.
The objective of many authors have been especially equations with the
proportional argument (see [6], [8], [10], [14] and others) and equa-
tions with the linearly transformed argument (see [3] and references
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therein). Among papers devoted to the study of differential equations
with the general form of unbounded delay, we can mention those of
Heard [5], Jaroš [7], Makay and Terjéki [11] and [1], [2]. We note that
these authors investigated equation (1.1) and its modifications under
assumptions close to ours.

In this paper we wish to generalize and improve asymptotic results
discussed in the above papers. Moreover, we relate asymptotic behavior
of all solutions of (1.1) to the behavior of a solution of an auxiliary
functional equation.

2. Preliminaries. Throughout this paper we assume that τ (t) ∈
C1(I), τ (t) → ∞ as t → ∞, τ (t) < t and 0 < τ̇(t) ≤ λ < 1 for every
t ∈ I. We note that without significant complication we can consider
also τ (t) with the property τ (t0) = t0.

By a solution of (1.1) we understand a real or complex valued function
x(t) ∈ C0([τ (t0), t0] ∪ I), x(t) ∈ C1(I) such that x(t) satisfies (1.1) for
every t ∈ I. Similarly we introduce the notion of a solution for other
delay equations occurring in this paper.

The key tool in establishing our results is a transformation converting
an equation with unbounded delay to an equation with constant delay.
The substitutions of this type have been already employed in the above
cited papers [5], [8], [11], [14] and [1]. It should be noted that the
systematic transformation theory of functional differential equations
has been started and developed especially by [5], [12], [13], [15] and
[16]. In this section, we state some simple facts that we use in our
investigations.

We start with the study of the functional equation

(2.1) ϕ(τ (t)) = λϕ(t), t ∈ I,

where the real parameter λ is introduced in accordance with our
previous notation as

λ = sup{τ̇ (t), t ∈ I}.
In the sequel we mean by the symbol τk(t), k ∈ Z, the k-th iterate of
τ (t) (for k > 0) or the −k-th iterate of the inverse function τ−1(t) (for
k < 0) and put τ0(t) ≡ t.
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Proposition 2.1. Let ϕ0(t) ∈ C1(I0), where I0 = [τ (t0), t0] be a
function such that ϕ0(t) > 0, ϕ̇0(t) > 0 for every t ∈ I0 and

(ϕ0 ◦ τ )(n)(t0) = λϕ
(n)
0 (t0), n = 0, 1.

Then the formula

(2.2)
ϕ(t) = λ−kϕ0(τk(t)), τ−k+1(t0) ≤ t ≤ τ−k(t0),

k = 0, 1, 2, . . . ,

defines a unique solution ϕ(t) ∈ C1(I0∪I) of (2.1) such that ϕ(t)→ ∞
as t → ∞, ϕ(t) > 0, 0 < ϕ̇(t) ≤ M for every t ∈ I0 ∪ I and a suitable
constant M > 0 and ϕ(t) ≡ ϕ0(t) on I0.

Proof. The validity of formula (2.2) can be easily proved by the step
method. We show the above stated properties of ϕ(t). The solution ϕ(t)
must be unbounded as t → ∞ because τ (t) is unbounded as t → ∞.
The fact that ϕ(t) > 0 on I0 ∪ I is obvious. Differentiating (2.1) we get
that ϕ̇(t) is a solution of

ϕ̇(τ (t)) =
λ

τ̇(t)
ϕ̇(t).

Hence, ϕ̇(t) is positive on I0 ∪ I and due to the inequality λ/τ̇(t) ≥ 1,
is also bounded as t → ∞.

Remark 2.2. If we admit functions τ (t) intersecting the identity as t0,
then the assumptions of Proposition 2.1 have to be slightly modified.
Nevertheless, all the conclusions remain valid (see also [9, Chapter 2]).

Remark 2.3. The required solution of equation (2.1) can be given
in several important cases explicitly. These cases are discussed in
Section 3.

Remark 2.4. Notice that the substitution s = logϕ(t) enables us to
converge equation (1.1) to an equation with constant delay. This fact
is used in the proofs of our asymptotic results, where we introduce
also the change of the dependent variable to obtain the transformed
equation in a more convenient form.
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3. Asymptotic behavior of solutions. In this section, we first
derive the asymptotic estimate of solutions of the more general equation
than (1.1).

Theorem 3.1. Let ϕ(t) be a solution of (2.1) given by (2.2). Let
x(t) be a solution of the equation

(3.1) ẋ(t) = −a(t)x(t) + b(t)x(τ (t)), t ∈ I,

where a(t), b(t) ∈ C0(I), a(t) ≥ K/(ϕ(t))κ, 0 < |b(t)| ≤ Qa(t) for every
t ∈ I and suitable reals κ < 1, K > 0, Q > 0. Then

(3.2) x(t) = O((ϕ(t))γ) as t → ∞, γ =
logQ
log λ−1

.

Proof. We introduce a change of variables

s = logϕ(t), w(s) = (ϕ(t))−γx(t)

in (3.1) to obtain

w′(s) = −(a(h(s))h′(s) + γ)w(s) + b(h(s))λγh′(s)w(s− c),
s ∈ J = [s0,∞),

where “′” means d/ds, h(s) ≡ ϕ−1(es) on J , c = log λ−1 and s0 =
logϕ(t0). From here we get

(3.3)
d

ds

[
exp

{
γs+

∫ h(s)

s0

a(u) du
}
w(s)

]

= b(h(s))λγh′(s) exp
{
γs+

∫ h(s)

s0

a(u) du
}
w(s− c).

Due to Proposition 2.1,

1
h′(s)

=
ϕ̇(h(s))
ϕ(h(s))

= O(e−s) as s → ∞.
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Consequently,

(3.4) a(h(s))h′(s) ≥ K1e
(1−κ)s

for a suitable realK1 > 0 and every s ≥ s0. Thus we can choose ξ0 ≥ s0

such that γ + a(h(s))h′(s) > 0 for every s ≥ ξ0. Put ξi := ξ0 + ic,
Ji := [ξi−1, ξi] and Mi := max{|w(s)|, s ∈ Ji}, i = 1, 2, . . . . If we
choose any s∗ ∈ Ji+1, then the integration (3.3) over [ξi, s

∗] yields

exp
{
γs+

∫ h(s)

s0

a(u) du
}
w(s)

∣∣∣s
∗

ξi

=
∫ s∗

ξi

b(h(s))λγh′(s) exp
{
γs+

∫ h(s)

s0

a(u) du
}
w(s− c) ds.

Then

w(s∗) = exp
{
γ(ξi − s∗)−

∫ h(s∗)

h(ξi)

a(u) du
}
w(ξi)

+ exp
{
−

∫ h(s∗)

s0

a(u) du− γs∗
} ∫ s∗

ξi

b(h(s))λγh′(s)

· exp
{
γs+

∫ h(s)

s0

a(u) du
}
w(s− c) ds.

Consequently,

|w(s∗)| ≤ Mi exp
{
γ(ξi − s∗)−

∫ h(s∗)

h(ξi)

a(u) du
}

+Mi exp
{
−

∫ h(s∗)

s0

a(u) du− γs∗
}

·
∫ s∗

ξi

|b(h(s))|λγh′(s) exp
{
γs+

∫ h(s)

s0

a(u) du
}
ds

≤ Mi exp
{
γ(ξi − s∗)−

∫ h(s∗)

h(ξi)

a(u) du
}

(3.5)

+Mi exp
{
−

∫ h(s∗)

s0

a(u) du− γs∗
}

·
∫ s∗

ξi

a(h(s))h′(s) exp
{
γs+

∫ h(s)

s0

a(u) du
}
ds.
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Now we estimate the integral

I1 :=
∫ s∗

ξi

a(h(s))h′(s) exp
{
γs+

∫ h(s)

s0

a(u) du
}
ds

occurring in (3.5). Obviously

I1 ≤ exp
{
γs+

∫ h(s)

s0

a(u) du
}∣∣∣s

∗

ξi

+|γ|
∫ s∗

ξi

exp
{
γs+

∫ h(s)

s0

a(u) du
}
ds.

Let

I2 := |γ|
∫ s∗

ξi

exp
{
γs+

∫ h(s)

s0

a(u) du
}
ds.

Then

I2 =
∫ s∗

ξi

|γ|
γ + a(h(s))h′(s)

d

ds

[
exp

{
γs+

∫ h(s)

s0

a(u) du
}]

ds.

Notice that
|γ|

γ + a(h(s))h′(s)
= O(exp{(κ− 1)s}) as s → ∞

by use of (3.4). Put δ = 1− κ > 0. Then

I2 ≤ K2

∫ s∗

ξi

e−δs d

ds

[
exp

{
γs+

∫ h(s)

s0

a(u) du
}]

ds

≤ K2e
−δξi exp

{
γs+

∫ h(s)

s0

a(u) du
}∣∣∣s

∗

ξi

for a suitable K2 > 0. Summarizing these estimates, we get

I1 ≤ exp
{
γs+

∫ h(s)

s0

a(u) du
}∣∣∣s

∗

ξi

(1 +K2e
−δξi).

Substituting this into (3.5), we obtain

|w(s∗)| ≤ Mi exp
{
γ(ξi − s∗)−

∫ h(s∗)

h(ξi)

a(u) du
}

+Mi exp
{
−

∫ h(s∗)

s0

a(u) du− γs∗
}

· exp
{
γs+

∫ h(s)

s0

a(u) du
}∣∣∣s

∗

ξi

(1 +K2e
−δξi)

≤ Mi(1 +K2e
−δξi).
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This implies that

Mi+1 ≤ Mi(1 +K2e
−δξi) ≤ M1

i∏
k=1

(1 +K2e
−δξk), i = 1, 2, . . . .

Thus, the convergence of the infinite product

∞∏
k=1

(1 +K2e
−δξk)

implies that (Mi) is bounded as i → ∞. This proves that w(s) is
bounded as s → ∞, hence (3.2) holds.

Now we use the conclusion of Theorem 3.1 to obtain a stronger
asymptotic result for solutions of equation (1.1).

Theorem 3.2. Let ϕ(t) be a solution of (2.1) given by (2.2). Let
x(t) be a solution of (1.1), where c(t) ∈ C1(I), c(t) ≥ K/(ϕ(t))κ, ċ(t) ≤
M(c(t))2 for every t ∈ I and suitable reals K > 0, 0 ≤ M < 1 − λ,
κ < θ = 1− log(1−M)/ log λ. Then there exists a continuous periodic
function g(s) of period log λ−1 such that

(3.6) x(t) = (ϕ(t))αg(logϕ(t)) +O((ϕ(t))β) as t → ∞,

where α is a (possibly complex) constant such that λα = 1/L and
β = Reα− θ + κ.

Proof. We set

s = logϕ(t), w(s) = (ϕ(t))−αx(t)

in (1.1) to obtain the equation

(3.7)
w′(s) = −c(h(s))h′(s)(w(s)− w(s− c))− αw(s),

s ∈ J = [s0,∞),
where we use the same notation as in the proof of Theorem 3.1. By
Theorem 3.1,

x(t) = O((ϕ(t))γ) as t → ∞, γ = Reα,
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hence w(s) is bounded on J . We derive the asymptotic estimate of
w′(s).

Differentiating (1.1) we have

(3.8) ẍ(t) = −
(
c(t)− ċ(t)

c(t)

)
ẋ(t) + Lτ̇(t)c(t)ẋ(τ (t)).

We verify the assumptions of Theorem 3.1 for equation (3.8). The
inequality

ċ(t) ≤ M(c(t))2

is equivalent to

λc(t) ≤ λ1

(
c(t)− ċ(t)

c(t)

)
, where λ1 =

λ

1−M
.

Consequently,

|L|τ̇(t)c(t) ≤ |L|λc(t) ≤ |L|λ1

(
c(t)− ċ(t)

c(t)

)
.

Further,

c(t)− ċ(t)
c(t)

≥ (1−M)c(t) ≥ (1−M)K
(ϕ(t))κ

.

Then the repeated application of Theorem 3.1 (with a(t) = c(t) −
ċ(t)/c(t), b(t) = Lτ̇ (t)c(t), Q = |L|λ1) yields

ẋ(t) = O((ϕ(t))γ−θ) as t → ∞,

θ = 1− log(1−M)
log λ

> 0.

Thus we can estimate w′(s) as

w′(s) = αe−αsx(h(s)) + e−αsx′(h(s))h′(s) = O(e−θsh′(s)) as s → ∞.

Now from (3.7)

w(s)− w(s− c) = O(e−δs) as s → ∞, δ = θ − κ > 0.
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Hence, the sequence (w(s + nc))∞n=1 is Cauchy and converges to a
continuous periodic function g(s) of period c = log λ−1 such that

w(s) = g(s) +O(e−δs) as s → ∞.

This proves the asymptotic relation (3.6) and completes the proof.

Remark 3.3. It is easy to verify that the function ψ(t) = (ϕ(t))α

occurring in (3.6) defines a solution of the functional equation

(3.9) ψ(t)− Lψ(τ (t)) = 0, t ∈ I.

Thus asymptotic relation (3.6) essentially says that each solution of
(1.1) approaches a solution of functional equation (3.9).

Corollary 3.4. Let x(t) be a solution of the equation

(3.10) ẋ(t) = −c(t)[x(t)− Lx(λt)], t ∈ I = [0,∞),

where 0 < λ < 1, c(t) ∈ C1(I), c(t) ≥ K/tκ, ċ(t) ≤ M(c(t))2 for
every t ∈ I and suitable reals K > 0, 0 ≤ M < 1 − λ, κ < θ =
1− log(1−M)/ logλ. Then there exists a continuous periodic function
g(s) of period log λ−1 such that

x(t) = tαg(log t) +O(tβ), as t → ∞,

where α, β are the same as in Theorem 3.2.

Proof. It is enough to verify that ϕ(t) = t is a required solution of
(2.1). Then our conclusion follows immediately from (3.6).

Remark 3.5. The asymptotic behavior of solutions of equation (3.10)
with L = 1 has been the object of a paper by Makay and Terjéki [11].
If we put L = 1 in Corollary 3.4, we just obtain Theorem 5 of [11].
Hence, formula (3.6) generalizes some parts of this paper.

Corollary 3.6. Let x(t) be a solution of the equation

ẋ(t) = −c(t)[x(t)− Lx(tω)], t ∈ I = [1,∞),
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where 0 < ω < 1, c(t) ∈ C1(I), c(t) ≥ K/(log t)κ, ċ(t) ≤ M(c(t))2

for every t ∈ I and suitable reals K > 0, 0 ≤ M < 1 − ω, κ < θ =
1− log(1−M)/ logω. Then there exists a continuous periodic function
g(s) of period logω−1 such that

x(t) = (log t)αg(log log t) +O((log t)β) as t → ∞,

where α is a complex constant such that ωα = 1/L and β = Reα−θ+κ.

Proof. Apply again Theorem 3.2 with λ = ω and with ϕ(t) = log t as
a solution of (2.1) having the required properties.

In the following assertions, we again assume that τ (t) fulfills the as-
sumptions introduced in Section 2. Since the proofs of these corollaries
are obvious, we can omit them.

Corollary 3.7. Let ϕ(t) be a solution of (2.1) given by (2.2). Let
x(t) be a solution of the equation

(3.11) ẋ(t) = −ax(t) + bx(τ (t)), t ∈ I,

where a > 0, b �= 0 are real scalars. Then there exists a continuous
periodic function g(s) of period log λ−1 such that (3.6) holds, where α
is a complex constant such that bλα = a and β = Reα− 1.

Remark 3.8. This asymptotic expansion of solutions of (3.11) has
been formulated also in Theorem 3.1 of [5]. Consequently, Theorem 3.2
generalizes this assertion. Moreover we do not require τ (t) ∈ C2(I) and
τ̇(t) decreasing on I as it has been assumed in [5].

Corollary 3.9. Let ϕ(t) be a solution of (2.1) given by (2.2). Let
x(t) be a solution of the equation

(3.12) ẋ(t) = −c(t)[x(t)− x(τ (t))], t ∈ I,

where c(t) ∈ C1(I), c(t) ≥ K/(ϕ(t))κ, ċ(t) ≤ M(c(t))2 for every t ∈ I
and suitable reals K > 0, 0 ≤ M < 1 − λ, κ < 1 − log(1 − M)/ logλ.
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Then there exists a continuous periodic function g(s) of period log λ−1

such that

|x(t)− g(logϕ(t))| → 0 as t → ∞.

Remark 3.10. Equation (3.12) has been investigated in many papers
(for results and references, see Dibĺık [4]). Corollary 3.9 extends the
validity of some of these results.
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4. J. Dibĺık, Asymptotic representation of solutions of equation ẏ(t) = β(t)[y(t)−
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