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WEAK SYMMETRY IN NATURALLY REDUCTIVE
HOMOGENEOUS NILMANIFOLDS

JORGE LAURET

ABSTRACT. We prove that within the class of naturally
reductive homogeneous nilmanifolds, the notions of weak sym-
metry, i.e., any two points can be interchanged by an isometry,
and commutativity, i.e., isometry invariant differential opera-
tors commute, are equivalent.

A connected Riemannian manifold M is said to be weakly symmetric
if for any two points p, q ∈ M there exists an isometry of M mapping
p to q and q to p. These spaces were introduced by Selberg in the
framework of his development of the trace formula, see [12], where it is
proved that in a weakly symmetric space M , the algebra of all invariant
(with respect to the full isometry group I(M)) differential operators on
M is commutative, that is, M is a commutative space. Selberg asks
in [12] whether the converse holds. The answer is negative, the known
counterexamples arise in certain homogeneous nilmanifolds, so-called
H-type groups, see [8, 9]. On the other hand, it has been proved by
Akhiezer and Vinberg [1] that, for homogeneous spaces of reductive
algebraic groups, the answer is affirmative.

In such a way, a natural question takes place: under what extra con-
ditions on the homogeneous Riemannian manifold M , the weak sym-
metry is necessary for the commutativity of I(M)-invariant differential
operators?

With such a question in mind, the first observation we make is
that none of the counterexamples found is naturally reductive. A
Riemannian manifold M is said to be naturally reductive, if there exists
a transitive Lie group G of isometries with isotropy subgroup K at
p ∈ M , and an Ad (K)-invariant vector subspace m of g complementary
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to l, such that all the geodesics emanating from p are of the form
exp(tx).p for some x ∈ m, where g and l denote the Lie algebras of G
and K, respectively, see [5, 7] for definitions and properties of these
and others symmetric-like Riemannian spaces.

In this paper we take advantage of the classification of naturally re-
ductive homogeneous nilmanifolds which are commutative spaces given
in [10, 11], to study via a case-by-case method the weak symmetry
condition on these spaces. We prove that all of them are weakly sym-
metric as well, obtaining that within the class of naturally reductive
homogeneous nilmanifolds, the converse of Selberg’s theorem is valid.

We note that the commutativity of a space is actually defined consid-
ering invariance with respect to the connected component I(M)0 of the
full isometry group I(M) instead of I(M) itself. As far as we know, the
equivalence of these two notions is still an open problem. However in
the class of homogeneous nilmanifolds, both notions coincide, see [3].

A homogeneous nilmanifold is a real nilpotent Lie group N endowed
with a left-invariant Riemannian metric, denoted by (N, 〈·, ·〉), where
〈·, ·〉 is the inner product on the Lie algebra n of N determined by the
metric. If we assume that N is simply connected, then the full group
of isometries of (N, 〈·, ·〉) is given by

(1) I(N, 〈·, ·〉) = K � N (semi-direct product),

where K = Aut (n)∩O(n, 〈·, ·〉) is the isotropy subgroup of the identity
and N acts on itself by left translations, see [13].

Theorem 1 [2, 6]. Let (N, 〈·, ·〉) be a homogeneous nilmanifold sat-
isfying any of the following symmetric-like conditions: weak symmetry,
commutativity or natural reductivity. Then N must be two-step nilpo-
tent or abelian.

In [10], it has been proved that any naturally reductive homoge-
neous nilmanifold can be constructed as follows. Consider a data set
(g, V, 〈·, ·〉), where

(i) g is a compact Lie algebra, i.e., g = [g, g]⊕ c where c is the center
of g and [g, g] is a compact semi-simple Lie algebra,

(ii) (π, V ) is a real faithful representation of g without trivial sub-
representations, i.e., ∩x∈gKerπ(x) = 0,
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(iii) 〈·, ·〉 is an inner product (positive definite) on n = g⊕V satisfying
that 〈·, ·〉g := 〈·, ·〉|g×g is ad g-invariant, 〈·, ·〉V := 〈·, ·〉|V ×V is π(g)-
invariant and 〈g, V 〉 = 0.

Such a data set determines a two-step nilpotent Lie group denoted
by N(g, V ) having Lie algebra n = g ⊕ V , with Lie bracket defined by

(2)
{

[g, g]n = [g, V ]n = 0 [V, V ]n ⊂ g,
〈[v, w]n, x〉g = 〈π(x)v, w〉V ∀x ∈ g, v, w ∈ V .

Finally we endow N(g, V ) with the left-invariant metric determined by
〈·, ·〉.

Note that [n, n]n = g is the center of n. The construction of the group
N(g, V ) does not depend on the chosen g-invariant inner product 〈 , 〉,
up to Lie group isomorphism.

Theorem 2 [10]. A simply connected homogeneous nilmanifold
without Euclidean factor is naturally reductive if and only if it is
isometric to a space N(g, V ) for some data set (g, V 〈 , 〉) satisfying
conditions (i), (ii) and (iii) above.

We shall now describe the isotropy subgroup K of the isometry group
of N(g, V ). It is easy to prove that

(3)

K = {(φ, T ) ∈ O(g, 〈·, ·〉)× O(V, 〈·, ·〉) : Tπ(x)T−1 = π(φx), x ∈ g}.
This implies that G× U ⊂ K, where U = Endg(V ) ∩O(V, 〈·, ·〉) is the
group of orthogonal intertwining operators of V and G is any Lie group
with Lie algebra [g, g]. The group U acts trivially on g and each g ∈ G
acts on n = g ⊕ V by (Ad (g), π(g)), where we also denote by π the
corresponding representation of G on V . Moreover, it is proved in [10]
that the connected component of the identity of K is given by

K0 = G× U0,

where G = G/Kerπ and G is the simply connected Lie group with Lie
algebra [g, g].

The notion of commutativity in the class of naturally reductive
homogeneous nilmanifolds has been studied in [11], where the following
classification was obtained.
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Theorem 3 [11]. The two-step nilpotent Lie groups N(g, V ) which
are commutative spaces are

(i) N(su(2), (C2)n), n ≥ 1, Heisenberg-type, where (C2)n denotes
the direct sum of n copies of the standard representation C2 of su(2)
regarded as a real representation.

(ii) N(su(2),R3⊕ (C2)n), n ≥ 0, where R3 is the standard represen-
tation of so(3) = su(2).

(iii) N(su(2)⊕su(2), (C2)k1⊕R4⊕(C2)k2), k1, k2 ≥ 0, where the first
copy of su(2) acts only on (C2)k1 and the second one only on (C2)k2

and R4 denotes the standard representation of so(4) = su(2)⊕ su(2).

(iv) N(sp(2), (C4)k), k ≥ 1, where C4 denotes the standard repre-
sentation of sp(2).

(v) N(su(n),Cn), n ≥ 3.

(vi) N(so(n),Rn), n ≥ 5, free two-step nilpotent.

(vii) N(R,Ck), k ≥ 1, Heisenberg groups.

(viii) N(u(2), (C2)k ⊕ (C2)n), k ≥ 1, n ≥ 0, where the center of u(2)
acts nontrivially only on (C2)k.

(ix) N(u(n),Cn), n ≥ 3.

(x) N(su(m1) ⊕ · · · ⊕ su(mr) ⊕ c, V1 ⊕ · · · ⊕ Vr) with the following
actions: su(mi) acts trivially on Vj for all i �= j and dim ci = 1 where
ci denotes the maximal subspaces of the center c acting nontrivially on
Vi. Moreover, if mi = 2, then Vi = (C2)ki ⊕ (C2)ni as in (ii), and if
mi ≥ 3, then Vi = Cmi .

(xi) A direct product of some of the spaces given above.

The weakly symmetric homogeneous nilmanifolds are characterized
as follows.

Theorem 4 [8]. (N, 〈·, ·〉) is a weakly symmetric space if and only if,
for any x ∈ n, there exists ϕ ∈ K such that ϕx = −x where K denotes
the isotropy subgroup of the isometry group of (N, 〈·, ·〉).

We shall prove now the main result of this paper.
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Theorem 5. All the commutative spaces listed in Theorem 3 are
weakly symmetric as well. Consequently, in the class of naturally
reductive homogeneous nilmanifolds, see Theorem 2, the notions of
commutativity and weak symmetry coincide.

Proof. To prove the weak symmetry of most of the commutative
spaces in Theorem 3, excluding cases (iv) and (viii), we will make use
of the following sufficient condition

(C) for each x ∈ g there exists φ ∈ K such that φx = −x and φ leaves
invariant a decomposition V = V1 ⊕ · · · ⊕ Vr for which the stabilizer
subgroup

Kx = {ϕ ∈ K : ϕx = x}
acts transitively on the product S1 × · · · × Sr, where Si denotes any
sphere of Vi.

Indeed, if condition (C) holds, we decompose each v ∈ V as v =
v1 + · · ·+ vr with vi ∈ Vi and thus kφ(x, v) = (−x,−v), where k ∈ Kx

satisfy kφvi = −vi, i = 1, . . . , r. The weak symmetry thus follows from
Theorem 4.

In what follows we shall prove the weak symmetry of the commutative
spaces listed in Theorem 3 by analyzing the different cases. Note that,
for any x ∈ g we always have CG(x) × U ⊂ Kx where CG(x) denotes
the centralizer of x in G.

Case (i), (vii). We note that the weak symmetry of these spaces
has already been proved in [4], in the context of Heisenberg-type Lie
groups.

Case (v). For x ∈ su(n), let β be a basis of Cn such that in terms of
β,

x =



ia1

...
ian


 , ai ∈ R.

Consider φ : su(n) → su(n) the outer automorphism of su(n) given
by φ(A) = A = −At, where each A ∈ su(n) is written in terms
of the basis β. We extend φ to n = su(n) ⊕ Cn defining φ|Cn

by φ(c1, . . . , cn) = (c1, . . . , cn). Using (3), it is easy to see that
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φ ∈ K. In view of the above paragraph, since φ leaves invariant the
decomposition V = C ⊕ · · · ⊕ C and the group of diagonal unitary
matrices U(1) × · · · × U(1) ⊂ Kx acts transitively on the product of
spheres S1 × · · · × S1, we obtain that condition (C) holds and thus
N(su(n),Cn) is a weakly symmetric space.

Case (ii). If

x =
[
ia

−ia
]
∈ su(2), a ∈ R,

we consider the same φ as that in the above case and such that the
extension on R3 is given by

φ|R3 =


 0 1 0

1 0 0
0 0 −1


 ,

where R3 = R2 ⊕ R is the eigenspace decomposition of π(x)|R3 .
We then have the decomposition V = R2 ⊕ R ⊕ (C2)n, where the
subgroup U(1)× Sp (n) ⊂ Kn acts transitive on the product of spheres
S1 × S4n−1. We may prove case (i), respectively (vii), in the same
way with V = (C2)n and Sp (n) ⊂ Kx, respectively V = Cn and
U(n) ⊂ Kx.

Case (iii). If the element

x =




0 −a
a 0

0 −b
b 0


 =

([
ia 0
0 −ia

]
,

[
ib 0
0 −ib

])

∈ so(4) = su(2)⊕ su(2),

for some a, b ∈ R, then the complex conjugation map φ considered in
the above cases coincides with Ad (T ) where

T =




0 1
1 0

0 1
1 0


 .



WEAK SYMMETRY IN NILMANIFOLDS 221

Thus the extension of φ to an element of K is given on V by conjugation
on the copies of C2 and on R4 by φ|R4 = T . The decomposition in
condition (C) is given by V = (C2)k1 ⊕R2 ⊕R2 ⊕ (C2)k2 and we have
a subgroup Sp (k1)×U(1)×U(1)× Sp (k2) ⊂ Kx acting transitively on
the corresponding product of spheres.

Case (vi). The weak symmetry of this space has been already proved
in [14]. With respect to a suitable basis we write

x =




0 −a1

a1 0
...

0 −ak

ak 0
0



∈ so(n), ai ∈ R,

thus we may consider φ : so(n) → so(n) given by φ(A) = TAT−1,
extended by φ|Rn = T , where

T =




0 1
1 0

...
0 1
1 0

−1



,

with the last column and row deleted if n is even. Using (3) it is
easy to see that φ ∈ K. Hence φ leaves invariant the decomposition
V = R2⊕· · ·⊕R2 and the subgroup of 2×2 blocks orthogonal matrices
SO (2)× · · · × SO (2) ⊂ Kx acts transitively on the product of spheres
S1 × · · · × S1.

Case (iv). It is convenient to consider the realization of sp(2) as the
2× 2 skew-Hermitian matrices with coefficients in H, the quaternionic
numbers. Thus V = (C4)k can be viewed as the space of matrices
M2×k(H), on which sp(2) and Sp (2) acts by left multiplication and
the group of orthogonal intertwining operators U = Sp (k) acts by
right multiplication. As a generic x ∈ sp(2) we can consider

x =
[
ia

ib

]
, a �= b ∈ R,
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and we can assume that

v =
[

1 0 · · · 0
c1 c2 · · · ck

]
, ci ∈ H,

since Sp (k) acts transitively on the sphere of Hk. If φ =
[

j 0

0 j

]
∈ Sp (2),

then φxφ−1 = −x. Now it is easy to see that there exists α, β ∈ R
such that eiβjc1je

−iα − c1 where eiα = cos(α) + i sin(α). This implies
that [

eiα 0
0 eiβ

]
φvT = −v, Ad (

[
eiα 0
0 eiβ

]
φ)x = −x,

where T =
[

je−iα

T1

]
and T1∈Sp (k−1) satisfies [eiβjc2, . . . , e

jβjck]T1=

[−c2, . . . ,−ck]. It follows from Theorem 4 that N(sp(2), (c4)k) is a
weakly symmetric space.

Case (viii). Let us consider the realization of (C2)k as the space of
matrices M2×k(C), on which u(2) acts by left multiplication and the
group of orthogonal intertwining operators U(k) ⊂ U acts by right
multiplication. With respect to some basis β of C2, a generic x ∈ u(2)
is given by

x =
[
ia

ib

]
, a, b ∈ R,

and we can assume that v ∈ V = M2×k(C)⊕ (C2)n is of the form

v =
([

1 0 · · · 0
c1 c2 · · · ck

]
, v2

)
, ci ∈ C, v2 ∈ (C2)n,

since U(k) acts transitively on the sphere of Ck. Recall that we do not
have to pay attention to v2 since Sp (n) ⊂ U acts transitively on the
sphere of (C2)n. Consider as in case (v), φ : u(2) → u(2) the outer
automorphism of u(2) given by φ(A) = A = −At, where each A ∈ u(2)
is written in terms of the basis β. We also extend φ to an element of
K, making it act by complex conjugation on V . Note that φx = −x.
Now, if we take α ∈ S1 such that α2 = c1/c1 (α = 1 if c1 = 0), then

[
α 0
0 α−1

]
φvT = −v and Ad (

[
α 0
0 α−1

]
)φx = −x,
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where

T =
[−α−1 0

0 T1

]

and T1 ∈ U(k − 1) satisfies [α−1c2, . . . , α
−1ck]T1 = [−c2, . . . ,−ck].

Thus, the weak symmetry of N(u(2), (C2)k ⊕ (C2)n) follows from
Theorem 4.

Case (ix). Idem to Case (v).

Case (x). The proof of this case follows easily from the already proved
weak symmetry of each one of the spaces N(su(mi), Vi).
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Boston, Basel, 1996.

8. J. Lauret, Commutative spaces which are not weakly symmetric, Bull. London
Math. Soc. 30 (1998), 29 36.

9. , Modified H-type groups and symmetric-like Riemannian spaces, Dif-
ferential Geom. Appl. 10 (1999), 121 143.

10. , Homogeneous nilmanifolds attached to representations of compact
Lie groups, Manuscripta Math. 99 (1999), 287 309.

11. , Gelfand pairs attached to representations of compact Lie groups,
Transformation Groups 5 (2000), 307 324.

12. A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric
spaces with applications to Dirichlet series, J. Indian Math. Soc. N.S. 20 (1956),
47 87.



224 J. LAURET

13. E. Wilson, Isometry groups on homogeneous nilmanifolds, Geom. Dedicata
12 (1982), 337 346.

14. W. Ziller, Weakly symmetric spaces, in Topics in geometry: Honoring the
memory of Joseph D’Atri (S. Gindikin, ed.), Birkhäuser-Verlag, Boston, Berlin,
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