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ALMOST SKEW-SYMMETRIC MATRICES

J.J. MCDONALD, P.J. PSARRAKOS AND M.J. TSATSOMEROS

ABSTRACT. Almost skew-symmetric matrices are real ma-
trices whose symmetric parts have rank one. Using the notion
of the numerical range, we obtain eigenvalue inequalities and
a localization of the spectrum of an almost skew-symmetric
matrix. We show that almost skew-symmetry is invariant
under principal pivot transformation and inversion, and that
the symmetric parts of Schur complements in almost skew-
symmetric matrices have rank at most one. We also use affine
combinations of A and At to gain further insight into eigen-
value location and the numerical range of an almost skew-
symmetric matrix.

1. Introduction. Let Mn(R) (Mn(C)) be the algebra of all
n × n real (complex) matrices. In this article, we consider matrices
A ∈ Mn(R), n ≥ 2, whose symmetric parts have rank one. This means
that the spectrum of the symmetric part of such a matrix A consists of
the eigenvalue 0 with multiplicity n−1 and a simple nonzero eigenvalue,
which will be assumed to be positive for simplicity. We shall then refer
to A as an almost skew-symmetric matrix.

Tournament matrices and their generalizations [11, 9] are closely
related to almost skew-symmetric matrices and have provided the mo-
tivation for this subject. Indeed, T ∈ Mn(R) is a pseudo-tournament
(i.e., rank (T+T t+I) = 1) if and only if T+ 1

2I or its negative is almost
skew-symmetric. If T ∈ Mn(R) is a hypertournament (i.e., T has zero
diagonal entries and T +T t = wwt − I for some nonzero w ∈ Rn) then
T + 1

2I is almost skew-symmetric.

The spectra of pseudo-tournaments were initially studied in [11]. The
spectra of almost skew-symmetric matrices and compact operators were
considered in [4,5]. In [4] it was shown that the real eigenvalues of an
almost skew-symmetric matrix satisfy certain interesting inequalities.
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In [5], two half-planes were provided, one containing exactly one
eigenvalue and the other containing all remaining eigenvalues of an
almost skew-symmetric matrix. More recently, a new approach was
used in [10] to study the spectra of hypertournaments, which involved
Schur complementation and the numerical range.

Our plan to study almost skew-symmetric matrices unfolds as follows.
Firstly, we will provide tight regions that contain the eigenvalues of an
almost skew-symmetric matrix by adapting and generalizing the results
in [10]. The eigenvalue results herein can be viewed as a refinement
and an extension of those in [4,5]. Secondly, we will study the inverses,
principal pivot transforms and Schur complements of almost skew-
symmetric matrices. Thirdly, we will consider affine combinations of
A and At (Levinger’s transformation), leading to further information
about the spectrum and the numerical range of an almost skew-
symmetric matrix A. Some applications to tournament matrices will
also be presented.

2. Preliminaries and notation. For any A ∈ Mn(C), the
spectrum of A is denoted by σ(A) and its spectral radius by ρ(A) =
max{|λ| : λ ∈ σ(A)}. The numerical range (also known as the field of
values) of A is the set

F (A) = {v∗Av ∈ C : v ∈ Cn with v∗v = 1},

which is a compact and convex subset of C that contains the spectrum
of A, see [8]. The numerical radius of A is defined and denoted by
r(A) = max{|λ| : λ ∈ F (A)}. Recall that A is Hermitian if and only
if F (A) ⊂ R, and that if A is normal, then F (A) coincides with the
convex hull of σ(A). It is also well known that

ReF (A) = F
(
A+ A∗

2

)
and i ImF (A) = F

(
A−A∗

2

)
.

When A ∈ Mn(R), then F (A) is symmetric with respect to the real
axis. Also, any eigenvalue λ ∈ σ(A) that belongs to the boundary of
the numerical range, ∂F (A), is a normal eigenvalue of A; namely, there
exists a unitary matrix U ∈ Mn(C) such that

U∗AU = λIk ⊕B,
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where k is the (algebraic) multiplicity of λ and λ /∈ σ(B).
For any A ∈ Mn(R), we write A = S(A) +K(A), where

S(A) =
A+ At

2
and K(A) =

A−At

2

are the symmetric part and the skew-symmetric part of A, respectively.
We also define Levinger’s transformation of A ∈ Mn(R) as (the
parametrized family of matrices)

L(A, a) = (1− a)A+ aAt, a ∈ R.

When A is entrywise nonnegative, the spectral radius and the numerical
range of this transformation were considered in [2, 3].

An almost skew-symmetric matrix A ∈ Mn(R), n ≥ 2, is a matrix
whose symmetric part S(A) has rank one. The sole nonzero eigenvalue
of S(A) is denoted by δ(A). For the remainder of this article, we
assume that δ(A) > 0; otherwise, our results are applicable to −A. It
follows that S(A) = wwt for some w ∈ Rn. Note that if Cw �= 0 for
some C ∈ Mn(R), then the congruence CACt is also an almost skew-
symmetric matrix. Also, every principal submatrix of an almost skew-
symmetric matrix is either skew-symmetric or almost skew-symmetric.

Given an almost skew-symmetric matrix A ∈ Mn(R) with symmetric
part S(A) = wwt, the variance of A is defined by

v(A) =
‖K(A)w‖2

2

‖w‖2
2

.

Notice that w/‖w‖2 is the unit eigenvector of S(A) corresponding to
the simple eigenvalue wtw. It readily follows that if v(A) = 0, then
(δ(A), w) is an eigenpair for both A and At. That is, v(A) is a measure
of how close δ(A) is to being a normal eigenvalue of A.

3. Eigenvalues and singular values. Under our simplifying
assumption that δ(A) > 0, an almost skew-symmetric matrix A is
weakly positive stable, namely, for all λ ∈ σ(A), Reλ ≥ 0. In the
following theorem, we present another important inequality that is
satisfied by every eigenvalue of A. In turn, this inequality will lead
to a localization of σ(A) via a curve in the complex plane.
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Theorem 3.1. Let A ∈ Mn(R) be an almost skew-symmetric
matrix. Let λ be an eigenvalue of A. Then

(3.1) (Imλ)2 Reλ ≤ (δ(A)− Reλ) [v(A) + Reλ (Reλ− δ(A))] .

Proof. If λ = δ(A) or Reλ = 0, then clearly (3.1) holds. So assume
that λ �= δ(A) and Reλ �= 0. Let y = w/‖w‖2 ∈ Rn be the unit
eigenvector of S(A) = wwt corresponding to the simple eigenvalue δ(A).
Then, there exists a unitary U ∈ Mn(R), whose first column is y, such
that

U tS(A)U = diag {δ(A), 0, . . . , 0}.
Moreover, as U tK(A)U is real skew-symmetric, we have

(3.2) U tK(A)U =
[
0 −ut

u K1

]
,

where K1 ∈ Mn−1(R) is skew-symmetric and u ∈ Rn−1. Conse-
quently,

U tAU =
[
δ(A) −ut

u K1

]
and the matrix

U t(A− λI)U =
[
δ(A)− λ −ut

u K1 − λI
]

is singular. Thus, its Schur complement of the leading entry is singular
[7, p. 21], i.e., 0 ∈ σ(E), where

E = K1 − λI + 1
δ(A)− λ uu

t.

The symmetric and skew-symmetric parts of E are

M =
(δ(A)− Reλ)

(δ(A)− Reλ)2 + (Imλ)2
uut − Reλ I

and

(3.3) N = K1 − i Imλ I + i Imλ
(δ(A)− Reλ)2 + (Imλ)2

uut,
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respectively. Since σ(E) ⊆ F (E) and F (M) = ReF (E) (see [8,
Properties 1.2.5, 1.2.6]) it follows that 0 ∈ F (M), which, in turn,
implies

Reλ ∈ (δ(A)− Reλ)
(δ(A)− Reλ)2 + (Imλ)2

F (uut).

Since F (uut) coincides with the interval [0, utu] and since δ(A) > 0, we
have that

Reλ ≤ (δ(A)− Reλ)(utu)
(δ(A)− Reλ)2 + (Imλ)2

or, equivalently,

(Imλ)2 ≤ (δ(A)− Reλ)
(
utu

Reλ
− (δ(A)− Reλ)

)
.

Denoting by e1 the first standard basis vector in Rn, observe that

(3.4)

utu =
∥∥∥∥
[
0
u

]∥∥∥∥
2

2

=
∥∥∥∥U

[
0 −ut

u K1

]
e1

∥∥∥∥
2

2

=
∥∥∥∥U

[
0 −ut

u K1

]
U tUe1

∥∥∥∥
2

2

= ‖K(A)y‖2
2 = v(A),

completing the proof of (3.1).

Corollary 3.2. Let A ∈ Mn(R) be an almost skew-symmetric
matrix with v(A) < δ2(A)/4. Then for every eigenvalue λ of A,

Reλ /∈
(
δ(A)− √

δ2(A)− 4v(A)
2

,
δ(A) +

√
δ2(A)− 4v(A)
2

)
.

Proof. Suppose that λ is an eigenvalue of A. Since we readily have
that

0 ≤ δ(A)− √
δ2(A)− 4v(A)
2

and δ(A) ≥ δ(A) +
√
δ2(A)− 4v(A)
2

,
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let us consider the case Reλ �= 0 and λ �= δ(A). Then, by (3.1),

(δ(A)− Reλ)
(
v(A)
Reλ

+Reλ− δ(A)
)

≥ 0,

that is, as 0 ≤ Reλ ≤ δ(A),

(Reλ)2 − δ(A)Reλ+ v(A) ≥ 0.

Since v(A) < δ2(A)/4, the proof is complete.

Definition 3.3. Prompted by (3.1), we define the shell of an almost
skew-symmetric matrix A ∈ Mn(R) to be the curve in the complex
plane given by

Γ(A)=
{
x+iy ∈C : x, y ∈R and y2 = (δ(A)−x)

(
v(A)
x

+x−δ(A)
)}
.

The curve Γ(A) depends only on the variance v(A) and the nonzero
eigenvalue of S(A). It is symmetric with respect to the real axis which
it intercepts at δ(A). If v(A) ≥ δ2(A)/4, then Γ(A) consists of an
unbounded branch. If v(A) < δ2(A)/4, then Γ(A) consists of an
unbounded branch and a bounded branch, and it also intercepts the
real axis at the points

δ(A)± √
δ2(A)− 4v(A)
2

.

By Theorem 3.1, the shell Γ(A) yields a localization of the spectrum
of A, as specified by (3.1). The various possible configurations of the
shell of an almost skew-symmetric matrix are illustrated in the next
example.

Example 3.4. We have taken 5×5 almost skew-symmetric matrices
A, B and C with variances v (A) = 1.75, v (B) = 4.5 and v (C) = 1.
Also δ(A) = 4, δ(B) = 4 and δ(C) = 2. The eigenvalues of each matrix
are marked with +’s. The shell Γ(A) consists of one bounded and one
unbounded branch. The bounded branch surrounds a real eigenvalue
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of A and the unbounded branch isolates the rest of the spectrum. The
shell Γ(B) is connected and all the eigenvalues of B are located in the
region between Γ(B) and the imaginary axis. The shell Γ(C) can be
loosely described as an inverted α-curve.
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FIGURE 1. The shells Γ(A), Γ(B) and Γ(C).

In the following theorem, we examine the possibility of eigenvalues of
A lying on Γ(A).

Theorem 3.5. Let A ∈ Mn(R) be an almost skew-symmetric
matrix, and let λ ∈ σ(A) ∩ Γ(A). Then either λ = δ(A), or

λ =
δ(A)± √

δ2(A)− 4v(A)
2

and v(A) <
δ2(A)
4

.
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Proof. Let λ �= δ(A) be an eigenvalue of A with Reλ �= 0. Let also
E, M and N be as defined in the proof of Theorem 3.1. Equality in
(3.1), namely,

(Imλ)2 = (δ(A)− Reλ)
(
v(A)
Reλ

+Reλ− δ(A))
)

holds if and only if

Reλ =
δ(A)− Reλ

(δ(A)− Reλ)2 + (Imλ)2
utu

or, equivalently, if and only if the matrix M is singular negative
semi-definite. In this case, the eigenvalue 0 ∈ σ(M) is simple and
corresponds to the eigenvector u that appears in (3.2). Moreover, the
matrix E is singular and 0 ∈ ∂F (E) (the boundary of the numerical
range) because ReF (E) = F (M). Thus 0 must be a normal eigenvalue
of E (see [8, Theorem 1.6.6]) and every corresponding eigenvector
belongs to null (M)∩null (N) = span {u}. Hence, u is an eigenvector of
N in (3.3) corresponding to the eigenvalue 0. Furthermore, the vector
u is an eigenvector of the rank one matrix

Imλ
(δ(A)− Reλ)2 + (Imλ)2

uut

corresponding to the simple eigenvalue

Imλ (utu)
(δ(A)− Reλ)2 + (Imλ)2

.

As a consequence, the quantity

i Imλ− i Imλ(utu)
(δ(A)−Reλ)2 + (Imλ)2

= i Imλ
(
1− utu

(δ(A)−Reλ)2 + (Imλ)2

)

is an eigenvalue of the matrix K1 appearing in (3.2) with corresponding
eigenvector u. Thus,

utK1u

utu
= i Imλ

(
1− utu

(δ(A)− Reλ)2 + (Imλ)2

)
.
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The same arguments applied to λ̄ ∈ σ(A) yield

utK1u

utu
= i Im λ̄

(
1− utu

(δ(A)− Reλ)2 + (Im λ̄)2

)
,

and hence Imλ = 0. Thus the existence of eigenvalues on Γ(A) hinges
on the equation in λ

(δ(A)− λ)
(
v(A)
λ

+ λ− δ(A)
)

having real solutions. If v(A) > δ2(A)/4, this equation has no real
solutions. Otherwise, the real solutions lead to eigenvalues as stated in
the theorem.

Remark 3.6. We note that many of the results herein can be gen-
eralized to almost skew-Hermitian matrices, that is, complex matrices
whose Hermitian part has rank one. In particular, the eigenvalue in-
equalities can be stated for almost skew-Hermitian matrices with the
introduction of a constant γ ∈ R representing a shift of the shell along
the imaginary axis. This constant would not be known a priori; it would
be introduced in (3.2), where the zero (1,1) entry of 1

2U
∗(A − A∗)U

would be replaced by γ i.

For any matrix X ∈ Mn(C), we order and denote its singular values
by

σ1(X) ≥ . . . ≥ σn(X) ≥ 0.

Recall that σ1(X) = ‖X‖2 (the spectral norm) and

n∑
j=1

σ2
j (X) = trace (XtX) = ‖X‖2

F (the Frobenius norm).

The following result is a generalization of [6, Proposition 2.4].

Theorem 3.7. Let A ∈ Mn(R) be an almost skew-symmetric
matrix. Consider the matrix K1 in (3.2), and let ‖K1‖F denote its
Frobenius norm. Then the following hold:
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(i) σ1(A) ≥ δ(A).
(ii) ‖A‖2

F =
∑n

j=1 σ
2
j (A) = δ

2(A) + 2v(A) + ‖K1‖2
F .

(iii) σ2
n(A) ≤ ‖K1‖2

F +2v(A)
n−1 .

Proof. By [1, Proposition III.5.1, p. 73], we have

δ(A) = wtw = σ1(S(A)) ≤ σ1(A),

proving (i). Referring to (3.2) in the proof of Theorem 3.1 and the
notation thereof, and since the singular values of A and U tAU coincide,
we have

n∑
j=1

σ2
j (A) = trace

(
(U tAU)t(U tAU)

)

= trace
(
δ2(A) + utu δ(A)ut + utK1

−δ(A)u−K1u uut −K2
1

)
= δ2(A) + utu+ trace (uut)− trace (K2

1 ).

Then (ii) follows by recalling that trace(uut) = utu = v(A) (see (3.4))
and observing that ‖K1‖2

F = −trace (K2
1). To prove (iii), we use parts

(i) and (ii) to obtain

(n− 1)σ2
n(A) + δ

2(A) ≤ (n− 1)σ2
n(A) + σ

2
1(A)

≤
n∑

j=1

σ2
j (A) ≤ δ2(A) + 2v(A) + ‖K1‖2

F .

4. Inverses, principal pivot transforms and Schur comple-
ments. Almost skew-symmetric matrices are not necessarily invert-
ible, e.g., the all ones matrix. Interestingly, however, the class of invert-
ible almost skew-symmetric matrices is inverse closed. In what follows,
we abbreviate (A−1)t by A−t.

Theorem 4.1. Let A ∈ Mn(R) be an invertible almost skew-
symmetric matrix. Then A−1 is also almost skew-symmetric and
K(A−1) = K(A−tAA−t).
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Proof. We have that S(A) = wwt for some w ∈ Rn. Thus
A = −At + 2wwt and as −At is by assumption invertible, by the
Sherman-Morrison formula for the inverse of rank-one perturbations of
invertible matrices (see, e.g., [7, p. 19]) we have

A−1 = −A−t − 2
1 + 2wt(−A−t)w

(−A−t)wwt(−A−t)

or, equivalently,

(4.1) S(A−1) =
1

2wtA−tw − 1
A−twwtA−t.

It is now clear that S(A−1) has rank one. Also the quantity 2wtA−tw−1
in (4.1) must be positive; otherwise, S(A−1) would be negative semi-
definite, contradicting the fact that A and thus A−1 are positive stable.
Thus A−1 is almost skew-symmetric. Since, of course, S(A−1) is
symmetric, we also have

A−1wwtA−1 = A−twwtA−t

or, equivalently,
AA−tS(A) = S(A)A−1At.

It follows that
AA−tA+A

2
=
At +AtA−1At

2
,

which implies that K(A) = K(AtA−1At). Considering A−1 instead of
A in this argument completes the proof.

When A and K(A) are both invertible, more can be said about the
symmetric, the skew-symmetric part and the variance of A−1 in relation
to the corresponding quantities of A.

Theorem 4.2. Let A ∈ Mn(R) be an invertible almost skew-
symmetric matrix with S(A) = wwt and assume that K(A) is also
invertible. Then the following hold:

(i) K(A−1) = K(A)−1.

(ii) S(A−1) = (K(A)−1w) (K(A)−1w)t.
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(iii) v(A−1) = ‖K(A)−2w‖2
2 / ‖K(A)−1w‖2

2.

Proof. Since K(A)−1 exists, applying the Sherman-Morrison formula
to A = K(A) + wwt, we obtain

A−1 = K(A)−1 − (1 + wtK(A)−1w)−1 K(A)−1S(A)K(A)−1

= K(A)−1 −K(A)−1wwtK(A)−t.

Since K(A)−1 is skew-symmetric and since K(A)−1wwtK(A)−1 has
rank one and is symmetric, the expressions in (i) and (ii) follow by the
uniqueness of the decomposition of a matrix into symmetric and skew-
symmetric summons. Part (iii) follows from (i), (ii) and the definition
of variance.

As almost skew-symmetric matrices bequeath their low rank symmet-
ric part to their principal submatrices and inverses, and because of the
well-known connection of submatrices of inverses and Schur comple-
ments, one expects that Schur complements of almost skew-symmetric
matrices are (almost) skew-symmetric. This is indeed true; however,
there is a more general matrix transformation that preserves almost
skew-symmetry, namely, the principal pivot transform (also known
as ‘exchange’ or ‘sweep operator’ in statistics; see [12]). It can be
defined relative to any principal submatrix of A but for reasons of
brevity, we define it here relative to the leading block in the partition
of A ∈ Mn(C) given by

(4.2) A =
(
A11 A12

A21 A22

)
,

where A11 is an invertible submatrix. Then, the principal pivot trans-
form of A relative to A11 is defined by

(4.3) ppt (A,A11) =
(

(A11)−1 −(A11)−1A12

A21(A11)−1 A22 −A21(A11)−1A12

)
.

The matrices A and ppt (A,A11) are related as follows: If x = (xt
1, x

t
2)t

and y = (yt
1, y

t
2)t in Cn are partitioned conformally to A in (4.2), then

A

(
x1

x2

)
=

(
y1
y2

)
if and only if ppt (A,A11)

(
y1
x2

)
=

(
x1

y2

)
.
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Notice that the trailing principal submatrix of ppt (A,A11) coincides
with the Schur complement of A11 in A, denoted by A/A11.

Theorem 4.3. Let A ∈ Mn(R) be partitioned as in (4.2). Suppose
A11 is invertible and rankS(A) = 1. Then rankS(ppt (A,A11)) = 1.
In particular, if A is an almost skew-symmetric matrix, then so is
ppt (A,A11).

Proof. As shown in [12, Lemma 3.4], ppt (A,A11) admits the factor-
ization ppt (A,A11) = C1C

−1
2 , where

C1 =
(
I 0
A21 A22

)
and C2 =

(
A11 A12

0 I

)
.

Consider now the congruence of ppt (A,A11) given by

Ct
2 ppt (A,A11)C2 = Ct

2 C1.

Observe that

(4.4) Ct
2 C1 + Ct

1C2 =
(
A11 +At

11 A12 +At
21

At
12 +A21 A22 +At

22

)
= 2S(A).

Thus rankS(ppt(A,A11) = rankS(Ct
2 C1) = rankS(A). Suppose now

that A is almost skew-symmetric and S(A) = wwt. As C2 is invertible,
it follows that Ct

2 w �= 0. Thus ppt(A,A11) is almost skew-symmetric
with symmetric part S(ppt(A,A11)) = Ct

2ww
t C2.

The following corollary is due to the fact that the Schur complement
appears as a principal submatrix in the principal pivot transform.

Corollary 4.4. Let A ∈ Mn(R) be an almost skew-symmetric
matrix partitioned as in (4.2) and such that A11 is invertible. Then
S(A/A11) has rank at most one.

Example 4.5. In this example we illustrate that a Schur complement
of an almost skew-symmetric matrix can indeed be skew-symmetric.
Let

A =


 2 2 2

2 2 5
2 −1 2


 .
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The Schur complement of the leading submatrix A11 = (2) in A is the
skew symmetric matrix (

0 3
−3 0

)
.

This section concludes with the following new result on pseudo-
tournaments.

Corollary 4.6. Let T ∈ Mn(R) and suppose C is a principal pivot
transform of T + 1

2 I. Then, T is a pseudo-tournament if and only if
C − 1

2 I is a pseudo-tournament. In particular, suppose that 1
2 /∈ σ(T ).

Then, T is a pseudo-tournament if and only if (T + 1
2 I)

−1 − 1
2 I is a

pseudo-tournament.

Proof. If T is a pseudo-tournament then rankS(T + 1
2 I) = 1 and

thus, by Theorem 4.3, rankS(C) = 1. It follows that C − 1
2 I is a

pseudo-tournament. Conversely, if C − 1
2 I is a pseudo-tournament,

then rankS(C) = 1. The principal pivot transform is an involution
[12, Theorem 3.1]; that is, T + 1

2 I is a principal pivot transform of
C and thus, by Theorem 4.3, it must also have rank one symmetric
part. It follows that T is a pseudo-tournament. The second part of the
theorem follows similarly.

5. Levinger’s transformation and the numerical range. Given
an almost skew-symmetric matrix A ∈ Mn(R) with S(A) = wwt, recall
that Levinger’s transformation ofA is given by L(A, a) = (1−a)A+aAt,
a ∈ R. Observe that

(5.1) L(A, a) = S(A) + (1− 2a)K(A),

which means that, for every a ∈ R, L(A, a) is also an almost skew-
symmetric matrix with L(A, 0) = A, L(A, 1) = At and L(A, 1

2 ) = S(A).
Moreover,

(5.2) L(A, 1
2 + a) = L(At, 1

2 − a).
From (5.1) we have that S(L(A, a)) = wwt and

v (L(A, a)) = ‖K(L(A, a))w‖2
2

‖w‖2
2

= (1− 2a)2v(A).



ALMOST SKEW-SYMMETRIC MATRICES 283

Because of symmetry in (5.2) with respect to a, in the remainder of this
discussion we need only consider a ∈ (−∞, 1

2 ]. As a consequence of the
above, the results of the previous section can be adapted for L(A, a)
(a ∈ (−∞, 1

2 ]). We summarize them in the following theorem.

Theorem 5.1. Let A ∈ Mn(R) be an almost skew-symmetric
matrix. If λa is an eigenvalue of L(a,A), a ∈ (−∞, 1

2 ], then

(Imλa)2 Reλa ≤ (δ(A)−Reλa)
[
(1− 2a)2 v(A) + Reλa (Reλa − δ(A))] .

Moreover, for every a ∈ (−∞, 1
2 ] such that (1 − 2a)2 v(A) < δ2(A)/4,

the real part of every eigenvalue of L(a,A) lies outside the interval(
δ(A)− √

δ2(A)− 4(1−2a)2 v(A)
2

,
δ(A) +

√
δ2(A)− 4(1−2a)2 v(A)

2

)
.

Note that the condition (1 − 2a)2 v(A) < δ2(A)/4 in the above
theorem is always true when a is “close enough” to 1

2 . In fact, as
a → 1

2 , the open interval in the second part of the above theorem
converges to (0, δ(A)). Generally speaking, Theorem 5.1 provides
information (bounds) regarding the behaviour of σ(A) under Levinger’s
transformation. In that respect, we also have the following result.

Proposition 5.2. Let A ∈ Mn(R) be an almost skew-symmetric
matrix with score variance v(A). Then for every a ∈ (−∞, 1

2 ] such that
(1− 2a)2v(A) < δ2(A)/4, the matrix L(a,A) has a real eigenvalue

λ(a,A) ≥ δ(A) +
√
δ2(A)− 4(1− 2a)2 v(A)

2

and n− 1 complex eigenvalues whose real parts are not greater than

δ(A)− √
δ2(A)− 4(1− 2a)2 v(A)

2
.

Proof. The conclusions hold for a = 1
2 as L(A, 1

2 ) = S(A) and
v (L(A, 1

2 )) = 0. Moreover, the set

{a ∈ (−∞, 1
2 ] : (1− 2a)2v(A) < δ2(A)/4}
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coincides with the interval (a0, 1
2 ], where

a0 =
2− √

δ2(A)/v(A)
4

.

Since the eigenvalue δ(A) ∈ σ(L(A, 1
2 )) is simple, by Theorem 5.1 and

the continuity of the eigenvalues of L(A, a) with respect to a, the proof
is complete.

Corollary 5.3. Let A ∈ Mn(R) be an almost skew-symmetric
matrix with variance v(A) < δ2(A)/4. Then A has exactly one real
eigenvalue in the interval[

δ(A) +
√
δ2(A)− 4v(A)
2

, δ(A)

]

and n− 1 complex eigenvalues with real parts in the interval[
0,
δ(A)− √

δ2(A)− 4v(A)
2

]
.

Levinger’s transformation allows us to address a question raised in
[9]. Consider a generalized tournament T ∈ Mn(R), namely, a matrix
with nonnegative entries satisfying T + T t = eet − I, where e denotes
the all ones vector. The score vector of T is defined as s = Te. The
score variance of T is defined as

sv (T ) =
sts

n
− (n− 1)2

4
.

The problem posed in [9] can be stated in terms of sv (T ) as follows:
Does ρ(L(T, a)) > (n− 2)/2 imply that sv (L(T, a)) < (n− 1)/4? The
converse is known to be true.

As noted for the variance of Levinger’s transformation of almost
skew-symmetric matrices, it can also be seen that the score variance of
L(T, a)) is given by

sv (L(A, a)) = (1− 2a)2 sv (T ).
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Also note that for every a ∈ [0, 1
2 ], the matrix L(T, a) is a generalized

tournament. Exploiting these facts, we can construct the following
example that yields a negative answer to the above question.

Example 5.4. Consider the tournament matrix

T =




0 1 1 1 1
0 0 0 0 1
0 1 0 1 0
0 1 0 0 1
0 0 1 0 0


 .

The score variance of T is sv (T ) = 1.2. For a = 0.04, sv (L(T, 0.04)) =
1.0157 and ρ(L(T, 0.04)) = 1.5138. That is, although ρ(L(T, 0.04)) >
1.5, we have sv(L(T, 0.04)) > 1.

Let us now look at the behavior of normal eigenvalues under Levinger’s
transformation, first for real matrices in general, and then for almost
skew-symmetric ones.

Theorem 5.5. Let A ∈ Mn(R) have normal eigenvalues λj =
µj+iνj, where µj , νj ∈ R have algebraic multiplicities mj, j = 1, . . . , k.
Then for every a ∈ (−∞, 1

2 ], the quantities λj(a) = µj + i(1 − 2a)νj

are normal eigenvalues of L(A, a) with algebraic multiplicities at least
mj, j = 1, . . . , k.

Proof. By the definition of normal eigenvalues, there exists unitary
V ∈ Mn(C) such that

V ∗AV = V ∗S(A)V + V ∗K(A)V = λ1Im1 ⊕ . . .⊕ λkImk
⊕B,

for some B of order n− (m1 + . . .+mk). Thus

V ∗L(A, a)V = V ∗S(A)V + (1− 2a)V ∗K(A)V
= λ1(a)Im1 ⊕ . . .⊕ λk(a)Imk

⊕ L(B, a).

It follows by the above proposition that the normal eigenvalues of
any A ∈ Mn(R) move vertically under Levinger’s transformation. At
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the same time, we know that for every a ∈ (−∞, 1
2 ], σ(L(A, a) ⊂

F (L(A, a)) with ReF (L(A, a)) = F (S(A)) = [0, δ(A)]. That is, the real
parts of the eigenvalues of L(A, a) always belong to [0, δ(A)]. Therefore
we have shown the following result, which is in agreement with [2,
Theorem 3.2 (ii)].

Corollary 5.6. Let A ∈ Mn(R) be an almost skew-symmetric
matrix and λ0 be a normal eigenvalue of A. Then either λ0 = δ(A),
which remains a normal eigenvalue of L(A, a) for every a ∈ (−∞, 1

2 ],
or Reλ = 0.

Moreover, as seen in the next result, the line Re z = 0 intersects
non-trivially the boundary of the numerical range of an almost skew-
symmetric matrix.

Proposition 5.7. Let A ∈ Mn(R) be an almost skew-symmetric
matrix with numerical range F (A). Then ∂F (A) ∩ {z ∈ C : Re z = 0}
is a line segment.

Proof. As in the proof of Theorem 3.1, there exists unitary U ∈
Mn(R) such that

U tAU =
(
δ(A) 0
0 0n−1

)
+

(
0 −ut

u K1

)
,

where K1 is skew-symmetric. It is clear that for every unit x ∈ Cn,
Re (x∗U tAUx) = 0 if and only if x = [0, xt

1]
t, for some x1 ∈ Cn−1.

Thus, ∂F (A) ∩ {z ∈ C : Re z = 0} = F (K1), proving the claim as
the numerical range of any skew-symmetric matrix is a (vertical) line
segment.

Remark 5.8. Referring to the above proposition and its proof, notice
that

∂F (A) ∩ {z ∈ C : Re z = 0} = F (K1) = {0}
if and only if K1 = 0 or, equivalently,

U tAU =
(
δ(A) −ut

u 0

)
.
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In such a case, the characteristic polynomial of A is λn−2(λ2− δ(A)λ+
utu).

Example 5.9. The distinctive feature of the numerical range
described in the above proposition is illustrated by the following figures.
The numerical ranges are shaded and they correspond to the matrices

A1 =




0 0 −1 0 1
0 1 0 0 0
1 2 1 2 1
0 2 0 1 1
−1 2 1 1 1


 , A2 =




0 1 −1 0 0
−1 0 −1 1 0
1 1 0 −1 0
0 −1 1 1 1
0 0 0 1 1


 ,

which have v (A1) = 3.5, δ(A1) = 4 and v (A2) = 1, δ(A2) = 2.
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FIGURE 2. The numerical ranges (shaded) and shells of A1 and A2.
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