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THE MAPPING PROPERTIES FOR
A CLASS OF OSCILLATORY INTEGRALS

G. SAMPSON

ABSTRACT. In this paper we show that for p = a+b
b

that
the operators given by

Tf(x) =

∫ ∞

0

eig(x,y)ϕ(x, y)f(y) dy,

map Lp into itself with g(x, y) = xbya + γ(xb/a)γ2(y). The
conditions on γ, γ2 and ϕ as defined within.

0. Introduction. In this paper we show that, for p = a+b
b , a class

of operators map Lp into itself, where the operators are given by

(0.1) Tf(x) =
∫ ∞

0

K(x, y)f(y) dy, x ≥ 0,

and

K(x, y) = eig(x,y)ϕ(x, y),(0.2)

g(x, y) = xbγ1(y) + γ(xb/a)γ2(y),(0.3)

g(x, y) is real-valued and

(0.4)
{

(a) |ϕ(x, y)| ≤ C, if x, y ≥ 0,
(b) |Dϕ(x, y)| ≤ C|x− y|−1, if |x− y| > 0.

We also suppose that b ≥ a ≥ 2 and we further impose conditions on
γ, γj , j = 1, 2. These conditions appear in Section 1.

In case γ1 = ya and γ(x) = C with a, b ≥ 1, we studied these
operators in [6] and [7]. If case (0.4) holds, we proved in Theorem 3.1
and Corollary 3.2 of [7] that when γ = C that these operators map
Lp into itself if p = a+b

b and if q �= p these operators do not map Lq
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into itself, if |ϕ(x, y)| ≥ C. In [6], we studied the case where ϕ(x, y)
is of the form |x − y|−r, 0 < r < 1. In Theorem 1.6 we obtain for
the more general phase functions in (0.3) and ϕ(x, y) in (0.4), that
these operators map Lp into itself if p = a+b

b , the same result as in
[7] with b ≥ a ≥ 2. In the special case where γ(x), γ2(x) are power
functions, we obtain this same result and that appears in Theorem 2.5.
In [11] we discussed the L2 result for a similar class of operators and we
generalize that result to the operators in the Proposition in Section 2
in case a, b ≥ 2. There is an extensive bibliography and results on
oscillatory integrals in [12].

The letter C will stand for a positive constant that may change from
line to line. We shall also find it convenient to employ subscripts,
C1, C2, C3, . . . .

1. Admissible functions and preliminaries. We begin by stating
our conditions on γj , γ that we use here. We should point out that for
the most part, we take γ1(y) = ya, and the model case occurs when
γ2(y) is given by (similarly for γ(x))

γ2(y) =
{
yr if 0 ≤ y ≤ ε

ym2 if y > ε,

with r > a > m2 and ϕ(x) = |x− y|iτ , τ real.

We suppose for u, v ≥ ε and m1,m2 > 0 there is a real-valued function
satisfying

(1.1)
{

(a) |λ1(u) − λ1(v)| ≥ C|um1 − vm1 |, and
(m2) |λ2(u) − λ2(v)| ≤ C|um2 − vm2 |.

Note that C1|u − v|(u + v)m−1 ≤ |um − vm| ≤ C2|u − v|(u + v)m−1

for m > 0, for two positive constants C1, C2. The cases worked on in
[7] were when r = 0, m2 = 0. We shall also use the convention that
λ satisfies (1.1)(m), if we replace m2 by m. We shall also think of
0 < ε ≤ 1.

In Theorem 1.7, we formulate conditions on γ, γj so that if b ≥ a ≥ 2,
then

(1.2) ‖Tf‖p ≤ C‖f‖p, if p =
a + b

b
.
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We begin by showing for some ε > 0 that

(1.3)
∣∣∣ ∫ u

0

ei(t
2ξ+γ(t)η)dt

∣∣∣ ≤ C|ξ|−1/2, if 0 < u ≤ ε,

where C is independent of ξ, η ∈ R and u, for a class of admissible
functions γ(t) which will be defined below. This result is useful to us,
since it enables us to handle the origin. But in doing Theorem 2.5, we
find and use a different approach, see (2.9), which allows us to do the
cases where γ(t) = tm.

First set ‖f‖∞ = supa≤x≤b |f(x)|, and begin with

Definition 1.1. We say that f(x) is weakly monotonic (w.m.) on
[a, b] if f is continuous at b and



(i) [a, b) = ∪∞
n=1[an, bn) = ∪∞

n=1In,
(ii) In ∩ Ik = φ if n �= k,
(iii) f ′(x) does not change sign for x ∈ In, n = 1, 2, 3, . . .
(iv) |f(x)| ≤ Cn‖f‖∞ for an ≤ x ≤ bn, and
(v)

∑∞
n=1 Cn ≤ M < ∞.

If f(x) is differentiable and monotonic, then it is w.m. The function
sin(x)/x2 is w.m. if x ≥ 1, and x2 sin(1/x) is w.m. if 0 ≤ x ≤ 1.

We need the following,

Lemma 1.2. Let h(t) be locally integrable on [a, b] and ‖H‖∞ =
supa≤x≤b |

∫ x
a
h(t) dt|, and f(t), g(t) be w.m. on [a, b]. Then

(1.4)




(a)
∣∣∣ ∫ b

a

f(t)h(t) dt
∣∣∣ ≤ C‖H‖∞‖f‖∞, and

(b)
∣∣∣ ∫ b

a

f(t)g(t)h(t) dt
∣∣∣ ≤ C‖H‖∞‖f‖∞‖g‖∞.

Proof. Let us first show (1.4)(a). Using i.b.p. we get that

(1.5)
∫ b

a

f(t)h(t) dt = f(b)
∫ b

a

h(t) dt−
∫ b

a

f ′(x)
(∫ x

a

h(t) dt
)
dx
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but ∫ bn

an

|f ′(x)|
∣∣∣∣
∫ x

a

h(t) dt
∣∣∣∣dx ≤ ‖H‖∞

∫ bn

an

|f ′(x)| dx,

but f ′(x) stays one sign for x ∈ In. If we suppose that f ′(x) ≥ 0 for
x ∈ In then, and similarly for f ′(x) ≤ 0,

∫ bn

an

|f ′(x)| dx ≤ f(bn) − f(an) ≤ 2Cn‖f‖∞,

therefore∣∣∣∣
∫ b

a

f ′(x)
(∫ x

a

h(t) dt
)
dx

∣∣∣∣ ≤
∞∑
n=1

∫ bn

an

|f ′(x)|
∣∣∣∣
∫ x

a

h(t) dt
∣∣∣∣ dx

≤ 2
∞∑
n=1

Cn‖f‖∞‖H‖∞ ≤ 2M‖f‖∞‖H‖∞.

By (1.5) this completes the proof of (1.4)(a).

For (1.4)(b) we note that

∫ b

a

f(t)g(t)h(t) dt = g(b)
∫ b

a

f(t)h(t) dt−
∫ b

a

g′(x)
(∫ x

a

f(t)h(t) dt
)
dx

but by (1.4)(a) we get that∣∣∣∣
∫ x

a

f(t)h(t) dt
∣∣∣∣ ≤ C‖f‖∞‖H‖∞, for a ≤ x ≤ b ;

this completes our proof of (1.4)(b).

Now let us return to the proof of (1.3). We begin with

Definition 1.3. For some 0 < ε(≤ 1), we suppose that there are
constants C,C1 with C1 > 1 so that

(1.6)


 (a) C

γ′(t)
t

≥ γ′′(t) ≥ C1
γ′(t)
t

for 0 ≤ t ≤ ε, and

(b) γ′(0) = γ′′(0) = 0.
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Set M(t) = γ′′(t) − γ′(t)
t , we further suppose that M(t) > 0 for

0 < t ≤ ε, and M(t)
t ∈ L1([0, ε]). In this case we say that γ(t) is

an admissible function.

Note if γ
′(t)
t > 0 for 0 < t ≤ ε, then M(t) > 0 follows from (1.6)(a).

Also note that γ(t) = t2 for 0 ≤ t ≤ 1 just fails to be admissible,
whereas γ(t) = tr, r > 2, is admissible if 0 < t ≤ 1.

Next we consider

Proposition 1.4. Let γ(t) be an admissible function and let M(t) =
γ′′(t) − γ′(t)

t , then for some ε > 0 we get that

(1.7)




(a) 0 ≤ γ′(t)
t

is strictly increasing for 0 ≤ t ≤ ε, and

(b) γ′′(t) − γ′(t)
t

≥ Cγ′′(t1) for t1 ≤ t ≤ ε,

where C does not depend on t.

Remark. Also notice that 1/t, and 1

u+v
γ′(t)

t

are w.m., for any

constants u, v and 0 ≤ t ≤ ε.

Proof. We notice that since M(s)
s ∈ L1([0, ε]), then γ′(t)

t =∫ t
0
M(s)
s ds + C, and as t → +0 we get from (1.6)(b) that γ′(t)

t =∫ t
0
M(s)
s ds, and since M(s) > 0 we get that (1.7)(a) holds.

From (1.6)(a) we get since C1 > 1 that

γ′′(t) − γ′(t)
t

≥ γ′′(t)
(

1 − 1
C1

)
if 0 ≤ t ≤ ε,

≥ C
γ′(t)
t

≥ C
γ′(t1)
t1

≥ Cγ′′(t1),

where we used (1.6)(a) and (1.7)(a). This completes our proof.

We are now in the position to show (1.3).
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Proposition 1.5. Let γ(t) be an admissible function, then there
exists an ε > 0, so that (1.3) holds.

Proof. By (1.6)(a) and Proposition 1.4, there is a C1 > 1 and
0 < ε ≤ 1, so that γ′′(t) ≥ C1

γ′(t)
t and γ′(t)

t is strictly increasing
for 0 ≤ t ≤ ε. We argue the case where γ′′(t1) = −2ξ

η = γ′(t0)
t0

and
if γ′′(t2) = −2ξ

η then t2 ≤ t1 ≤ ε, all the remaining cases follow in a
similar way.

Our purpose is to show (1.3), set ψ(t) = t2ξ + γ(t)η and so we have
for (0 ≤ u ≤ ε) that

∫ u

0

eiψ(t) dt =
∫ t1

0

+
∫ t0

t1

+
∫ u

t0

= I + II + III.

Note it’s possible that u ≤ t0 or u ≤ t1, and so in those cases disregard
those integrals.

We begin with I.

If t1 ≤ |ξ|−1/2, then we are finished and in a similar way we can
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suppose t1, u ≥ |ξ|−1/2. Set δ = |ξ|−1/2, then

I =
∫ δ

0

+
∫ t1

δ

= I1 + I2,

but
γ′(t)
t

≤ γ′(t1)
t1

≤ γ′′(t1)
C1

=
2|ξ|
C1|η| , for 0 ≤ t ≤ t1.

Thus,

(1.8)
∣∣∣∣2ξη +

γ′(t)
t

∣∣∣∣ ≥ 2|ξ|
|η| − 2|ξ|

C1|η| ≥ 2
(

1 − 1
C1

) |ξ|
|η| and C1 > 1.

Hence

|ψ′(t)| =
∣∣∣ηt(2ξ

η
+

γ′(t)
t

)∣∣∣ ≥ t|η|
∣∣∣∣2ξη +

γ′(t)
t

∣∣∣∣
≥ Ct|η| |ξ||η| ≥ Ct|ξ| for 0 < t ≤ t1.

From |I1| ≤ C/|ξ|1/2 and

|I2| =
∣∣∣∣
∫ t1

δ

eiψ(t)ψ′(t) dt

ηt( 2ξ
η + γ′(t)

t )

∣∣∣∣ ≤ C

|ξ||ξ|−1/2
≤ C

|ξ|1/2

and this follows from (1.4)(b) of Lemma 1.2 with f(t) = 1/t and

g(t) =
1

( 2ξ
η + γ′(t)

t )
.

Next we consider II.

For t1 ≤ t ≤ t0 we get by (1.7)(b) that

(1.9) γ′′(t) − γ′(t)
t

≥ C2γ
′′(t1) = C2

2|ξ|
|η| .

It follows from (1.9) that (t1 ≤ t ≤ t0) if∣∣∣∣2ξη +
γ′(t)
t

∣∣∣∣ ≤ C2
|ξ|
|η| , then

∣∣∣∣2ξη + γ′′(t)
∣∣∣∣ ≥ C2

|ξ|
|η|

where C2 comes from (1.9).
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It follows from this result that there is a number c∗ so that

(1.10)




(a)
∣∣∣2ξ
η

+
γ′(t)
t

∣∣∣ ≥ C2
|ξ|
|η| if t1 ≤ t ≤ c∗

(b)
∣∣∣2ξ
η

+ γ′′(t)
∣∣∣ ≥ C2

|ξ|
|η| if c∗ ≤ t ≤ t0.

Next note that II ≤ | ∫ c∗
t1

| + | ∫ t0
c∗ | = II1 + II2. Thus by (1.4)(b) as

above we get that

II1 =
∣∣∣∣
∫ c∗

t1

eiψ(t)ψ′(t)
ψ′(t)

dt

∣∣∣∣ ≤ C

t1|ξ| ≤ C|ξ|−1/2

since |ξ|−1/2 ≤ t1 ≤ t ≤ c∗ and (1.10)(a).

For the term II2, we get by (1.10)(b) that |ψ′′(t)| = |η||(2ξ/η) +
γ′′(t)| ≥ C2|ξ|, and so Van der Corput applies and we get that

II2 ≤ C

|ξ|1/2 .

At last we consider III.

This time t0 ≤ t ≤ ε and since C1 > 1 and (1.7)(a) we get

|ψ′′(t)| = |η|
∣∣∣∣γ′(t0)

t0
− γ′′(t)

∣∣∣∣ ≥ |η|
(
C1γ

′(t)
t

− γ′(t0)
t0

)
≥ C|ξ|

and so again Van der Corput applies and we get that

III ≤ C|ξ|−1/2.

This completes our result.

Remark 1. We get from Proposition 1.5 that there is a C independent
of ξ, η, u, (ξ, η ∈ R) and 0 ≤ u ≤ ε so that

(1.11)
∣∣∣∣
∫ u

0

ei(t
aξ+γ(t)η)dt

∣∣∣∣ ≤ C|ξ|−1/a

if a ≥ 2 and h(t) = γ(t2/a) is an admissible function. Just set s2 = ta

and apply Proposition 1.5 to∣∣∣∣
∫ ua/2

0

ei(s
2ξ+γ(s2/a)η)

s1−2/a
ds

∣∣∣∣.
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Note that we can extend Proposition 1.5 to a global result, if we
assume that γ(t) satisfies (1.6) for all t, i.e., letting ε → +∞ and
M(t)/t ∈ Lloc. But we will not pursue that here.

We are now in a position to state our conditions on γ(t). We shall
state our conditions locally and so for some 0 < ε ≤ 1, we consider
real-valued functions λ(t) that satisfy

(1.12)




(a) h(t) = λ(t2/a) is admissible for 0 ≤ t ≤ ε,
(b) λ(t) satisfies (1.1)(m) for t > ε,

(c) lim
t→+∞

|λ′(t)|
ta−1

= 0, and

(d) |λ′(t)| ≤ Cta−1 if t ≥ ε.

Note we say that λ(t) satisfies (1.12)(m2) to mean that λ satisfies (1.12),
but we replace (1.1)(m) by (1.1)(m2) in (1.12)(b).

Note that from (0.2) that the operator with kernel K(x, y)(1−ψ(x−
y)) where ψ(x) ∈ C∞(R), ψ(x) = 0 for |x| ≤ 1, ψ(x) = 1 for |x| ≥ 2
and 0 ≤ ψ(x) ≤ 1, maps Lp into itself for 1 ≤ p ≤ ∞. We are left with
the operator whose kernel is K(x, y)ψ(x− y).

Our proof of (1.2), as we shall soon see, follows by proving that
‖S1‖2,2 = sup

‖f‖2≤1

‖S1f‖2 ≤ C < ∞, where

(1.13) S1f(x) =
∫ ∞

0

k1(x, y)f(y) dy, x ≥ 0,

where k1(x, y) = eig(x
a/b,y)ϕ1(xa/b, y) and g(x, y) is defined in (0.3)

with ϕ1(x, y) = ϕ(x, y)ψ(x − y) . Since this operator maps L2 into
itself it follows that the dual operator

S∗
1f(x) =

∫ ∞

0

k1(y, x)f(y) dy, x ≥ 0

maps L2 into itself. Let an operator associated to S∗
1 be given by

T̃1f(x) =
∫ ∞

0

k1(y, xb/a)f(y) dy, x ≥ 0.

We get that this operator T̃1 maps Lp into itself for p =
a + b

a
.
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Theorem 1.6. Let γ1(y) = ya, b ≥ a ≥ 2 and 0 < m, m2 ≤ a.

Suppose that (0.4) holds,
γ′(x)
xa−1

and
γ′
2(x)
xa−1

are monotonic for x ≥ ε and

γ(x) satisfies (1.12) and γ2(x) satisfies (1.12)(m2). Then Tf defined
in (0.1) satisfies (1.2).

To prove Theorem 1.6 we show that the operator S1 defined in (1.13)
maps L2 into itself. More precisely we show,

Theorem 1.7. Let a ≥ 2, 0 < m, m2 ≤ a and γ1(y) = ya.

Suppose that (0.4) holds,
γ′(x)
xa−1

and
γ′
2(x)
xa−1

are monotonic for x ≥ ε,

γ(x) satisfies (1.12) and γ2(x) satisfies (1.12)(m2). Then S1 defined in
(1.13) maps L2 into itself.

We now show that Theorem 1.6 follows directly from Theorem 1.7.

Proof of Theorem 1.6. Assume that Theorem 1.7 holds. We then get
that

(i) ‖S1f‖2 ≤ C‖f‖2

and
(ii) ‖S1f‖∞ ≤ C‖f‖1.

Notice that T1f(x) = S1f(xb/a) and T̃1f(x) = S∗
1f(xb/a) and so it

follows from (i) and (ii) that∫ ∞

0

|T1f(x)|p dx =
a

b

∫ ∞

0

x(a/b)−1|S1f(x)|pdx ≤ C‖f‖pp

as long as p − 2 = (a/b) − 1 and a ≤ b. A similar argument holds for
the operator T̃1. This completes our proof of Theorem 1.6.

2. Proof of Theorem 1.7. We begin with the following and we

suppose that
γ′(t)
ta−1

is monotonic for t ≥ ε, but we really only need the
monotonicity condition for relevant t, r1 ≤ t ≤ r2,



MAPPING PROPERTIES FOR OSCILLATORY INTEGRALS 331

Proposition 2.1. Let ε > 0 be given with u, v, t,≥ ε. Suppose that
γ(t) satisfies (1.12)(c) and (d), 0 < m2 ≤ m1 ≤ a. If γ1 satisfies
(1.1)(a) and γ2 satisfies (1.1)(m2), then with

α(t) = ta(γ1(u) − γ1(v)) + γ(t)(γ2(u) − γ2(v))

we get that

(2.1) |α′(t)| ≥ Cta−1|um1 − vm1 |.

If in addition
γ′(t)
ta−1

is monotonic for t ≥ ε, then

(2.2)
∣∣∣∣
∫ r2

r1

eiα(t) dt

∣∣∣∣ ≤ C

ra−1
1 |um1 − vm1 | ,

if either r2 ≥ r1 ≥ Nε for Nε sufficiently large or u + v is large and
m2 < m1.

Proof. We note that

α′(t) = ata−1
[
γ1(u) − γ1(v) +

γ′(t)
ata−1

(γ2(u) − γ2(v))
]
.

By (1.1) applied to γj , j = 1, 2, we get that

|α′(t)| ≥ ata−1|u− v|
[
C1(u + v)m1−1 − C2

∣∣∣∣γ′(t)
ta−1

∣∣∣∣(u + v)m2−1
]
.

To complete our proof of (2.1) it suffices to show that

(2.3) (u + v)m1−1 ≥ C
|γ′(t)|
ta−1

(u + v)m2−1

for some C large enough. But if t is large enough, t ≥ Nε, then by
(1.12)(c) we get that

(u + v)m1−m2 ≥ C
|γ′(t)|
ta−1

.

While the last inequality holds even if t is not large, but then u + v
must be sufficiently large and m2 < m1, that follows from (1.12)(d).
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To see (2.2) with ε < r1 ≤ r2, we apply Lemma 1.2 with h(t) =
eiα(t)α′(t) ∣∣∣∣

∫ r2

r1

eiα(t)α′(t)
α′(t)

dt

∣∣∣∣, where f(t) = t1−a

and g(t) =
[
γ1(u) − γ1(v) +

γ′(t)
ta−1

(γ2(u) − γ2(v))
]−1

This completes our proof.

For the operator S1 defined in (1.13) our (2,2) problem is reduced to
estimating the terms

Iij =
∫
Ei

∣∣∣ ∫
Ej

k1(x, y)f(y) dy
∣∣∣2 dx, i, j = 1, 2,

if i + j > 2, E1 = [0, N ], E2 = [N,∞), N from Proposition 2.1 and
k1(x, y) is defined below (1.13).

We begin with the following result.

Proposition 2.2. Assume a > 1 and that 0 < m2 ≤ a. Also suppose
that (0.4) holds, γ(x) satisfies (1.12)(c) and γ2(x) satisfies (1.1)(m2).

If
γ′(x)
xa−1

is monotonic for x ≥ N , then

I22 ≤ C

∫ ∞

0

|f |2 dy.

Proof. We notice that

I22 =
∞∑
j=1

∫ ∞

N

χj(x)
∣∣∣∣

∞∑
l=1

∫ ∞

N

k1(x, y)χl(|x− y|)f(y) dy
∣∣∣∣
2

dx,

where χl(y) = χ(2l−1 ≤ y ≤ 2l), l = 1, 2, 3, . . . . Thus

I
1/2
22 ≤

∞∑
l=1

( ∞∑
j=1

∫ ∞

N

χj(x)
∣∣∣ ∫ ∞

N

k1(x, y)χl(|x− y|)f(y) dy
∣∣∣2dx)1/2

.
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We analyze the integrand,

Ĩjl =
∫ ∞

N

χj(x)
∣∣∣ ∫ ∞

N

k1(x, y)χl(|x− y|)f(y) dy
∣∣∣2 dx

=
∫ ∞

N

f(u)
( ∫ ∞

N

f̄(v)Ajl(u, v) dv
)
du,

with

Ajl(u, v) =
∫ ∞

N

χj(x)k1(x, u)k̄1(x, v)χl(|x− u|)χl(|x− v|) dx.

We focus on the term

sup
w

∫
Sjl

|∂x(ϕ(xa/b, u)ϕ̄(xa/b, v))| dx = bjl,

where w stands for u or v and the set Sjl = {x ≥ N : |x−w| ∈ [2l−1, 2l],
and x ∈ [2j−1, 2j ]}.

If the set Sjl �= φ then |Sjl| ≤ C2j∧l and u, v must satisfy

(2.4)




(a) |u− v| ≤ 2l+2,

(b) 2(j∨l)−1 ≤ u, v ≤ 2j+1 + 2l, if j �= l, l + 1, and
(c) u, v ≥ N if j = l or l + 1.

We set Sjl = [x1, x2] and by the trivial estimate we get that |Ajl| ≤
C2j∧lχjl(u)χjl(v), where χjl = χ(u ≥ 2j∨l) if j �= l, l + 1 and
χjl(u) = χ(u ≥ N) if j = l or l + 1.

Integrating by parts we get two terms, namely

Ajl = ϕ(xa/b2 , u)ϕ̄(xa/b2 , v)
∫ x2

x1

eiα(t) dt

+
∫ x2

x1

(
∂x

(
ϕ(xa/b, u)ϕ̄(xa/b, v)

)(∫ x

x1

eiα(t) dt
))

dx

where α(x) = xa(ua − va) + γ(x)(γ2(u) − γ2(v)). By (2.2) of Proposi-
tion 2.1 it follows that
(2.5)

∣∣∣ ∫ x

x1

eiα(t) dt
∣∣∣ ≤ C

|u− v|2j(a−1)

{
(a)

1
2(j∨l)(a−1)

, if j �= l, l + 1

(b) 1, if j = l or l + 1.
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Then by (2.5) we get that,

|Ajl(u, v)| ≤ C




(a)
1 + bjl

|u− v|2j(a−1)2(j∨l)(a−1)
if j �= l, l + 1

(b)
1 + bjl

|u− v|2j(a−1)
if j = l, l + 1.

We estimate bjl and notice from (0.4) that∫ x2

x1

x(a/b)−1(|ϕ′(xa/b, u)ϕ(xa/b, v)| + |ϕ(xa/b, u)ϕ′(xa/b, v)|) dx

≤ C

∫ x
a/b
2

x
a/b
1

[(1 + |x− u|)−1 + (1 + |x− v|)−1] dx ≤ C(j ∨ l).

Thus we get that

|Ajl(u, v)| ≤ C
(j ∨ l)χ[0,2l+2](|u−v|)

|u− v|2j(a−1)

{
(a) 2−(j∨l)(a−1) if j �= l, l+1
(b) 1 if j = l, l+1.

Thus if we set

djl(u, v) = (j ∨ l)χjl(u)χjl(v)

×




(a)
1

1+2ρjl |u−v|2(j∨l)(a−1)
if j �= l, l + 1

(b)
1

1 + 2ρjl |u− v| if j = l, l + 1,

and also employing the trivial estimate, we get that

|Ajl| ≤ C2j∧lχ[0,2l+2](|u− v|)djl(u, v),

where ρjl = (j ∧ l) + j(a− 1). We get that these terms sum and thus

I
1/2
22 ≤

∞∑
l=1

( ∞∑
j=1

Ĩjl

)1/2

≤ C‖f‖2.

Next we estimate the remaining terms I12 and I21.
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Proposition 2.3. Let a ≥ 2 and assume that (0.4) holds, and
0 < m2 < a. If γ(x) satisfies (1.12)(a) and (d) and γ2(x) satisfies

(1.1)(m2), then if
γ′(x)
xa−1

is monotonic for x ≥ ε, then

I12 ≤ C‖f‖2
2.

Proof. And we notice that

I12 =
∫ ∞

N

f(u)
(∫ ∞

N

f̄(v)A(u, v) dv
)
du,

with

A(u, v) =
∫ N

0

k1(x, u)k̄1(x, v) dx.

Using integration by parts we get that

(2.6)

|A(u, v)| ≤
∣∣∣ϕ1(Na/b, u)ϕ̄1(Na/b, v)

∫ N

0

eiα(t) dt
∣∣∣

+
∫ N

0

∣∣∣∣
(
∂x(ϕ1(xa/b, u)ϕ1(xa/b, v))

(∫ x

0

eiα(t) dt

))∣∣∣∣ dx
where α(x) = xa(ua − va) + γ(x)(γ2(u) − γ2(v)). Note from (2.2) we
get that ∣∣∣∣

∫ x

ε

eiα(t) dt

∣∣∣∣ ≤ C

|ua − va| for x ≥ ε,

since u + v ≥ 2N and N is sufficiently large, but still fixed. Also from
(1.11) we get that∣∣∣∣

∫ x

0

eiα(t) dt

∣∣∣∣ ≤ C

|ua − va|1/a if 0 ≤ x ≤ ε.

Putting these two estimates together, we get that for ε ≤ x ≤ N∣∣∣∣
∫ x

0

eiα(t) dt

∣∣∣∣ ≤
∣∣∣∣
∫ ε

0

eiα(t) dt

∣∣∣∣
+

∣∣∣∣
∫ x

ε

eiα(t) dt

∣∣∣∣
1/a

·
∣∣∣∣
∫ x

ε

eiα(t) dt

∣∣∣∣
1− 1

a

= I + II.
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And II ≤ CN
a−1

a

|ua − va|1/a and so this implies (note N is fixed but large)

by (0.4) and (2.6) that

|A(u, v)| ≤ C

|ua − va|1/a .

But, since a > 1, A(u, v) is the kernel of an operator that maps L2 into
itself by Schur’s lemma. This completes our estimates of I12. Hence
this completes our proof.

At last we show

Proposition 2.4. Let a ≥ 2, 0 < m,m2 ≤ a and (0.4) hold. If γ2(x)

satisfies (1.12)(a) and (d) and γ(x) satisfies (1.1)(m), then if
γ′
2(x)
xa−1

is
monotonic for x ≥ ε, then we get that

I21 ≤ C‖f‖2
2.

Proof. Note that

I21 =
∫ ∞

N

∣∣∣∣
∫ N

0

k1(x, y)f(y) dy
∣∣∣∣
2

dx,

but by duality it suffices to prove that

(2.7)
∫ N

0

∣∣∣∣
∫ ∞

N

k1(y, x)f(y) dy
∣∣∣∣
2

dx ≤ C‖f‖2
2

this time

A(u, v) =
∫ N

0

k1(u, x)k̄1(v, x) dx, and

α(x) = xa(ua − va) + γ2(x)(γ(u) − γ(v)).

Once again the argument follows the approach below (2.6) in Proposi-
tion 2.3, but here we utilize our hypothesis on γ(x) and γ2(x).
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Now we are in a position to prove Theorem 1.7.

Proof of Theorem 1.7. We note that

‖Sf‖2
2 =

2∑
i,j=1

Iij

and so our proof follows from Propositions 2.2, 2.3, and 2.4.

Let b > a > 1 and let ϕ(x, y) satisfy{
(i) |ϕ(x, y)| ≤ C|x− y|− b−a

2b if |x− y| > 0, and

(ii) |Dϕ(x, y)| ≤ C|x− y|− b−a
2b −1, if |x− y| > 0.

Set
Uf(x) =

∫ ∞

0

ϕ(x, y)eig(x,y)f(y) dy.

Here g(x, y) is defined in (0.3) and ϕ(x, y) satisfies (i) and (ii). With
the usual regularity conditions, as defined below, on γ(x), γ2(y) we get
that ‖Uf‖2 ≤ C‖f‖2.

This (2,2) result essentially follows from Theorem 0.1 of [11]. But
here we employ a more general phase function g(x, y) and thus estimate
a more general operator U . Also we need only estimate the operator
U1, defined by replacing ϕ(x, y) in U by ϕ1(x, y) = ϕ(x, y)ψ(x − y).
We are able to prove that

Proposition. Let b > a and suppose ϕ(x, y) satisfies (i) and (ii).
Also g(x, y) as in (0.3) where a ≥ 2, 0 ≤ m < b and 0 ≤ m2 < a. If

γ(x) satisfies (1.12), γ2(x) satisfies (1.12)(m2) and
γ′(x)
xa−1

,
γ′
2(x)
xa−1

are
monotonic for x ≥ ε. Then,

‖Uf‖2 ≤ C‖f‖2.

Proof. We shall be brief here. Also note that m = 0 or m2 = 0 was
done in [7].
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We begin with the term I12 and follow closely the proof of Proposition
2.3. This time we get, as in (2.6), that

|A(u, v)| ≤
∣∣∣∣ϕ1(N, u)ϕ1(N, v)

∫ N

0

eiα(t) dt

∣∣∣∣
+

∫ N

0

∣∣∣∣∂x(ϕ1(x, u)ϕ1(x, v)))
(∫ x

0

eiα(t) dt

)∣∣∣∣ dx
but here α(t) = tb(ua−va)+γ(tb/a)(γ2(u)−γ2(v)). Again (2.2) applies
here and we get that∣∣∣∣

∫ x

ε

eiα(t) dt

∣∣∣∣ ≤ C

|ua − va| for x ≥ ε.

And from (1.11) we get that∣∣∣∣
∫ x

0

eiα(t) dt

∣∣∣∣ ≤ C

|ua − va|1/b for 0 ≤ x ≤ ε.

And it follows from (i) and (ii), using our estimates from Proposition
2.3, that

|A(u, v)| ≤ C

|ua − va|1/a

+
Cχ(u ≥ N)χ(v ≥ N)

|ua − va|1/b[(1 + (u−N))(1 + (v −N))]
b−a
2b

,

but by Schur’s lemma, it follows that A(u, v) is a kernel that maps L2

into itself. This completes our estimates of I12.

Arguing as we did in Proposition 2.4, we estimate the term I21, and
employing our hypothesis on γ2(y) and γ(x), it follows that

|A(u, v)| ≤ C

|ub − vb|1/b

+
Cχ(u ≥ N)χ(v ≥ N)

|ub − vb|1/a[(1 + (u−N))(1 + (v −N))]
b−a
2b

.

Once again this is the kernel of an operator that maps L2 into itself by
Schur’s lemma. This completes our estimates of I21.
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We complete our argument once we notice (as before) we can apply
the proof of Proposition 2.2 to estimate the term I22. This now
completes our proof.

Note we also get the following result in the special cases where
γ(x) = xm and γ2(x) = xm2 and g(x, y) is defined in (0.3) (γ1(y) = ya).
Thus K(x, y) (the kernel of T ) is defined in (0.2) and K(xa/b, y) is the
kernel of the operator S, see also (1.13). We employ Lemma 2.1 of [11]
as our main tool.

Theorem 2.5. Let b ≥ a ≥ 2, γ(x) = xm, γ2(x) = xm2 and
0 < m,m2 < a. If (0.4) holds, then

(i) ‖Sf‖2 ≤ C‖f‖2 and

(ii) ‖Tf‖p ≤ C‖f‖p for p =
a + b

b
.

Proof. Note that since ‖Sf‖∞ ≤ C‖f‖1, (ii) follows from (i). Thus it
suffices to show (i). We need a replacement for Proposition 1.5, which
does not apply here.

The following is proved in Lemma 2.1 of [11].

(2.8)
∣∣∣∣
∫ T

0

eiψ(t) dt

∣∣∣∣ ≤ C|ξ|−1/a if ψ(t) = taξ + trη,

r �= a, a ≥ 2 and C does not depend upon ξ, η, or T .

We first note that γ′(x) = xm−1 and since m < a, we get that
(1.12)(c) and (d) are satisfied and γ2(x) satisfies (1.1)(m2). Therefore
Proposition 2.2 applies. Now we get that the kernel in (2.6) satisfies

(2.9) |A(u, v)| ≤ C

|ua − va|1/a ;

this follows from (2.8) and gets us the term I12. The estimate of I21
follows in a similar way. Schur’s lemma completes our proof.
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