THE MAPPING PROPERTIES FOR A CLASS OF OSCILLATORY INTEGRALS

G. SAMPSON

ABSTRACT. In this paper we show that for $p = \frac{a+b}{b}$ that the operators given by

$$Tf(x) = \int_0^\infty e^{ig(x,y)} \varphi(x,y) f(y) \, dy,$$

map L^p into itself with $g(x,y)=x^by^a+\gamma(x^{b/a})\gamma_2(y)$. The conditions on γ,γ_2 and φ as defined within.

0. Introduction. In this paper we show that, for $p = \frac{a+b}{b}$, a class of operators map L^p into itself, where the operators are given by

(0.1)
$$Tf(x) = \int_0^\infty K(x, y) f(y) \, dy, \quad x \ge 0,$$

and

(0.2)
$$K(x,y) = e^{ig(x,y)}\varphi(x,y),$$

(0.3)
$$g(x,y) = x^b \gamma_1(y) + \gamma(x^{b/a}) \gamma_2(y),$$

g(x,y) is real-valued and

$$\begin{cases} \text{(a)} & |\varphi(x,y)| \leq C, & \text{if } x,y \geq 0, \\ \text{(b)} & |D\varphi(x,y)| \leq C|x-y|^{-1}, & \text{if } |x-y| > 0. \end{cases}$$

We also suppose that $b \ge a \ge 2$ and we further impose conditions on $\gamma, \gamma_j, j = 1, 2$. These conditions appear in Section 1.

In case $\gamma_1 = y^a$ and $\gamma(x) = C$ with $a, b \ge 1$, we studied these operators in [6] and [7]. If case (0.4) holds, we proved in Theorem 3.1 and Corollary 3.2 of [7] that when $\gamma = C$ that these operators map L^p into itself if $p = \frac{a+b}{b}$ and if $q \ne p$ these operators do *not* map L^q

¹⁹⁹¹ AMS $Mathematics\ subject\ classification.$ $42A50,\ 42B20,\ 47G10.$ Received by the editors on March 7, 2001, and in revised form on April 9, 2002.

into itself, if $|\varphi(x,y)| \geq C$. In [6], we studied the case where $\varphi(x,y)$ is of the form $|x-y|^{-r}$, 0 < r < 1. In Theorem 1.6 we obtain for the more general phase functions in (0.3) and $\varphi(x,y)$ in (0.4), that these operators map L^p into itself if $p = \frac{a+b}{b}$, the same result as in [7] with $b \geq a \geq 2$. In the special case where $\gamma(x), \gamma_2(x)$ are power functions, we obtain this same result and that appears in Theorem 2.5. In [11] we discussed the L^2 result for a similar class of operators and we generalize that result to the operators in the Proposition in Section 2 in case $a, b \geq 2$. There is an extensive bibliography and results on oscillatory integrals in [12].

The letter C will stand for a positive constant that may change from line to line. We shall also find it convenient to employ subscripts, C_1, C_2, C_3, \ldots

1. Admissible functions and preliminaries. We begin by stating our conditions on γ_j , γ that we use here. We should point out that for the most part, we take $\gamma_1(y) = y^a$, and the model case occurs when $\gamma_2(y)$ is given by (similarly for $\gamma(x)$)

$$\gamma_2(y) = \begin{cases} y^r & \text{if } 0 \le y \le \varepsilon \\ y^{m_2} & \text{if } y > \varepsilon, \end{cases}$$

with $r > a > m_2$ and $\varphi(x) = |x - y|^{i\tau}$, τ real.

We suppose for $u, v \geq \varepsilon$ and $m_1, m_2 > 0$ there is a real-valued function satisfying

(1.1)
$$\begin{cases} (a) & |\lambda_1(u) - \lambda_1(v)| \ge C|u^{m_1} - v^{m_1}|, & \text{and} \\ (m_2) & |\lambda_2(u) - \lambda_2(v)| \le C|u^{m_2} - v^{m_2}|. \end{cases}$$

Note that $C_1|u-v|(u+v)^{m-1} \leq |u^m-v^m| \leq C_2|u-v|(u+v)^{m-1}$ for m>0, for two positive constants C_1,C_2 . The cases worked on in [7] were when $r=0, m_2=0$. We shall also use the convention that λ satisfies (1.1)(m), if we replace m_2 by m. We shall also think of $0<\varepsilon\leq 1$.

In Theorem 1.7, we formulate conditions on γ, γ_j so that if $b \geq a \geq 2$, then

(1.2)
$$||Tf||_p \le C||f||_p, \quad \text{if } p = \frac{a+b}{b}.$$

We begin by showing for some $\varepsilon > 0$ that

$$\left| \int_0^u e^{i(t^2\xi + \gamma(t)\eta)} dt \right| \le C|\xi|^{-1/2}, \quad \text{if } 0 < u \le \varepsilon,$$

where C is independent of $\xi, \eta \in \mathbf{R}$ and u, for a class of admissible functions $\gamma(t)$ which will be defined below. This result is useful to us, since it enables us to handle the origin. But in doing Theorem 2.5, we find and use a different approach, see (2.9), which allows us to do the cases where $\gamma(t) = t^m$.

First set $||f||_{\infty} = \sup_{a \le x \le b} |f(x)|$, and begin with

Definition 1.1. We say that f(x) is weakly monotonic (w.m.) on [a,b] if f is continuous at b and

- $\begin{cases} (\mathbf{i}) & [a,b) = \bigcup_{n=1}^{\infty} [a_n,b_n) = \bigcup_{n=1}^{\infty} I_n, \\ (\mathbf{ii}) & I_n \cap I_k = \phi & \text{if } n \neq k, \\ (\mathbf{iii}) & f'(x) & \text{does not change sign for } x \in I_n, \ n = 1,2,3,\dots \\ (\mathbf{iv}) & |f(x)| \leq C_n ||f||_{\infty} & \text{for } a_n \leq x \leq b_n, \quad \text{and} \\ (\mathbf{v}) & \sum_{n=1}^{\infty} C_n \leq M \leq \infty \end{cases}$

If f(x) is differentiable and monotonic, then it is w.m. The function $\sin(x)/x^2$ is w.m. if $x \ge 1$, and $x^2 \sin(1/x)$ is w.m. if $0 \le x \le 1$.

We need the following,

Lemma 1.2. Let h(t) be locally integrable on [a,b] and $||H||_{\infty} =$ $\sup_{a < x < b} |\int_a^x h(t) dt|$, and f(t), g(t) be w.m. on [a, b]. Then

(1.4)
$$\begin{cases} \text{(a)} & \left| \int_a^b f(t)h(t) \, dt \right| \le C \|H\|_{\infty} \|f\|_{\infty}, \quad and \\ \text{(b)} & \left| \int_a^b f(t)g(t)h(t) \, dt \right| \le C \|H\|_{\infty} \|f\|_{\infty} \|g\|_{\infty}. \end{cases}$$

Proof. Let us first show (1.4)(a). Using i.b.p. we get that

(1.5)
$$\int_{a}^{b} f(t)h(t) dt = f(b) \int_{a}^{b} h(t) dt - \int_{a}^{b} f'(x) \left(\int_{a}^{x} h(t) dt \right) dx$$

but

$$\int_{a_n}^{b_n} |f'(x)| \left| \int_a^x h(t) \, dt \right| dx \le ||H||_{\infty} \int_{a_n}^{b_n} |f'(x)| \, dx,$$

but f'(x) stays one sign for $x \in I_n$. If we suppose that $f'(x) \ge 0$ for $x \in I_n$ then, and similarly for $f'(x) \le 0$,

$$\int_{a_n}^{b_n} |f'(x)| \, dx \le f(b_n) - f(a_n) \le 2C_n ||f||_{\infty},$$

therefore

$$\left| \int_{a}^{b} f'(x) \left(\int_{a}^{x} h(t) dt \right) dx \right| \leq \sum_{n=1}^{\infty} \int_{a_{n}}^{b_{n}} |f'(x)| \left| \int_{a}^{x} h(t) dt \right| dx$$
$$\leq 2 \sum_{n=1}^{\infty} C_{n} ||f||_{\infty} ||H||_{\infty} \leq 2M ||f||_{\infty} ||H||_{\infty}.$$

By (1.5) this completes the proof of (1.4)(a).

For (1.4)(b) we note that

$$\int_a^b f(t)g(t)h(t)\,dt = g(b)\int_a^b f(t)h(t)\,dt - \int_a^b g'(x)\bigg(\int_a^x f(t)h(t)\,dt\bigg)\,dx$$

but by (1.4)(a) we get that

$$\left| \int_{a}^{x} f(t)h(t) dt \right| \le C||f||_{\infty} ||H||_{\infty}, \quad \text{for } a \le x \le b;$$

this completes our proof of (1.4)(b).

Now let us return to the proof of (1.3). We begin with

Definition 1.3. For some $0 < \varepsilon (\leq 1)$, we suppose that there are constants C, C_1 with $C_1 > 1$ so that

(1.6)
$$\begin{cases} (a) & C\frac{\gamma'(t)}{t} \ge \gamma''(t) \ge C_1 \frac{\gamma'(t)}{t} & \text{for } 0 \le t \le \varepsilon, \text{ and} \\ (b) & \gamma'(0) = \gamma''(0) = 0. \end{cases}$$

Set $M(t) = \gamma''(t) - \frac{\gamma'(t)}{t}$, we further suppose that M(t) > 0 for $0 < t \le \varepsilon$, and $\frac{M(t)}{t} \in L^1([0,\varepsilon])$. In this case we say that $\gamma(t)$ is an admissible function.

Note if $\frac{\gamma'(t)}{t} > 0$ for $0 < t \le \varepsilon$, then M(t) > 0 follows from (1.6)(a). Also note that $\gamma(t) = t^2$ for $0 \le t \le 1$ just fails to be admissible, whereas $\gamma(t) = t^r$, r > 2, is admissible if $0 < t \le 1$.

Next we consider

Proposition 1.4. Let $\gamma(t)$ be an admissible function and let $M(t) = \gamma''(t) - \frac{\gamma'(t)}{t}$, then for some $\varepsilon > 0$ we get that

(1.7)
$$\begin{cases} (a) & 0 \leq \frac{\gamma'(t)}{t} \text{ is strictly increasing for } 0 \leq t \leq \varepsilon, \text{ and} \\ (b) & \gamma''(t) - \frac{\gamma'(t)}{t} \geq C\gamma''(t_1) \text{ for } t_1 \leq t \leq \varepsilon, \end{cases}$$

where C does not depend on t.

Remark. Also notice that 1/t, and $\frac{1}{u+v\frac{\gamma'(t)}{t}}$ are w.m., for any constants u, v and $0 \le t \le \varepsilon$.

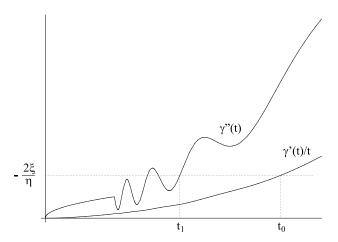
Proof. We notice that since $\frac{M(s)}{s} \in L^1([0,\varepsilon])$, then $\frac{\gamma'(t)}{t} = \int_0^t \frac{M(s)}{s} ds + C$, and as $t \to +0$ we get from (1.6)(b) that $\frac{\gamma'(t)}{t} = \int_0^t \frac{M(s)}{s} ds$, and since M(s) > 0 we get that (1.7)(a) holds.

From (1.6)(a) we get since $C_1 > 1$ that

$$\gamma''(t) - \frac{\gamma'(t)}{t} \ge \gamma''(t) \left(1 - \frac{1}{C_1}\right) \text{ if } 0 \le t \le \varepsilon,$$
$$\ge C \frac{\gamma'(t)}{t} \ge C \frac{\gamma'(t_1)}{t_1} \ge C \gamma''(t_1),$$

where we used (1.6)(a) and (1.7)(a). This completes our proof.

We are now in the position to show (1.3).



Proposition 1.5. Let $\gamma(t)$ be an admissible function, then there exists an $\varepsilon > 0$, so that (1.3) holds.

Proof. By (1.6)(a) and Proposition 1.4, there is a $C_1 > 1$ and $0 < \varepsilon \le 1$, so that $\gamma''(t) \ge C_1 \frac{\gamma'(t)}{t}$ and $\frac{\gamma'(t)}{t}$ is strictly increasing for $0 \le t \le \varepsilon$. We argue the case where $\gamma''(t_1) = \frac{-2\xi}{\eta} = \frac{\gamma'(t_0)}{t_0}$ and if $\gamma''(t_2) = \frac{-2\xi}{\eta}$ then $t_2 \le t_1 \le \varepsilon$, all the remaining cases follow in a similar way.

Our purpose is to show (1.3), set $\psi(t)=t^2\xi+\gamma(t)\eta$ and so we have for $(0\leq u\leq \varepsilon)$ that

$$\int_0^u e^{i\psi(t)} dt = \int_0^{t_1} + \int_{t_1}^{t_0} + \int_{t_0}^u = I + II + III.$$

Note it's possible that $u \le t_0$ or $u \le t_1$, and so in those cases disregard those integrals.

We begin with I.

If $t_1 \leq |\xi|^{-1/2}$, then we are finished and in a similar way we can

suppose $t_1, u \ge |\xi|^{-1/2}$. Set $\delta = |\xi|^{-1/2}$, then

$$I = \int_0^{\delta} + \int_{\delta}^{t_1} = I_1 + I_2,$$

but

$$\frac{\gamma'(t)}{t} \le \frac{\gamma'(t_1)}{t_1} \le \frac{\gamma''(t_1)}{C_1} = \frac{2|\xi|}{C_1|\eta|}, \text{ for } 0 \le t \le t_1.$$

Thus,

$$(1.8) \quad \left| \frac{2\xi}{\eta} + \frac{\gamma'(t)}{t} \right| \ge \frac{2|\xi|}{|\eta|} - \frac{2|\xi|}{C_1|\eta|} \ge 2\left(1 - \frac{1}{C_1}\right) \frac{|\xi|}{|\eta|} \quad \text{and} \quad C_1 > 1.$$

Hence

$$|\psi'(t)| = \left| \eta t \left(\frac{2\xi}{\eta} + \frac{\gamma'(t)}{t} \right) \right| \ge t |\eta| \left| \frac{2\xi}{\eta} + \frac{\gamma'(t)}{t} \right|$$

$$\ge Ct |\eta| \frac{|\xi|}{|\eta|} \ge Ct |\xi| \quad \text{for } 0 < t \le t_1.$$

From $|I_1| \le C/|\xi|^{1/2}$ and

$$|I_2| = \left| \int_{\delta}^{t_1} \frac{e^{i\psi(t)}\psi'(t) dt}{\eta t(\frac{2\xi}{n} + \frac{\gamma'(t)}{t})} \right| \le \frac{C}{|\xi||\xi|^{-1/2}} \le \frac{C}{|\xi|^{1/2}}$$

and this follows from (1.4)(b) of Lemma 1.2 with f(t)=1/t and $g(t)=\frac{1}{(\frac{2\xi}{\eta}+\frac{\gamma'(t)}{t})}.$

Next we consider II.

For $t_1 \leq t \leq t_0$ we get by (1.7)(b) that

(1.9)
$$\gamma''(t) - \frac{\gamma'(t)}{t} \ge C_2 \gamma''(t_1) = C_2 \frac{2|\xi|}{|\eta|}.$$

It follows from (1.9) that $(t_1 \le t \le t_0)$ if

$$\left| \frac{2\xi}{\eta} + \frac{\gamma'(t)}{t} \right| \le C_2 \frac{|\xi|}{|\eta|}, \text{ then } \left| \frac{2\xi}{\eta} + \gamma''(t) \right| \ge C_2 \frac{|\xi|}{|\eta|}$$

where C_2 comes from (1.9).

It follows from this result that there is a number c^* so that

$$(1.10) \qquad \begin{cases} (a) \quad \left| \frac{2\xi}{\eta} + \frac{\gamma'(t)}{t} \right| \ge C_2 \frac{|\xi|}{|\eta|} & \text{if } t_1 \le t \le c^* \\ (b) \quad \left| \frac{2\xi}{\eta} + \gamma''(t) \right| \ge C_2 \frac{|\xi|}{|\eta|} & \text{if } c^* \le t \le t_0. \end{cases}$$

Next note that $II \leq |\int_{t_1}^{c^*}|+|\int_{c^*}^{t_0}|=II_1+II_2$. Thus by (1.4)(b) as above we get that

$$II_1 = \left| \int_{t_1}^{c^*} \frac{e^{i\psi(t)}\psi'(t)}{\psi'(t)} dt \right| \le \frac{C}{t_1|\xi|} \le C|\xi|^{-1/2}$$

since $|\xi|^{-1/2} \le t_1 \le t \le c^*$ and (1.10)(a).

For the term II_2 , we get by (1.10)(b) that $|\psi''(t)| = |\eta||(2\xi/\eta) + \gamma''(t)| \ge C_2|\xi|$, and so Van der Corput applies and we get that $II_2 \le \frac{C}{|\xi|^{1/2}}$.

At last we consider III.

This time $t_0 \le t \le \varepsilon$ and since $C_1 > 1$ and (1.7)(a) we get

$$|\psi''(t)| = |\eta| \left| \frac{\gamma'(t_0)}{t_0} - \gamma''(t) \right| \ge |\eta| \left(\frac{C_1 \gamma'(t)}{t} - \frac{\gamma'(t_0)}{t_0} \right) \ge C|\xi|$$

and so again Van der Corput applies and we get that

$$III \le C|\xi|^{-1/2}.$$

This completes our result.

Remark 1. We get from Proposition 1.5 that there is a C independent of $\xi, \eta, u, (\xi, \eta \in \mathbf{R})$ and $0 \le u \le \varepsilon$ so that

$$\left| \int_0^u e^{i(t^a \xi + \gamma(t)\eta)} dt \right| \le C|\xi|^{-1/a}$$

if $a \ge 2$ and $h(t) = \gamma(t^{2/a})$ is an admissible function. Just set $s^2 = t^a$ and apply Proposition 1.5 to

$$\bigg| \int_0^{u^{a/2}} \frac{e^{i(s^2\xi + \gamma(s^{2/a})\eta)}}{s^{1-2/a}} \, ds \bigg|.$$

Note that we can extend Proposition 1.5 to a global result, if we assume that $\gamma(t)$ satisfies (1.6) for all t, i.e., letting $\varepsilon \to +\infty$ and $M(t)/t \in L_{loc}$. But we will not pursue that here.

We are now in a position to state our conditions on $\gamma(t)$. We shall state our conditions locally and so for some $0 < \varepsilon \le 1$, we consider real-valued functions $\lambda(t)$ that satisfy

$$(1.12) \qquad \begin{cases} (a) \quad h(t) = \lambda(t^{2/a}) & \text{is admissible for } 0 \leq t \leq \varepsilon, \\ (b) \quad \lambda(t) & \text{satisfies } (1.1)(m) \text{ for } t > \varepsilon, \\ (c) \quad \lim_{t \to +\infty} \frac{|\lambda'(t)|}{t^{a-1}} = 0, \quad \text{and} \\ (d) \quad |\lambda'(t)| \leq Ct^{a-1} & \text{if } t \geq \varepsilon. \end{cases}$$

Note we say that $\lambda(t)$ satisfies $(1.12)(m_2)$ to mean that λ satisfies (1.12), but we replace (1.1)(m) by $(1.1)(m_2)$ in (1.12)(b).

Note that from (0.2) that the operator with kernel $K(x,y)(1-\psi(x-y))$ where $\psi(x) \in C^{\infty}(\mathbf{R})$, $\psi(x) = 0$ for $|x| \leq 1$, $\psi(x) = 1$ for $|x| \geq 2$ and $0 \leq \psi(x) \leq 1$, maps L^p into itself for $1 \leq p \leq \infty$. We are left with the operator whose kernel is $K(x,y)\psi(x-y)$.

Our proof of (1.2), as we shall soon see, follows by proving that $||S_1||_{2,2} = \sup_{\|f\|_2 \le 1} ||S_1 f||_2 \le C < \infty$, where

(1.13)
$$S_1 f(x) = \int_0^\infty k_1(x, y) f(y) \, dy, \quad x \ge 0,$$

where $k_1(x,y) = e^{ig(x^{a/b},y)}\varphi_1(x^{a/b},y)$ and g(x,y) is defined in (0.3) with $\varphi_1(x,y) = \varphi(x,y)\psi(x-y)$. Since this operator maps L^2 into itself it follows that the dual operator

$$S_1^* f(x) = \int_0^\infty k_1(y, x) f(y) \, dy, \quad x \ge 0$$

maps L^2 into itself. Let an operator associated to S_1^* be given by

$$\tilde{T}_1 f(x) = \int_0^\infty k_1(y, x^{b/a}) f(y) \, dy, \quad x \ge 0.$$

We get that this operator \tilde{T}_1 maps L^p into itself for $p = \frac{a+b}{a}$.

Theorem 1.6. Let $\gamma_1(y) = y^a$, $b \ge a \ge 2$ and 0 < m, $m_2 \le a$. Suppose that (0.4) holds, $\frac{\gamma'(x)}{x^{a-1}}$ and $\frac{\gamma'_2(x)}{x^{a-1}}$ are monotonic for $x \ge \varepsilon$ and $\gamma(x)$ satisfies (1.12) and $\gamma_2(x)$ satisfies (1.12)(m_2). Then Tf defined in (0.1) satisfies (1.2).

To prove Theorem 1.6 we show that the operator S_1 defined in (1.13) maps L^2 into itself. More precisely we show,

Theorem 1.7. Let $a \geq 2$, 0 < m, $m_2 \leq a$ and $\gamma_1(y) = y^a$. Suppose that (0.4) holds, $\frac{\gamma'(x)}{x^{a-1}}$ and $\frac{\gamma'_2(x)}{x^{a-1}}$ are monotonic for $x \geq \varepsilon$, $\gamma(x)$ satisfies (1.12) and $\gamma_2(x)$ satisfies (1.12)(m_2). Then S_1 defined in (1.13) maps L^2 into itself.

We now show that Theorem 1.6 follows directly from Theorem 1.7.

 $Proof\ of\ Theorem\ 1.6.$ Assume that Theorem 1.7 holds. We then get that

(i)
$$||S_1 f||_2 \le C||f||_2$$

and

(ii)
$$||S_1 f||_{\infty} \le C ||f||_1$$
.

Notice that $T_1f(x) = S_1f(x^{b/a})$ and $\tilde{T}_1f(x) = S_1^*f(x^{b/a})$ and so it follows from (i) and (ii) that

$$\int_0^\infty |T_1 f(x)|^p dx = \frac{a}{b} \int_0^\infty x^{(a/b)-1} |S_1 f(x)|^p dx \le C ||f||_p^p$$

as long as p-2=(a/b)-1 and $a\leq b$. A similar argument holds for the operator \tilde{T}_1 . This completes our proof of Theorem 1.6. \square

2. Proof of Theorem 1.7. We begin with the following and we suppose that $\frac{\gamma'(t)}{t^{a-1}}$ is monotonic for $t \geq \varepsilon$, but we really only need the monotonicity condition for relevant $t, r_1 \leq t \leq r_2$,

Proposition 2.1. Let $\varepsilon > 0$ be given with $u, v, t, \geq \varepsilon$. Suppose that $\gamma(t)$ satisfies (1.12)(c) and (d), $0 < m_2 \leq m_1 \leq a$. If γ_1 satisfies (1.1)(a) and γ_2 satisfies $(1.1)(m_2)$, then with

$$\alpha(t) = t^{a}(\gamma_1(u) - \gamma_1(v)) + \gamma(t)(\gamma_2(u) - \gamma_2(v))$$

we get that

$$(2.1) |\alpha'(t)| \ge Ct^{a-1}|u^{m_1} - v^{m_1}|.$$

If in addition $\frac{\gamma'(t)}{t^{a-1}}$ is monotonic for $t \geq \varepsilon$, then

(2.2)
$$\left| \int_{r_1}^{r_2} e^{i\alpha(t)} dt \right| \le \frac{C}{r_1^{a-1} |u^{m_1} - v^{m_1}|},$$

if either $r_2 \ge r_1 \ge N_{\varepsilon}$ for N_{ε} sufficiently large or u + v is large and $m_2 < m_1$.

Proof. We note that

$$\alpha'(t) = at^{a-1} \left[\gamma_1(u) - \gamma_1(v) + \frac{\gamma'(t)}{at^{a-1}} (\gamma_2(u) - \gamma_2(v)) \right].$$

By (1.1) applied to γ_i , j = 1, 2, we get that

$$|\alpha'(t)| \ge at^{a-1}|u-v|\Big[C_1(u+v)^{m_1-1} - C_2\left|\frac{\gamma'(t)}{t^{a-1}}\right|(u+v)^{m_2-1}\Big].$$

To complete our proof of (2.1) it suffices to show that

$$(2.3) (u+v)^{m_1-1} \ge C \frac{|\gamma'(t)|}{t^{a-1}} (u+v)^{m_2-1}$$

for some C large enough. But if t is large enough, $t \geq N_{\varepsilon}$, then by (1.12)(c) we get that

$$(u+v)^{m_1-m_2} \ge C \frac{|\gamma'(t)|}{t^{a-1}}.$$

While the last inequality holds even if \underline{t} is not large, but then u + v must be sufficiently large and $m_2 < m_1$, that follows from (1.12)(d).

To see (2.2) with $\varepsilon < r_1 \le r_2$, we apply Lemma 1.2 with $h(t) = e^{i\alpha(t)}\alpha'(t)$

$$\left| \int_{r_1}^{r_2} \frac{e^{i\alpha(t)}\alpha'(t)}{\alpha'(t)} dt \right|, \quad \text{where } f(t) = t^{1-a}$$
and
$$g(t) = \left[\gamma_1(u) - \gamma_1(v) + \frac{\gamma'(t)}{t^{a-1}} (\gamma_2(u) - \gamma_2(v)) \right]^{-1}$$

This completes our proof.

For the operator S_1 defined in (1.13) our (2,2) problem is reduced to estimating the terms

$$I_{ij} = \int_{E_i} \left| \int_{E_j} k_1(x, y) f(y) \, dy \right|^2 dx, \quad i, j = 1, 2,$$

if i+j>2, $E_1=[0,N]$, $E_2=[N,\infty)$, N from Proposition 2.1 and $k_1(x,y)$ is defined below (1.13).

We begin with the following result.

Proposition 2.2. Assume a > 1 and that $0 < m_2 \le a$. Also suppose that (0.4) holds, $\gamma(x)$ satisfies (1.12)(c) and $\gamma_2(x)$ satisfies $(1.1)(m_2)$. If $\frac{\gamma'(x)}{x^{a-1}}$ is monotonic for $x \ge N$, then

$$I_{22} \leq C \int_0^\infty |f|^2 dy.$$

Proof. We notice that

$$I_{22} = \sum_{j=1}^{\infty} \int_{N}^{\infty} \chi_{j}(x) \left| \sum_{l=1}^{\infty} \int_{N}^{\infty} k_{1}(x, y) \chi_{l}(|x - y|) f(y) \, dy \right|^{2} dx,$$

where $\chi_l(y) = \chi(2^{l-1} \le y \le 2^l), l = 1, 2, 3,$ Thus

$$I_{22}^{1/2} \le \sum_{l=1}^{\infty} \left(\sum_{j=1}^{\infty} \int_{N}^{\infty} \chi_{j}(x) \Big| \int_{N}^{\infty} k_{1}(x, y) \chi_{l}(|x - y|) f(y) \, dy \Big|^{2} dx \right)^{1/2}.$$

We analyze the integrand,

$$\tilde{I}_{jl} = \int_{N}^{\infty} \chi_{j}(x) \Big| \int_{N}^{\infty} k_{1}(x, y) \chi_{l}(|x - y|) f(y) dy \Big|^{2} dx$$
$$= \int_{N}^{\infty} f(u) \Big(\int_{N}^{\infty} \bar{f}(v) A_{jl}(u, v) dv \Big) du,$$

with

$$A_{jl}(u,v) = \int_{N}^{\infty} \chi_j(x)k_1(x,u)\bar{k}_1(x,v)\chi_l(|x-u|)\chi_l(|x-v|) dx.$$

We focus on the term

$$\sup_{w} \int_{S_{il}} |\partial_x(\varphi(x^{a/b}, u)\bar{\varphi}(x^{a/b}, v))| \, dx = b_{jl},$$

where w stands for u or v and the set $S_{jl} = \{x \ge N : |x-w| \in [2^{l-1}, 2^l], \text{ and } x \in [2^{j-1}, 2^j]\}.$

If the set $S_{jl} \neq \phi$ then $|S_{jl}| \leq C2^{j \wedge l}$ and u, v must satisfy

$$\begin{cases} \text{(a)} & |u-v| \leq 2^{l+2}, \\ \text{(b)} & 2^{(j\vee l)-1} \leq u, \ v \leq 2^{j+1} + 2^l, \quad \text{if } j \neq l, l+1, \text{ and} \\ \text{(c)} & u,v \geq N \qquad \qquad \text{if } j = l \text{ or } l+1. \end{cases}$$

We set $S_{jl} = [x_1, x_2]$ and by the trivial estimate we get that $|A_{jl}| \le C2^{j \wedge l} \chi_{jl}(u) \chi_{jl}(v)$, where $\chi_{jl} = \chi(u \ge 2^{j \vee l})$ if $j \ne l, l+1$ and $\chi_{jl}(u) = \chi(u \ge N)$ if j = l or l+1.

Integrating by parts we get two terms, namely

$$A_{jl} = \varphi(x_2^{a/b}, u)\bar{\varphi}(x_2^{a/b}, v) \int_{x_1}^{x_2} e^{i\alpha(t)} dt$$

$$+ \int_{x_1}^{x_2} \left(\partial_x \left(\varphi(x^{a/b}, u) \bar{\varphi}(x^{a/b}, v) \right) \left(\int_{x_1}^x e^{i\alpha(t)} dt \right) \right) dx$$

where $\alpha(x) = x^a(u^a - v^a) + \gamma(x)(\gamma_2(u) - \gamma_2(v))$. By (2.2) of Proposition 2.1 it follows that

(2.5)

$$\left| \int_{x_1}^x e^{i\alpha(t)} dt \right| \le \frac{C}{|u - v| 2^{j(a-1)}} \begin{cases} \text{(a)} & \frac{1}{2^{(j \lor l)(a-1)}}, & \text{if } j \ne l, l+1 \\ \text{(b)} & 1, & \text{if } j = l \text{ or } l+1. \end{cases}$$

Then by (2.5) we get that,

$$|A_{jl}(u,v)| \le C \begin{cases} (a) & \frac{1+b_{jl}}{|u-v|2^{j(a-1)}2^{(j\vee l)(a-1)}} & \text{if } j \ne l, l+1 \\ (b) & \frac{1+b_{jl}}{|u-v|2^{j(a-1)}} & \text{if } j = l, l+1. \end{cases}$$

We estimate b_{il} and notice from (0.4) that

$$\begin{split} \int_{x_1}^{x_2} x^{(a/b)-1} (|\varphi'(x^{a/b}, u)\varphi(x^{a/b}, v)| + |\varphi(x^{a/b}, u)\varphi'(x^{a/b}, v)|) \, dx \\ & \leq C \int_{x_1^{a/b}}^{x_2^{a/b}} \left[(1 + |x - u|)^{-1} + (1 + |x - v|)^{-1} \right] dx \leq C (j \vee l). \end{split}$$

Thus we get that

$$|A_{jl}(u,v)| \le C \frac{(j \lor l) \chi_{[0,2^{l+2}]}(|u-v|)}{|u-v|2^{j(a-1)}} \begin{cases} (a) & 2^{-(j \lor l)(a-1)} & \text{if } j \ne l, l+1 \\ (b) & 1 & \text{if } j = l, l+1. \end{cases}$$

Thus if we set

$$\begin{split} d_{jl}(u,v) &= (j \vee l) \chi_{jl}(u) \chi_{jl}(v) \\ &\times \begin{cases} \text{(a)} & \frac{1}{1 + 2^{\rho_{jl}} |u - v| 2^{(j \vee l)(a - 1)}} & \text{if } j \neq l, l + 1 \\ \text{(b)} & \frac{1}{1 + 2^{\rho_{jl}} |u - v|} & \text{if } j = l, l + 1, \end{cases} \end{split}$$

and also employing the trivial estimate, we get that

$$|A_{jl}| \le C2^{j \wedge l} \chi_{[0,2^{l+2}]}(|u-v|) d_{jl}(u,v),$$

where $\rho_{jl} = (j \wedge l) + j(a-1)$. We get that these terms sum and thus

$$I_{22}^{1/2} \le \sum_{l=1}^{\infty} \left(\sum_{j=1}^{\infty} \tilde{I}_{jl}\right)^{1/2} \le C \|f\|_2.$$

Next we estimate the remaining terms I_{12} and I_{21} .

Proposition 2.3. Let $a \geq 2$ and assume that (0.4) holds, and $0 < m_2 < a$. If $\gamma(x)$ satisfies (1.12)(a) and (d) and $\gamma_2(x)$ satisfies (1.1)(m_2), then if $\frac{\gamma'(x)}{x^{a-1}}$ is monotonic for $x \geq \varepsilon$, then

$$I_{12} \le C ||f||_2^2$$
.

Proof. And we notice that

$$I_{12} = \int_{N}^{\infty} f(u) \left(\int_{N}^{\infty} \bar{f}(v) A(u, v) \, dv \right) du,$$

with

$$A(u,v) = \int_0^N k_1(x,u)\bar{k}_1(x,v) \, dx.$$

Using integration by parts we get that

(2.6)

$$|A(u,v)| \le \left| \varphi_1(N^{a/b}, u) \bar{\varphi}_1(N^{a/b}, v) \int_0^N e^{i\alpha(t)} dt \right|$$

$$+ \int_0^N \left| \left(\partial_x (\varphi_1(x^{a/b}, u) \varphi_1(x^{a/b}, v)) \left(\int_0^x e^{i\alpha(t)} dt \right) \right) \right| dx$$

where $\alpha(x) = x^a(u^a - v^a) + \gamma(x)(\gamma_2(u) - \gamma_2(v))$. Note from (2.2) we get that

$$\left| \int_{\varepsilon}^{x} e^{i\alpha(t)} dt \right| \le \frac{C}{|u^{a} - v^{a}|} \quad \text{for } x \ge \varepsilon,$$

since $u+v\geq 2N$ and N is sufficiently large, but still fixed. Also from (1.11) we get that

$$\left| \int_0^x e^{i\alpha(t)} dt \right| \le \frac{C}{|u^a - v^a|^{1/a}} \quad \text{if } 0 \le x \le \varepsilon.$$

Putting these two estimates together, we get that for $\varepsilon \leq x \leq N$

$$\left| \int_0^x e^{i\alpha(t)} dt \right| \le \left| \int_0^\varepsilon e^{i\alpha(t)} dt \right| + \left| \int_\varepsilon^x e^{i\alpha(t)} dt \right|^{1/a} \cdot \left| \int_\varepsilon^x e^{i\alpha(t)} dt \right|^{1-\frac{1}{a}} = I + II.$$

And $II \leq \frac{CN^{\frac{a-1}{a}}}{|u^a-v^a|^{1/a}}$ and so this implies (note N is fixed but large) by (0.4) and (2.6) that

$$|A(u,v)| \le \frac{C}{|u^a - v^a|^{1/a}}.$$

But, since a > 1, A(u, v) is the kernel of an operator that maps L^2 into itself by Schur's lemma. This completes our estimates of I_{12} . Hence this completes our proof.

At last we show

Proposition 2.4. Let $a \ge 2$, $0 < m, m_2 \le a$ and (0.4) hold. If $\gamma_2(x)$ satisfies (1.12)(a) and (d) and $\gamma(x)$ satisfies (1.1)(m), then if $\frac{\gamma_2'(x)}{x^{a-1}}$ is monotonic for $x \ge \varepsilon$, then we get that

$$I_{21} \leq C \|f\|_2^2$$
.

Proof. Note that

$$I_{21} = \int_{N}^{\infty} \left| \int_{0}^{N} k_{1}(x, y) f(y) dy \right|^{2} dx,$$

but by duality it suffices to prove that

(2.7)
$$\int_0^N \left| \int_N^\infty k_1(y, x) f(y) \, dy \right|^2 dx \le C \|f\|_2^2$$

this time

$$A(u,v) = \int_0^N k_1(u,x)\bar{k}_1(v,x) dx, \text{ and}$$

$$\alpha(x) = x^a(u^a - v^a) + \gamma_2(x)(\gamma(u) - \gamma(v)).$$

Once again the argument follows the approach below (2.6) in Proposition 2.3, but here we utilize our hypothesis on $\gamma(x)$ and $\gamma_2(x)$.

Now we are in a position to prove Theorem 1.7.

Proof of Theorem 1.7. We note that

$$||Sf||_2^2 = \sum_{i,j=1}^2 I_{ij}$$

and so our proof follows from Propositions 2.2, 2.3, and 2.4.

Let b > a > 1 and let $\varphi(x, y)$ satisfy

$$\begin{cases} \text{(i)} & |\varphi(x,y)| \le C|x-y|^{-\frac{b-a}{2b}} & \text{if } |x-y| > 0, \text{ and} \\ \text{(ii)} & |D\varphi(x,y)| \le C|x-y|^{-\frac{b-a}{2b}-1}, & \text{if } |x-y| > 0. \end{cases}$$

Set

$$Uf(x) = \int_0^\infty \varphi(x, y) e^{ig(x, y)} f(y) \, dy.$$

Here g(x,y) is defined in (0.3) and $\varphi(x,y)$ satisfies (i) and (ii). With the usual regularity conditions, as defined below, on $\gamma(x), \gamma_2(y)$ we get that $||Uf||_2 \leq C||f||_2$.

This (2,2) result essentially follows from Theorem 0.1 of [11]. But here we employ a more general phase function g(x,y) and thus estimate a more general operator U. Also we need only estimate the operator U_1 , defined by replacing $\varphi(x,y)$ in U by $\varphi_1(x,y) = \varphi(x,y)\psi(x-y)$. We are able to prove that

Proposition. Let b > a and suppose $\varphi(x,y)$ satisfies (i) and (ii). Also g(x,y) as in (0.3) where $a \ge 2$, $0 \le m < b$ and $0 \le m_2 < a$. If $\gamma(x)$ satisfies (1.12), $\gamma_2(x)$ satisfies (1.12)(m_2) and $\frac{\gamma'(x)}{x^{a-1}}$, $\frac{\gamma'_2(x)}{x^{a-1}}$ are monotonic for $x \ge \varepsilon$. Then,

$$||Uf||_2 \le C||f||_2.$$

Proof. We shall be brief here. Also note that m = 0 or $m_2 = 0$ was done in [7].

We begin with the term I_{12} and follow closely the proof of Proposition 2.3. This time we get, as in (2.6), that

$$|A(u,v)| \le \left| \varphi_1(N,u)\varphi_1(N,v) \int_0^N e^{i\alpha(t)} dt \right|$$

$$+ \int_0^N \left| \partial_x(\varphi_1(x,u)\varphi_1(x,v)) \left(\int_0^x e^{i\alpha(t)} dt \right) \right| dx$$

but here $\alpha(t) = t^b(u^a - v^a) + \gamma(t^{b/a})(\gamma_2(u) - \gamma_2(v))$. Again (2.2) applies here and we get that

$$\left| \int_{\varepsilon}^{x} e^{i\alpha(t)} dt \right| \le \frac{C}{|u^{a} - v^{a}|} \text{ for } x \ge \varepsilon.$$

And from (1.11) we get that

$$\left| \int_0^x e^{i\alpha(t)} dt \right| \le \frac{C}{|u^a - v^a|^{1/b}} \text{ for } 0 \le x \le \varepsilon.$$

And it follows from (i) and (ii), using our estimates from Proposition 2.3, that

$$|A(u,v)| \le \frac{C}{|u^a - v^a|^{1/a}} + \frac{C\chi(u \ge N)\chi(v \ge N)}{|u^a - v^a|^{1/b}[(1 + (u - N))(1 + (v - N))]^{\frac{b-a}{2b}}},$$

but by Schur's lemma, it follows that A(u, v) is a kernel that maps L^2 into itself. This completes our estimates of I_{12} .

Arguing as we did in Proposition 2.4, we estimate the term I_{21} , and employing our hypothesis on $\gamma_2(y)$ and $\gamma(x)$, it follows that

$$\begin{split} |A(u,v)| & \leq \frac{C}{|u^b - v^b|^{1/b}} \\ & + \frac{C\chi(u \geq N)\chi(v \geq N)}{|u^b - v^b|^{1/a}[(1 + (u - N))(1 + (v - N))]^{\frac{b-a}{2b}}} \end{split}$$

Once again this is the kernel of an operator that maps L^2 into itself by Schur's lemma. This completes our estimates of I_{21} .

We complete our argument once we notice (as before) we can apply the proof of Proposition 2.2 to estimate the term I_{22} . This now completes our proof. \Box

Note we also get the following result in the special cases where $\gamma(x) = x^m$ and $\gamma_2(x) = x^{m_2}$ and g(x,y) is defined in (0.3) $(\gamma_1(y) = y^a)$. Thus K(x,y) (the kernel of T) is defined in (0.2) and $K(x^{a/b},y)$ is the kernel of the operator S, see also (1.13). We employ Lemma 2.1 of [11] as our main tool.

Theorem 2.5. Let $b \ge a \ge 2, \gamma(x) = x^m, \ \gamma_2(x) = x^{m_2}$ and $0 < m, m_2 < a$. If (0.4) holds, then

- (i) $||Sf||_2 \le C||f||_2$ and
- (ii) $||Tf||_p \le C||f||_p$ for $p = \frac{a+b}{b}$.

Proof. Note that since $||Sf||_{\infty} \leq C||f||_{1}$, (ii) follows from (i). Thus it suffices to show (i). We need a replacement for Proposition 1.5, which does not apply here.

The following is proved in Lemma 2.1 of [11].

(2.8)
$$\left| \int_0^T e^{i\psi(t)} dt \right| \le C|\xi|^{-1/a} \quad \text{if } \psi(t) = t^a \xi + t^r \eta,$$

 $r \neq a, a \geq 2$ and C does not depend upon ξ, η , or T.

We first note that $\gamma'(x) = x^{m-1}$ and since m < a, we get that (1.12)(c) and (d) are satisfied and $\gamma_2(x)$ satisfies $(1.1)(m_2)$. Therefore Proposition 2.2 applies. Now we get that the kernel in (2.6) satisfies

(2.9)
$$|A(u,v)| \le \frac{C}{|u^a - v^a|^{1/a}};$$

this follows from (2.8) and gets us the term I_{12} . The estimate of I_{21} follows in a similar way. Schur's lemma completes our proof.

REFERENCES

1. S. Chanillo and M. Christ, Weak~(1,1)~bounds~for~oscillatory~singular~integrals, Duke Math. J. 55 (1987), 141–155.

- **2.** S. Chanillo, D. Kurtz and G. Sampson, Weighted weak (1,1) and weighted L^p estimates for oscillatory kernels, Trans. Amer. Math. Soc. **295** (1986), 127–145.
- **3.** W.B. Jurkat and G. Sampson, The complete solution to the (L^p, L^q) mapping problem for a class of oscillatory kernels, Indiana U. Math. J. **30** (1981), 403–413.
- **4.** Y. Pan, *Uniform estimates for oscillatory integral operators*, J. Funct. Anal. **100** (1991), 207–220.
- 5. ——, Hardy spaces and oscillatory singular integrals, Rev. Mat. Iberoamericana 7 (1991), 55–64.
- **6.** Y. Pan and G. Sampson, The complete (L^p, L^p) mapping properties for a class of oscillatory integrals, J. Fourier Anal. Appl. **4** (1998), 93–103.
- 7. Y. Pan, G. Sampson and P. Szeptycki, L^2 and L^p estimates for oscillatory integrals and their extended domains, Stud. Math. J. 122 (1997), 201–224.
- 8. D.H. Phong and E.M. Stein, *Hilbert integrals, singular integrals, and radon transforms* I, Acta Math. 157 (1986), 99–157.
- 9. ——, Oscillatory integrals with polynomial phases, Invent. Math. 110 (1992), 39–62.
- 10. G. Sampson, Oscillating kernels that map H^1 into L^1 , Ark. Mat. 18 (1980), 125–144.
- 11. , L^2 estimates for oscillatory integrals, Colloq. Math. **76** (1998), 201–211.
- 12. E.M. Stein, Harmonic analysis: Real-variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993.

DEPARTMENT OF MATHEMATICS, AUBURN UNIVERSITY, AUBURN, AL 36849-5310 $E\text{-}mail\ address:}$ sampsgm@mail.auburn.edu