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FINITE REFLECTION GROUPS
AND LINEAR PRESERVER PROBLEMS

CHI-KWONG LI, ILYA SPITKOVSKY AND NAHUM ZOBIN

ABSTRACT. Let G be one of the Coxeter groups An, Bn,
Dn, or I2(n), naturally acting on a Euclidean space V , and
let L(G) stand for the set of linear transformations φ of EndV
that satisfy φ(G) = G. It is easy to see that L(G) contains all
transformations of the form X �→ PXQ, X �→ PX∗Q, where
P, Q belong to the normalizer of G in the orthogonal group and
PQ ∈ G. We show that in most cases these transformations
exhaust L(G); the only (rather unexpected) exception is the
case G = Bn.

1. Introduction. Let G be a finite irreducible Coxeter group
naturally acting on a finite dimensional real Euclidean space V ; see
[2, 4] for related definitions and terminology. The facial structure of
the polytope convG (the convex hull of G) was recently studied in [5,
13]. In the present paper we address the linear symmetries of convG,
the linear transformations of the space EndV of linear operators on
V preserving the polytope convG or, equivalently, preserving G. The
problem of describing the set L(S) of linear transformations of EndV
preserving a given set S ⊂ EndV is an example of linear preserver
problems, studied by many researchers, see, e.g., [14].

One can find many simple transformations belonging to L(G), e.g.,
left and right multiplications by elements of G and the operation
T �→ T ∗ of taking the adjoint operator obviously belong to L(G). In
fact, the following result can be readily verified for any subgroup G of
the orthogonal group O(V ).

Lemma 1.1. Let P,Q belong to the normalizer N(G) of G in
the orthogonal group O(V ), and assume that PQ ∈ G. Then the
transformations X �→ PXQ and X �→ PX∗Q are in L(G). These
transformations constitute a group.
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The maps X �→ PXQ and X �→ PX∗Q are called rigid embeddings,
see [7]. Let RE(G) denote the group described in Lemma 1.1. Then,
according to this lemma,

RE(G) ⊂ L(G).

As we shall see, these two sets often coincide: L(G) = RE(G); in our
study only G = Bn delivers an unexpected counterexample.

Evidently, if P and Q are invertible operators, then transformations
of EndV of the form X �→ PXQ or X �→ PX∗Q preserve ranks, i.e.,
rank (PXQ) = rank (PX∗Q) = rankX. It is known (see, e.g., [14,
Chapter 2]) that these are the only rank-preserving linear transforma-
tions of EndV . So RE(G) may be described as the rank-preserving
part of L(G). Furthermore, if φ is unital, i.e., φ sends the identity
operator on V to itself, then such φ belonging to RE(G) will be of the
form X �→ PXP−1 or X �→ PX∗P−1. These transformations are au-
tomorphisms or anti-automorphisms of the group G, i.e., they preserve
the group structure. Thus, the equality L(G) = RE(G), if it holds,
means that the linear transformations preserving G actually preserve
much more.

The usual scalar product (T, S) = tr (TS∗) turns EndV into a
Euclidean space. One can show, see Lemma 2.1 below, that every
transformation φ of the space EndV sending convG onto itself has to
be orthogonal with respect to this scalar product. So L(G) is in fact
a subgroup of the group O(EndV ) of orthogonal transformations of
EndV .

The set G is a subset of a Euclidean sphere of radius
√

dimV , and
thus coincides with the set of the extreme points of its convex hull:
Extr (convG) = G. This, in turn, implies that L(G) = L(convG).

For U ⊂ EndV there is a standard notion of the polar set

U0 = {T ∈ EndV : (T, S) ≤ 1 for all S ∈ U}.

One can easily see that the set Uo is closed and convex, and it contains
the origin. Furthermore, Uo = (convU)o. It is well known that
studying a convex set U together with its polar set Uo is helpful in
many problems of convex geometry.
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The previous considerations and the orthogonality of transformations
from L(G) imply that the following sets coincide

L(G) = L(convG) = L(Go) = L(Extr (Go)).

Obviously, in our study it would be helpful to know the set Extr (Go),
and we do know this set in many cases, see [5, 13]. To describe it we
need some additional definitions and notation.

For a subgroup G of the linear group GL(V ) define the envelope of
G as follows

envG = {T ∈ EndV : TU ⊂ U

for every convex closed G-invariant subset U of V }.

One readily checks that envG is a closed convex semi-group of operators
containing convG. This semi-group naturally arises in the theory of
operator interpolation, see [16, 17]. When G is a finite irreducible
Coxeter group, there exists (see [16]) a convenient dual description of
the semi-group envG,

Extr ((envG)o) = B(G),

where the set B(G) of Birkhoff tensors, introduced in [5, 13], is defined
as follows

B(G) = {ω ⊗ τ/mG(ω, τ ) : ω, τ are weights of G associated with
distinct end vertices of the Coxeter graph}.

Here mG(x, y) = maxg∈G〈gx, y〉. See [5, 13] for an explanation of the
relations between Birkhoff tensors and the famous Birkhoff theorem [3]
about doubly stochastic matrices.

It is “almost” known that if the Coxeter graph Γ(G) of the group G is
not branching, then in fact convG = envG, here “almost” means that
the only finite irreducible Coxeter group with a nonbranching graph for
which this is not yet proven is the group H4, see [5, 13]. Therefore, for
every Coxeter group G with a nonbranching graph, except for possibly
H4, we have

Extr (Go) = Extr ((convG)o) = Extr ((envG)o) = B(G).
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So in this case we have L(G) = L(B(G)). Note that the set B(G) by
definition consists only of rank 1 operators, therefore it is usually easier
to deal with. As for finite irreducible Coxeter groups with branching
graphs, it is known [5, 13] that convG �= envG. The calculation of
L(envG)(= L(B(G))) is then an interesting problem by itself.

All finite irreducible Coxeter groups are classified (see, e.g., [4]) and
it is known that there exist four infinite families of Coxeter groups
An,Bn,Dn, I2(n) and six exceptional groups E6,E7,E8,F4,H3,H4.
Groups An,Bn, I2(n),F4,H3,H4 have nonbranching graphs, the rest
(Dn,E6,E7,E8) have branching graphs. So,

(1) if G = An,Bn, I2(n),F4 or H3, then L(G) = L(B(G)).

In this paper we give a complete description of the set L(G) for each
of the four infinite families of finite irreducible Coxeter groups. We
have partial results for the six exceptional groups but it seems that
some additional techniques are needed for a complete solution of the
problem, see Section 7. Only one family of those we study here, the
family Dn, has branching graphs, so convDn �= envDn. Nonetheless,
we show that L(Dn) = L(envDn) = RE(Dn), see Section 5.

Let us mention several known related results. For G = O(V ), Wei
[15] showed that L(O(V )) = RE(O(V )), i.e.,

φ ∈ L(O(V )) if and only if φ(A) = PAQ or φ(A) = PA∗Q

for some orthogonal operators P and Q. The case G = An was studied
in [11], and it was shown that L(An) = RE(An). We give a different
proof of this result below.

Note that one may also study linear transformations φ of EndV such
that φ(G) ⊂ G, not necessarily φ(G) = G. When G = O(V ), one gets
the same conclusion as above except when dimV = 2, 4, 8, and there
exist singular transformations in these cases, see [15] for details.

For the preserver results for other classical linear groups, see [14,
Section 4.6].

Our interest in linear symmetries of the RE(G)-invariant convex
polytopes convG and envG was mostly motivated by a desire to
understand the geometry of general RE(G)-invariant convex bodies,



FINITE REFLECTION GROUPS 229

the unit balls of RE(G)-invariant norms. If we consider a complex
Hilbert space V and take G to be the group U(V ) of unitary operators,
then RE(U(V ))-invariant norms are called unitarily invariant norms,
see, e.g., [9]. These norms are closely connected with the Schatten-
von Neumann ideals, and they have been studied by many authors, see
[9]. Since Euclidean balls in V are obviously the only U(V )-invariant
convex closed sets in V , then envU(V ) is simply the unit ball of the
operator norm, which in turn coincides with convU(V ). So

Extr (envU(V ))o = {x⊗ y ∈ EndV : 〈x, x〉〈y, y〉 = 1} = B(U(V )).

Therefore, convB(U(V )) is the unit ball of the norm dual to the
operator norm, which is the nuclear, or trace, norm. The operator
norm and the nuclear norm are very important examples of unitarily
invariant norms. In particular, it is known that every unitarily invariant
norm is an interpolation norm for this couple, see, e.g., [9]. These two
norms are natural “noncommutative” analogs of Bn-invariant norms
l∞ and l1. It was shown in [16] that if G is an irreducible Coxeter
group whose graph is nonbranching and if ωi, i = 1, 2, are the weights
of G associated with distinct end vertices of the Coxeter graph, then
convOrbGωi are the unit balls of G-invariant (pseudo)norms analogous
to the l∞- and l1-norms. So the sets convG and convB(G) whose linear
symmetries we study in this paper can be viewed as the unit balls of the
“noncommutative” or “quantum,” versions of these (pseudo)norms.

Isometries of RE(U(V ))- and Bn-invariant norms have been studied
by many authors, see, e.g., [8, 12, 10].

It is important to explore the possible isometries of general RE(G)-
invariant norms. In particular, it would be very interesting to compute
the isometries of the RE(G)-invariant norms whose unit balls are the
following convex bodies: convOrbRE(G)C for C ∈ EndV . Note that if
C ∈ G, then OrbRE(G)C = G, and if C ∈ B(G) then (at least in the case
of a nonbranching graph) OrbRE(G)C = B(G). Therefore the problems
we address in this paper can be described as exploring the isometries
of the basic RE(G)-invariant norms, namely, those whose unit balls are
convOrbRE(G)C where C ∈ G or C ∈ B(G) for the infinite families
of irreducible Coxeter groups. We anticipate that it would be very
difficult to solve such a problem for a general C ∈ EndV .
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2. Preliminary results. Recall that for a set H ⊂ EndV its
commutant is defined as the set of all operators on V commuting with
each operator from H. The commutant is said to be trivial if it consists
only of scalar operators. It is well known that the commutant of a
subgroup of the unitary group in a complex finite-dimensional Hilbert
space is trivial if and only if this group is irreducible, or equivalently
the linear span of this subgroup is the whole EndV . The situation of a
subgroup of the orthogonal group in a real finite dimensional Euclidean
space is more complicated; if the linear span of the subgroup is the
whole EndV , then certainly the commutant is trivial and the group
is irreducible, but not vice versa, an irreducible subgroup may span a
proper subspace of EndV , and its commutant may be nontrivial. A
good example is delivered by the group of rotations by multiples of π/4
in R2. Nevertheless, it is known (see, e.g., [5, 13]) that an irreducible
Coxeter group spans the whole EndV , so its commutant is trivial.

Evidently, for every closed subset U of V , the set L(U) is a closed
semi-group. Often one can prove much more.

Lemma 2.1. Let U be a closed subset of V spanning the whole V .
Then the set L(U) is actually a group. Assume, in addition, that U
is compact and that L(U) contains a subgroup of orthogonal operators
whose commutant is trivial. Then L(U) itself is a closed subgroup of
the orthogonal group O(V ).

Proof. The fact that operators from L(U) are invertible immediately
follows from the condition that U spans the whole space V . Therefore,
L(U) is a subgroup of the linear group GL(V ), and it is obviously
closed.

If U is bounded, then so is L(U). Therefore, there exists a positive
definite operator T ∈ GL(V ) such that T (L(U))T−1 is a subgroup of
O(V ), see, e.g., [1, 6]. Hence, for any φ ∈ L(U) ∩ O(V ), we see that
TφT−1(TφT−1)∗ is the identity operator, and hence T 2φ = φT 2. Since
the commutant of L(U) ∩ O(V ) is assumed to be trivial then T 2 is a
scalar operator. Therefore, T , which is the positive square root of T 2,
is also a scalar operator. Hence, L(U) = T (L(U))T−1 is a subgroup of
O(V ).
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Corollary 2.2. Let G be a subgroup of the orthogonal group O(V ),
spanning the whole space EndV . Then L(G) ⊂ O(EndV ).

Proof. By Lemma 2.1 we only need to present an orthogonal subgroup
of L(G) with a trivial commutant. Consider the group G × G acting
on EndV by left and right multiplications. Obviously, it is a part of
L(G). Since G spans the (dimV )2-dimensional space EndV , then one
can show that G×G spans a (dimV )4-dimensional space, i.e., the whole
End (EndV ). This excludes the possibility of a nontrivial commutant.

Corollary 2.3. Let G be a finite irreducible Coxeter group, naturally
acting on V . Then L(B(G)) ⊂ O(EndV ).

Proof. Since B(G) spans EndV (see [5, 13]) it suffices to present an
orthogonal subgroup of L(B(G)) with a trivial commutant. We may
again choose the group G×G.

Lemma 2.4. The group RE(G) acts on the set B(G).

Proof. According to [16],

B(G) = Extr (conv (Go ∩ {rank 1 tensors})).

Thus it suffices to show that RE(G) maps Go ∩ {rank 1 tensors} into
itself. To this end, consider x ⊗ y ∈ Go, i.e., such that for all g ∈ G,
(g, x ⊗ y) ≤ 1. Then for all P,Q ∈ N(G) satisfying PQ ∈ G and for
any g ∈ G:

(g, P (x⊗ y)Q) = (P ∗gQ∗, x⊗ y) = ((P−1gP )(QP )−1, x⊗ y) ≤ 1,

because P−1gP ∈ G and QP = Q(PQ)Q−1 ∈ G.

Strategy of proofs. Let us outline the approach we are going to use
to calculate the groups L(G) and L(envG) = L(B(G)).

Let U be a finite subset of EndV , spanning the whole space EndV .
Assume that the group RE(G) acts on U , i.e., for every T ∈ RE(G)
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and every u ∈ U we have Tu ∈ U . This assumption obviously holds
for U = G and, due to Lemma 2.4, this assumption is also true for
U = B(G). Moreover, this action is transitive in all cases we study
here, this is obvious for U = G, also obvious for U = B(G), provided
Γ(G) is nonbranching; not so obvious for U = B(Dn), see Lemma 5.4.

Take any φ ∈ L(U). Choose u0 ∈ U (if U = G then it is natural to
choose u0 = I). If φ(u0) /∈ RE(G)u0, then definitely RE(G) �= L(U).
Certainly this cannot happen in the cases we study in this paper since
in all these cases the action of RE(G) is transitive on U , but we cannot
exclude such a possibility for G = Ek, k = 6, 7, 8.

If φ(u0) ∈ RE(G)u0, then let T ∈ RE(G) be such that Tφ(u0) = u0.
Then φ1 = Tφ ∈ L(U), and φ1 fixes u0.

Let
U1 = {u ∈ U : (u, u0) = a1 �= (u0, u0)}.

We usually choose a1 = maxv �=u0(v, u0). Since φ1 preserves the scalar
product and fixes u0, then φ1(U1) = U1. The subgroup

Stabu0 = {T ∈ RE(G) : Tu0 = u0}

also acts on U1. Choose u1 ∈ U1 and consider φ1(u1) ∈ U1. If φ1(u1) /∈
(Stabu0)u1, then L(U) �= RE(G). Otherwise, take T1 ∈ Stabu0 such
that T1φ1(u1) = u1. Then φ2 = T1φ1 ∈ L(U) fixes both u0 and u1.

Continuing this procedure we either find out that L(U) �= RE(G) or
deduce that φk ∈ L(U) fixes so many elements that it is only possible
if φk = I. In the latter case, φ ∈ RE(G).

In the body of the proofs, we will repeatedly make use of charac-
terizations of various subsets of U in terms of scalar products. We
will mark those characterizations as “claims.” Once stated, each such
claim can be justified by a straightforward (though sometimes lengthy)
computation.

Our investigation of the sets L(G) for Coxeter groups G is a case by
case study, in which we are using explicit matrix realizations for the
groups G and explicit formulas for their simple roots and fundamental
weights in special orthonormal bases given in [2, 4]. We use these
formulas in the sections below without further references. Our space
V is Rn, or a hypersubspace of Rn+1, in the case G = An. In
what follows, we abbreviate O(Rn) to O(n), denote by {e1, . . . , en}
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the standard basis of Rn and let e =
∑n

j=1 ej . All operators will be
described by their matrices in the standard basis. In particular, for
Eij = ei ⊗ ej , its matrix in the standard basis is eie

t
j . As usual, T t

denotes the transpose of the matrix T . We let Mn(R) denote the space
of real n× n matrices.

3. Groups An.

Matrix realization. For n ≥ 2, let Permn+1 be the group of (n+1)×
(n + 1) permutation matrices. Consider the following subspace V of
Rn+1:

V = {v = (v1, . . . , vn+1)t ∈ Rn+1 : v1 + · · ·+ vn+1 = 0}.
This subspace is invariant under the action of the group Permn+1.
Every matrix P ∈ Permn+1 can be rewritten in the form

P = (P − eet/(n+ 1)) + eet/(n+ 1) = PV + PV ⊥ .

Obviously PV e = 0, etPV = 0 and PV v = Pv for every v ∈ V .
Group An is the group of restrictions to V of operators from Permn+1.
So operators P |V from An can be identified with (n + 1) × (n + 1)
matrices PV , where P ∈ Permn+1. Note that matrices PV have zero
row and column sums. Therefore the space EndV , which coincides
with the linear span of An, is naturally identified with the space M0

n

of (n + 1) × (n + 1) real matrices with zero row and column sums.
The natural scalar product on EndV is given by the usual formula
(X,Y ) = tr (XY t).

Birkhoff tensors. Let w = (n + 1)e1 − e = (n,−1, . . . ,−1)t ∈ V .
Then

(n+ 1)B(An) = {−PwwtQ : P,Q ∈ An} ⊂ M0
n.

Linear preservers. Li, Tam and Tsing [11] showed that a linear
preserver of An on M0

n must be of the form A �→ UAV or A �→ UAtV
for some U, V ∈ An. Here we give a different proof.

Theorem 3.1. Let n ≥ 2. Then

L(An) = L(B(An)) = RE(An).
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In other words, the following statements are equivalent for a linear
transformation φ of M0

n:

(a) φ(An) = An.

(b) φ(B(An)) = B(An).

(c) There exist U, V ∈ An such that φ is of the form

A �−→ UAV or A �−→ UAtV.

Proof. By (1), (a) and (b) are equivalent. Clearly (c) implies (b). It
remains to prove that (b) implies (c). So let φ(B(An)) = B(An).

Let S = −(n + 1)B(An) = {Pw(Qw)t : P,Q ∈ An}. Then
φ(S) = S. We may assume that φ(wwt) = wwt (otherwise, replace
φ by a transformation of the form X �→ Pφ(X)Q for some suitable
P,Q ∈ An).

Now, for j = 1, . . . , n+1, consider vj = (n+1)ej−e = Pjw, Pj ∈ An.
Then, obviously w = v1 and

S = {Aij = viv
t
j : 1 ≤ i, j ≤ n+ 1}.

Note that vt
pvp = n2 + n and vt

pvq = −(n+ 1) if p �= q, therefore

(Aij , Aks) = −(n2+n)(n+1) if and only if i = k, j �= s, or i �= k, j = s.

Since φ preserves the inner product, we get

(A11, φ(A12)) = (φ(A11), φ(A12)) = (A11, A12) = −(n2 + n)(n+ 1)

so we conclude that

(i) φ(A12) = A1j ,

or

(ii) φ(A12) = Aj1 = At
1j

for some j ≥ 2.

We may assume that (i) holds; otherwise, replace φ by transformation
of the form X �→ φ(X)t (this will not destroy the condition φ(A11) =
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A11 since At
11 = A11). Furthermore, we may assume that φ(A12) =

A12; otherwise, replace φ by a transformation of the form X �→ φ(X)Q
where Q ∈ An corresponds to the transposition interchanging 2 and j
(again, the condition φ(A11) = A11 is preserved). Now φ(A11) = A11

and φ(A12) = A12. Let j = 1, 2. Then

(A1j , φ(A13)) = (φ(A1j), φ(A13)) = (A1j , A13) = −(n2 + n)(n+ 1),

and hence φ(A13) = A1s for some s ≥ 3. Again we may assume that
φ(A13) = A13. Repeating these arguments, we modify φ until we get
φ(A1j) = A1j for all j = 1, . . . , n+ 1.

Since φ(A1j) = A1j for all j = 1, . . . , n+1, we see that for any s ≥ 2,

φ(As1) /∈ {A1k : 1 ≤ k ≤ n+ 1},

and

(φ(As1), A11) = (φ(As1), φ(A11)) = (As1, A11) = −(n2 + n)(n+ 1).

Therefore, for any s ≥ 2, we have φ(As1) = Aσ(s),1 for some permuta-
tion σ of {1, 2, . . . , n+1}, σ(1) = 1. We may assume that φ(As1) = As1;
otherwise, replace φ by a mapping of the form X �→ Qφ(X) where
Q ∈ An corresponds to the permutation σ−1 (this will not destroy the
equalities φ(A1j) = A1j , 1 ≤ j ≤ n+ 1, since σ(1) = 1).

Since φ fixes A1j , Aj1, 1 ≤ j ≤ n + 1, then φ maps the set
{Aij : 2 ≤ i, j ≤ n + 1} onto itself. Take Aij , i, j ≥ 2. Then
(φ(Aij), Ai1) = (φ(Aij), φ(Ai1)) = (Aij , Ai1) = −(n2 + n)(n + 1), so
φ(Aij) = Ais, s ≥ 2. Similarly, we obtain that φ(Aij) = Arj, r ≥ 2.
So φ(Aij) = Aij . Therefore φ fixes all elements of B(An), i.e., φ is the
identity.

4. Groups Bn.

Matrix realization. Group Bn consists of all the 2nn! signed permu-
tation matrices in Mn(R).

Birkhoff tensors. The set B(Bn) is the set of all matrices of the form
eje

tQ or Qeet
j with Q ∈ Bn.
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Linear preservers. Let X ◦ Y denote the Schur (entrywise) product
of matrices X,Y ∈ Mn(R).

Theorem 4.1. Let n > 2. The following conditions are equivalent
for a linear transformation φ of Mn(R).

(a) φ(Bn) = Bn.

(b) φ(B(Bn)) = B(Bn).

(c) There exist P,Q ∈ Bn and a matrix S with entries ±1 such that
φ is of the form

(2) A �−→ S ◦ (PAQ) or A �−→ S ◦ (PAtQ).

Proof. By (1), (a) and (b) are equivalent. One readily checks that
(c) implies (a) and (b).

Suppose (b) holds. We may assume that

(3) φ(eet
1) = eet

1.

Each matrix X from B(Bn) has either exactly one row or exactly one
column consisting of ±1s, with all other entries equal to zero, let us
call this row (or column) the special line of X. If the special lines of
X1, X2 ∈ B(Bn) are parallel and noncoinciding then (X1, X2) = 0. If
the special lines of X1, X2 ∈ B(Bn) are nonparallel, then (X1, X2) =
±1. So if for X1, X2 ∈ B(Bn) we have (X1, X2) different from 0,±1,
then the special lines of X1, X2 must coincide. Note that, for odd n, if
X1, X2 ∈ B(Bn) have the same special lines, and the special line of X1

consists of 1s, then (X1, X2) �= 0, so all matrices from X⊥
1 ∩B(Bn) have

their special lines parallel to the special line of X1 but not coinciding
with it.

Denote by Akj the matrix obtained from eet
j by changing the sign

of its (k, j)-entry: Akj = eet
j − 2eke

t
j . Note that Akj and At

kj are in
B(Bn).

Claim 1. Let n > 3. Then

{A1j : 1 ≤ j ≤ n} = {X ∈ B(Bn) : (X, eet
1) = n− 2}.
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Claim 2. Let n = 3. Then

{A1j : 1 ≤ j ≤ 3} = {X ∈ B(B3) : (X, eet
1) = 1, and (X,Y ) = 0

for all Y ∈ B(B3)such that (Y, eet
1) = 0}.

Since φ fixes eet
1 and preserves the inner product on Mn(R), it follows

from Claims 1 and 2 that φ maps the set {Ak1 : 1 ≤ k ≤ n} onto itself:

(4)

φ(Ak1) = Aσ(k),1 for a permutation σ : {1, . . . , n} −→ {1, . . . , n}.

Combining (3) with (4) shows that

φ(eke
t
1) = eσ(k)e

t
1, 1 ≤ k ≤ n.

Replacing φ by Pφ with an appropriate permutation matrix P we
ensure that

(5) φ(eke
t
1) = eke

t
1, 1 ≤ k ≤ n.

Consider φ(eje
t) ∈ B(Bn). Then

(φ(eje
t), eke

t
1) = (φ(eje

t), φ(eke
t
1)) = (eje

t, eke
t
1) = δjk,

so the special line of φ(eje
t) contains the (j, 1) position of the matrix.

Therefore this line is either the jth row or the first column. The latter
cannot be true since (φ(eje

t), eke
t
1) = 0 for k �= j. So the special line

of φ(eje
t) is the jth row. Replace φ with S ◦ φ with an appropriate

matrix S with ±1 entries, having entries 1 in the first column; this will
not affect the equalities (5), and we may assume that

(6) φ(eje
t) = eje

t, 1 ≤ j ≤ n.

Replacing eje
t in the previous considerations by At

j1, j ≥ 2, we
conclude that the special lines of φ(At

j1), j ≥ 2, all coincide with the
first row. Since (φ(At

j1), e1e
t) = (φ(At

j1), φ(e1e
t)) = (At

j1, e1e
t) = n−2,

it follows that φ(At
j1) = At

σ(j),1, where σ is a permutation such that
σ(1) = 1. Replacing φ with φP , where P is an appropriate permutation
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matrix fixing e1, we may assume that φ(At
j1) = At

j1, j ≥ 2. Combining
this with (6) and (5), we conclude that

(7) φ(eke
t
j) = eke

t
j , provided k = 1 or j = 1.

Now take anyAkj , k, j ≥ 2. Then (φ(Akj), e1et
s)=(φ(Akj), φ(e1et

s))=
(Akj, e1e

t
s) =δjs, and (φ(Akj), ese

t) = (φ(Akj), φ(ese
t))= (Akj , ese

t) =
(−1)δks . These equalities imply that the jth column is the special line
of φ(Akj) and, moreover, that φ(Akj) = Akj for k, j ≥ 2. Together
with (7) this means that φ is the identity mapping.

Remark 1. There are other preservers of B2, namely, any orthogonal
transformation on M2(R) mapping the set {E11±E22, E12±E21} into
B2 is admissible. Such a collection of transformations will form a group
isomorphic to B4. Note that group B2 coincides with I2(4), a particular
case of the groups I2(n) considered in Section 6.

Remark 2. For n > 2, group L(Bn) differs from RE(Bn). Actually,
one can show that L(Bn) is not contained even in the normalizer of
RE(Bn) as follows. Consider the transformation ψ in L(Bn) so that
ψ(A) is obtained from A by multiplying its (1,1) entry by −1. Let P be
the permutation matrix obtained from In by interchanging the first two
rows, and let φP (A) = PA for all A ∈ Mn(R). Then φP ∈ RE(Bn).
Observe, however, that the matrix E of all ones has rank one, while
(ψ−1φPψ)(E) has rank 2, if n ≥ 3. Thus the mapping ψ−1φPψ does
not preserve ranks and therefore cannot lie in RE(Bn). Consequently,
ψ is not an element of the normalizer of RE(Bn).

5. Groups Dn.

Matrix realization. The group Dn consists of 2n−1n! signed permu-
tation matrices in Mn(R) with even numbers of −1s. One can easily
prove that D2 and D3 coincide, respectively, with S2 ×S2 (where S2 is
the two-element group) and A3. So it is a standard convention, which
we follow, to consider Dn only for n ≥ 4.

Possible inner products. Let X ∈ Dn, X �= I. Then (I,X) ∈
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{0,±1, . . . ,±(n− 2)}. The equality (I,X) = n− 2 holds if and only if
X = I − (ei ± ej)(ei ± ej)t for some 1 ≤ i < j ≤ n.

Birkhoff tensors. Let w1 = (n − 2)e1 = (n − 2, 0, . . . , 0)t, w2 = e =
(1, . . . , 1)t, w3 = e− 2en = (1, . . . , 1,−1)t. Let S1 be the collection of
rank one matrices of the form Pw2w

t
3Q with P,Q ∈ Dn. Furthermore,

let
St

i = {At : A ∈ Si} for i = 1, 2, 3.

Then we have

(n− 2)B(Dn) = S1 ∪ St
1 ∪ S2 ∪ St

2 ∪ S3 ∪ St
3.

Normalizers. To facilitate our study of Dn, we need a description of
its normalizer in O(n). First, recall that (see [2, 8]) F4 is generated by
the group B4 and the reflection

(8) R = 1/2




1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1


 = I − (1/2)eet.

The normalizer of F4 in O(4) is the group N(F4) generated by B4 and
the operator

(9) B =
1√
2

([
1 1
1 −1

]
⊕

[
1 1
1 −1

])
.

To see that this is indeed the case, note that the normalizer of F4 in
O(4) is a compact overgroup of F4. By [8], the only compact overgroups
of F4 are N(F4) and O(4). One can easily verify that B belongs to the
normalizer of F4, so N(F4) is in the normalizer of F4 and that O(4) is
not the normalizer of F4.

Lemma 5.1. If n > 4, the normalizer N(Dn) of Dn in O(n) is Bn.
The normalizer N(D4) of D4 in O(4) is F4.

Proof. Clearly the normalizer N(Dn) of Dn in O(n) is a compact
group. One easily checks that N(Dn) contains Bn. By the results in



240 C.-K. LI, I. SPITKOVSKY AND N. ZOBIN

[8], if n �= 4, then the only compact overgroup of Bn is O(n). Since
O(n) is not the normalizer, this implies N(Dn) = Bn.

If n = 4, then one can easily check that R ∈ N(D4), and therefore
F4 ⊂ N(D4). On the other hand, N(F4) �⊆ N(D4) since B /∈ N(D4).
It is known [8] that the only compact overgroups of F4 are N(F4) and
O(4). Thus N(D4) = F4.

Let P,Q belong to the normalizer N(G) of G in the orthogonal group
O(V ) and PQ ∈ G so X �→ PXQ and X �→ PX∗Q are transformations
from RE(G). Since G is a normal subgroup in N(G), then we may
consider the factor group N(G)/G. Let X̃ denote the coset of X ∈ G
in N(G)/G. Then the condition PQ ∈ G can be rewritten as P̃ Q̃ = Ĩ,
i.e., P̃−1 = Q̃.

Let us find out what pairs P,Q ∈ N(Dn) satisfy PQ ∈ Dn.

Lemma 5.2. Let P,Q ∈ Bn, n > 4. Then PQ ∈ Dn if and only if
P,Q ∈ Dn or P,Q ∈ Bn \ Dn.

Proof. The group Bn is generated by Dn and one reflection T =
I − 2en ⊗ en, T 2 = I, T ∈ N(Dn). Then each operator W ∈ Bn \ Dn

can be written as W = Tg = hT , where g, h ∈ Dn. Therefore, for any
P,Q ∈ Bn \Dn, we always have PQ ∈ Dn. If only one of P,Q belongs
to Bn \ Dn, then PQ /∈ Dn. If both P and Q belong to Dn, then
obviously PQ ∈ Dn.

According to the definition, the group F4 is generated by B4 and the
reflection R = I − (1/2)e ⊗ e given by (8), or, in other terms, by D4

and two reflections: T = I − 2e4 ⊗ e4 and R. Therefore, the factor
group F4/D4 is generated by two elements: T̃ and R̃. Let us calcu-
late the group F4/D4. Let H denote the subgroup in F4 generated
by the two reflections T,R. Since the angle between e4 and e is π/3,
then H is naturally isomorphic to A2, so it consists of six operators:
I, R, T,RT, TR,RTR(= TRT ), four of which (I, R, T,RTR) are invo-
lutions and the other two (RT, TR) are not. Since T ∈ B4 \ D4 and
R ∈ F4\B4, then H∩D4 = {I}, H∩B4 = {I, T}. Therefore, F4/D4 is
naturally isomorphic to H. These considerations lead to the following
result.
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Lemma 5.3. Let P,Q belong to F4. Then PQ ∈ D4, i.e., P̃ Q̃ = Ĩ,
if and only if one of the following holds:

(i) P̃ = Q̃ ∈ {Ĩ , T̃ , R̃, R̃TR}, i.e., P̃ = Q̃ is an involution,

(ii) {P̃ , Q̃} = {T̃R, R̃T}.

Note that T (w2) = w3, T (w3) = w2 and T (w1) = w1. Also, for n = 4,
note that Rw1 = −w3, Rw2 = −w2, and since −I ∈ D4, we conclude
that w1 and w3 can be transformed one into another by an operator
−R from F4 \D4, which fixes w2. Therefore, the group F4 transitively
acts on the set OrbD4w1 ∪ OrbD4w2 ∪ OrbD4w3. This, together with
Lemmas 5.2 and 5.3, implies the following result.

Lemma 5.4. The action of the group RE(Dn) on the set B(Dn) is
transitive. In particular,

(a) if P,Q ∈ Dn, then PSiQ = Si, PSt
iQ = St

i for i = 1, 2, 3.

(b) If P,Q ∈ Bn \Dn, then PQ ∈ Dn and PS1Q = S2, PS2Q = S1,
PS3Q = St

3, PSt
1Q = St

2, PSt
2Q = St

1, PSt
3Q = S3.

(c) if n = 4, then for P,Q ∈ R̃ we have PS1Q = S3, PS2Q = St
2,

PS3Q = St
1, PSt

1Q = S3, PSt
2Q = S2, PSt

3Q = S1.

Proof. Direct verification.

Theorem 5.5. Let n ≥ 4. Then

L(Dn) = L(B(Dn)) = RE(Dn).

In other words, the following conditions are equivalent for a linear
transformation φ of Mn(R).

(a) φ(Dn) = Dn.

(b) φ(B(Dn)) = B(Dn), equivalently φ(envDn) = envDn.

(c) There exist P,Q belonging to Bn, if n ≥ 5, or to F4, if n = 4,
satisfying PQ ∈ Dn such that φ is of the form

A �−→ PAQ or A �−→ PAtQ.
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Proof. The implication (c) ⇒ (a) follows from Lemma 1.1. The
implication (c) ⇒ (b) follows from Lemma 5.4 and the fact that B(Dn)
is invariant under the transposition.

(a) ⇒ (c). Let φ belong to L(Dn). Then φ preserves the inner
product on Mn(R). Also we may assume that φ(I) = I. With this
assumption we show that there exists P ∈ Bn, or P ∈ F4 when n = 4,
such that φ is of the form A �→ P tAP or A �→ P tAtP .

Let R1 consist of the matrices Fij = I − (ei − ej)(ei − ej)t for
1 ≤ i < j ≤ n, and R′

1 consist of the matrices F ′
ij = I−(ei+ej)(ei+ej)t

for 1 ≤ i < j ≤ n.

Claim 1. {X ∈ Dn : (I,X) = n− 2} = R1 ∪ R′
1.

Thus, φ(R1 ∪R′
1) = R1 ∪R′

1.

We may assume that φ(F12) = F12; otherwise, replace φ by a mapping
of the form A �→ P t

1φ(A)P1 for a suitable P1 ∈ Bn.

Claim 2. X ∈ R1 ∪ R′
1 satisfies (F12, X) = n − 3 if and only if

X = Fij or F ′
ij with

(i) i = 1 and 3 ≤ j ≤ n, or

(ii) i = 2 and 3 ≤ j ≤ n.

So φ(F13) equals either Fij or F ′
ij with i, j as in (i) or (ii). In case (i),

replace φ by a mapping A �→ P t
2φ(A)P2, where P2 is an appropriately

signed (3, j) transposition, to fix F13. A (1, 2) transposition P3 can be
used to reduce case (ii) to case (i). Note that the property φ(F12) = F12

is preserved under these changes. Thus we may assume that φ(F1j) =
F1j simultaneously for j = 2 and j = 3.

Now consider F1j for j = 4, . . . , n. Due to the orthogonality of φ,
Xj = φ(F1j) is such that (F12, Xj) = (F13, Xj) = n− 3.

Claim 3. {X ∈ R1 ∪ R′
1 : (F12, X) = (F13, X) = n − 3} =

{F1,s, F
′
1,s : s = 4, . . . , n}.
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Thus Xj = F1,sj
or Xj = F ′

1,sj
for some sj ∈ {4, . . . , n}. But

then, similarly to case (i) for j = 3 above, the transformation φ can
be replaced by A �→ P t

jφ(A)Pj, where Pj is a suitable signed (j, sj)
transposition, in such a way that F1j becomes a fixed point of φ.
Since these replacements do not change the values φ(F1k) for k < j,
implementing them consequently we achieve the property

(10) φ(Fij) = Fij ; j = i+ 1, . . . , n

for i = 1.

Denote by Bijk the n×n permutation matrices corresponding to the
3-cycles (ijk). Let R2(⊂ Dn) stand for the set of all such matrices,
and consider X = φ(Bijk). Due to (10),

(11) (Fij , X) = (Fik, X) = n− 2

for i = 1.

Claim 4. For j �= k distinct form 1,

{X ∈ Dn : (I,X) = n− 3, (F1j , X) = (F1k, X) = n− 2}
= {B1jk, B1kj}.

We may assume that

(12) φ(B123) = B123;

otherwise, replace φ by a mapping of the form A �→ φ(A)t. For
k > 3, the scalar product (B123, B12k) = n − 3 is different from
(B123, B1k2) = n − 4. Thus, condition (12) automatically implies that
φ(B12k) = B12k, k = 3, . . . , n. Observe now that (B12k, B1jk) = n− 3,
(B12k, B1kj) = n − 4 for j, k �= 2. Hence, φ(B1jk) must be different
from B1kj . The only remaining option is

(13) φ(Bijk) = Bijk; j, k = i+ 1, . . . , n, j �= k

for i = 1. Note also that all the matrices Fij are symmetric so that
property (10) for i = 1 still holds.
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We now return to matrices Fij with arbitrary i.

Claim 5. For i �= j and distinct form 1,

{X ∈ R1 ∪ R′
1 : (F1i, X) = (F1j , X) = n−3, (B1ij , X) = n−2}

= {Fij}.

Applying Claim 5 to φ(F2j) = X, we conclude that (10) holds for all
i. But then (11) along with

(B1jk, Bijk) = n− 3 �= (B1jk, Bikj) = n− 4,

for 1, i, j, k being mutually distinct, show that (13) holds for all admis-
sible i. In other words,

(14) φ(X) = X for all X ∈ R1 ∪ R2.

Since φ(R1∪R′
1) = R1∪R′

1, we conclude from (14) that, in particular,
φ(R′

1) = R′
1. Observe that

(F ′
ij , Fpq) =

{
n− 4 if {p, q} ∩ {i, j} = ∅ or {p, q} = {i, j},
n− 3 otherwise.

If n > 4, then for any two different pairs {i, j} and {i′, j′} it is possible
to find {p, q} disjoint with {i, j} and having exactly one common
element with {i′, j′}. Since φ preserves inner product and elements
of R1, the property φ(R′

1) = R′
1 can be strengthened to

(15) φ(X) = X for all X ∈ R′
1.

For n = 4, we can at this point derive only a weaker conclusion

φ(F ′
ij) = F ′

ij or φ(F ′
ij) = F ′

i′,j′

with {i′, j′} being a complement of {i, j} to {1, 2, 3, 4}. However, in
this case we have yet another degree of freedom at our disposal, namely,
the replacement of φ by A �→ Rφ(A)R with R given by (8). It is easy
to check that RXR = X for all X ∈ R1 ∪ R2 and RF ′

ijR = F ′
i′,j′ .
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Hence, by using this replacement we can fix one of the elements of R′
1

while keeping (14) valid. Suppose therefore that φ(F ′
12) = F ′

12. Then
of course φ(F ′

34) = F ′
34 as well. To prove (15) in the case n = 4, it

remains to show that

(16) φ(F ′
13) = F ′

13, φ(F ′
14) = F ′

14.

To this end, we introduce the set R′
2 of all signed permutation matrices

B′
ijk corresponding to 3-cycles (ijk) and having −1 in the positions (ij)

and (jk).

Claim 6. R2 ∪ R′
2 = {X ∈ Dn : (I,X) = n− 3}.

Hence, property (14) implies φ(R′
2) = R′

2. Observe now that, for
n = 4, (Fpq, B

′
ijk) = 2 if and only if {p, q} = {i, k}. Hence φ(B′

ijk) is
either B′

ijk itself or B′
isk, where s ∈ {1, 2, 3, 4} is different from i, j, k.

But

(B′
123, F

′
12) = (B′

124, F
′
12) = 2 �= 0 = (B′

134, F
′
12) = (B′

143, F
′
12).

Thus, φ(F ′
12) = F ′

12 implies that φ(B′
123) = B′

123, φ(B
′
124) = B′

124. Now
(16) follows from yet another simple computation showing that

(B′
124, F

′
13) = (B′

123, F
′
14) = 0 �= 2 = (B′

124, F
′
24) = (B′

123, F
′
23).

So, both for n = 4 and n > 4 we may suppose that (15) holds along
with (14). Since the set R1 ∪ R′

1 ∪ R2 spans Mn(R), the only linear
transformation φ satisfying (14) and (15) is the identity transformation.

Next we turn to (b) ⇒ (c). Let wj ,Sj and St
j , j = 1, 2, 3, be defined

as before.

First we show that, probably after some modifications, replacing φ
by the mapping

(17) A �−→ Pφ(A)Q or A �−→ XPφ(A)tQ,

P,Q in the normalizer of Dn, PQ ∈ Dn, we may suppose that

(18) φ(S3 ∪ S′
3) = S3 ∪ S′

3,
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and

(19) φ(A1) = A1, where A1 = w1w
t
2.

If n > 4, property (18) holds, with no modifications of φ needed,
because of the following

Claim 7. S3 ∪ St
3 consists exactly of all A ∈ B(Dn) for which there

exist B ∈ B(Dn) such that

(A,B) =
{

1 if n is odd,
4 if n is even.

Since φ preserves the inner product and leaves B(Dn) invariant, it
therefore must leave S3 ∪ St

3 invariant as well. From (18) we conclude
that also

(20) φ(S1 ∪ S2 ∪ St
1 ∪ St

2) = S1 ∪ S2 ∪ St
1 ∪ St

2.

In particular, X1 = φ(A1) is the matrix of the form Pw1w
t
iQ or

Pwiw
t
1Q for i = 2, 3 and P,Q ∈ Dn. We can then replace φ by a

mapping of the form (17) with P,Q ∈ Bn so that PQ ∈ Dn and the
resulting mapping fixes A1.

If n = 4, property (18) does not necessarily hold for the original
mapping φ, and X1 = φ(A1) can be any element of 2B(D4). However,
if X1 ∈ S1 ∪ S2 ∪ St

1 ∪ St
2, the same reasoning as above can be applied

to achieve (19). Consider the remaining possibility X1 = Pw2w
t
3Q or

X = Pw3w
t
2Q for some P,Q ∈ D4. We may assume that X1 = w3w

t
2

by a suitable modification of φ of the form (17). Now replace φ by
a mapping of the form A �→ Rφ(A)R, with R given by (8). One can
check that the resulting map will send w1w

t
2 to a matrix of the form

Xw1w
t
2Y for some X,Y ∈ D4. Hence we are back to the previous case

and we can further modify φ so that the resulting map will again fix
A1. So, without loss of generality, we may suppose that (19) holds.

We will now make use of

Claim 8. {Y ∈ 2B(D4) : (A1, Y ) = 8} = {Bj = w1(e − 2ej)t : j =
1, . . . , 4}.
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Hence, condition (19) guarantees that φ maps the set {Bj}4
j=1 onto

itself. Replacing φ by X �→ φ(X)P with an appropriate permutation
P , we may achieve the property φ(Bj) = Bj , j = 1, . . . , 4, while still
having (19). But then (18) holds as well, because of

Claim 9. S3 ∪ St
3 = {Y ∈ 2B(D4) : Y ⊥ {A1, B1, B2, B3, B4}}.

So, both for n = 4 and for n > 4, we may achieve (18) and (19).

Since (20) holds along with (18), the mapping φ satisfying this
property is a B(Bn) preserver. Due to Theorem 4.1, it has the form
(2). In the next step of the proof we show that the Schur multiplier
S in this representation can be eliminated. It suffices to consider the
case of the first formula in (2); the second one can then be covered by
passing from φ to φt.

We use the standard notation X[ij] for the 2×2 block
[

xii xij

xji xjj

]
of an

n×n matrix X. Suppose that the rank of S is at least two. Then there
exist i, j such that detS[i, j] �= 0. But then det (S ◦ (w2w

t
3)[ij]) �= 0,

that is, the rank of the matrix S ◦ (w2w
t
3) is also at least two. Since

S ◦ (w2w
t
3) is in the image of S3 ∪ St

3 under the mapping (2), this
is a contradiction with (18). Hence, S is a rank one matrix, that is,
S = uvt, where u = (u1, . . . , un)t, v = (v1, . . . , vn)t and uj , vj = ±1
for j = 1, . . . , n. It remains to observe that (uvt) ◦ (PZQ) = P1ZQ1,
where

P1 = diag [u1, . . . , un]P, Q1 = Q diag [v1, . . . , vn] ∈ Bn.

The last step is to show that P1Q1 ∈ Dn. To this end, recall property
(19) according to which P1A1Q1 = A1. This is only possible if the signs
of all nonzero entries of Q1 are the same. Without loss of generality,
changing the sign of both P1 and Q1 if necessary, we may suppose that
Q1 is a permutation matrix. Consider then P1w2w

t
3Q1. This matrix

lies in S3 ∪ St
3 due to (18). But this is only possible if P1 ∈ Dn. Then

P1Q1 ∈ Dn as well.

6. Groups I2(n).

Matrix realization. Group I2(n) is the dihedral group, i.e., the group
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of symmetries of a regular n-side convex polygon. So we always suppose
that n ≥ 3. Assuming that a vertex of this n-side convex polygon is on
the positive x-semi-axis, we arrive to the following matrix realization.

Let

Rn =
(

cos(2π/n) sin(2π/n)
− sin(2π/n) cos(2π/n)

)
, D =

(
1 0
0 −1

)
.

Then I2(n) = Rotn ∪Refln, where

Rotn = {Rk
n : 0 ≤ k < n}

is the set of rotations in I2(n) and

Refln = {DX : X ∈ Rotn} = {Rk
2nDR−k

2n : 0 ≤ k < n}

is the set of reflections in I2(n).

Birkhoff tensors. Let w1 = (1, 0)t, w2 = (cosπ/n, sinπ/n)t. Then

(cos(π/n))B(I2(n)) = {Pw1w
t
2Q,Qw2w

t
1P : P,Q ∈ I2(n)}.

Possible inner products. Let X ∈ I2(n), X �= I. Then

(I,X) ∈
{
2 cos

2kπ
n

: k = 1, . . . , n− 1
}
.

Normalizers.

Lemma 6.1. The normalizer N(I2(n)) of I2(n) in O(2) coincides
with I2(2n).

Proof. Rot2n and D are obviously in N(I2(n)), the reflection D and
rotations from Rot2n generate the whole I2(2n), so I2(2n) ⊂ N(I2(n)).
Every operator from O(V ) is either a rotation R or a reflection DR. If
a rotation R is in N(I2(n)), then RDR∗ ∈ I2(n), therefore R ∈ Rot2n.
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If a reflection DR is in N(I2(n)), then (DR)∗D(DR) ∈ I2(n), therefore
R ∈ I2(2n). So N(I2(n)) = I2(2n).

Linear preservers.

Theorem 6.2. Let n ≥ 3. Then

L(I2(n)) = L(B(I2(n))) = RE(I2(n)).

In other words, the following conditions are equivalent for a linear
transformation φ of M2(R):

(a) φ(I2(n)) = I2(n).

(b) φ(B(I2(n))) = B(I2(n)).

(c) There exist P,Q ∈ I2(2n) satisfying PQ ∈ I2(n) such that φ is of
the form

A �−→ PAQ or A �−→ PAtQ.

Proof. By (1), (a) and (b) are equivalent. Clearly, (c) implies (a). It
remains to prove that (a) implies (c).

By Lemma 2.1, if φ(I2(n)) = I2(n), then φ preserves the inner
product on M2(R). We may assume that φ(I) = I.

Claim 1. {X ∈ I2(n) : (I,X) = 2 cos(2π/n)} = {Rn, R
t
n}.

We may assume that φ(Rn) = Rn; otherwise, replace φ by the
mapping A �→ φ(A)t. It follows from Claim 1 that X ∈ I2(n) satisfies
(Rn, X) = (Rn, R

2
n) if and only if X = R2

n or X = I. Since φ(I) = I,
φ(Rn) = Rn, then φ(R2

n) = R2
n. Similarly, we get that φ fixes the whole

set Rotn. Therefore, φ(Refln) = Refln.

The transformations X �→ RXRt for R ∈ Rot2n fix every element of
Rotn, so we may assume that φ(D) = D. Applying Claim 1 once again,
we observe that X ∈ Refln satisfies (D,X) = (D,DRn) if and only if
X = DRn or X = DRn−1

n . Invoking the transformation X �→ RnXRt
n

if necessary, we may assume that φ(DRn) = DRn.

Now, using the fact that (I,X) = (I, φ(X)) and (Rn, X) = (Rn, φ(X))
for each X ∈ I2(n), we see that the modified φ satisfies φ(X) = X for
all X ∈ I2(n). The result follows.
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7. Final remarks. It would be interesting to figure out the structure
of L(G) for exceptional finite irreducible Coxeter groups. The cases
G = F4 and H3 can be handled by methods similar to those used
in this paper. The case G = H4 has some complication, namely, its
Coxeter graph is nonbranching, but it has not yet been proven (though
it seems very probable) that ExtrGo = B(G).

The cases of the other three exceptional groups with branching
graphs, G = E6,E7 and E8, seem to be much more difficult. In
these cases ExtrGo �= B(G), and it is possible that L(G) differs from
L(B(G)). It is very unlikely that the group RE(G) acts transitively on
B(G) in these cases.

Our proofs in this paper are rather computational. It would be nice
to find a unified approach.

8. Note added in proof. Very recently, it was shown that
L(G) = RE(G) for all the exceptional irreducible finite reflection
groups: F4,H3,H4,E6,E7,E8; see C.-K. Li and T. Milligan, Linear
preservers of finite reflection groups, Linear and Multilinear Algebra
51 (2003), 49 82.
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