A CRITERION FOR LINEAR INDEPENDENCE OF SERIES

JAROSLAV HANČL

Abstract

The paper establishes a criterion for linear independence of infinite series which consist of rational numbers. A criterion for irrationality is obtained as a consequence.

1. Introduction. There are many papers concerning the algebraic independence of infinite series. Among them we can cite Töpfer [14], Loxton and Poorten [11] and Kubota [10]. A nice survey of results of this kind can be found in the book of Nishioka [12].

Other results of this nature include the linear independence of logarithms of special rational numbers which can be found in Sorokin [13] and Bezivin's result in [3] which proves linear independence of roots of special functional equations.

A special case of linear independence is irrationality. In [1] Badea proved the following theorem.

Theorem 1.1. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be two sequences of positive integers such that, for every large n,

$$
a_{n+1}>\frac{b_{n+1}}{b_{n}} a_{n}^{2}-\frac{b_{n+1}}{b_{n}} a_{n}+1
$$

Then the series $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{n}}$ is an irrational number.
This result is improved in [2]. Another criterion of irrationality was proved by Duverney in [6]. In 1992 in [4] Borwein proved that the series $\sum_{n=1}^{\infty} \frac{1}{q^{n}+r}$ is irrational and not Liouville whenever q is an integer $(q \neq 0, \pm 1)$ and r is a nonzero rational number $\left(r \neq q^{n}\right)$. The same author together with Zhou in [5] proved the following theorem.

[^0]Theorem 1.2. Let q be an integer greater than one and r and s any positive rationals such that $1+q^{m} r-q^{2 m} s \neq 0$ for all integers $m \geq 0$. Then the series

$$
\sum_{j=0}^{\infty} \frac{1}{1+q^{j} r-q^{2 j} s}
$$

is irrational and is not a Liouville number.
In 1968 in [8] Erdös and Strauss proved the following two theorems.

Theorem 1.3. Let $\left\{n_{k}\right\}_{k=1}^{\infty}$ be an increasing sequence of positive integers. Assume that

$$
\limsup _{k \rightarrow \infty} \frac{n_{k}^{2}}{n_{k+1}} \leq 1
$$

and

$$
\limsup _{k \rightarrow \infty} \frac{N_{k}}{n_{k+1}}\left(\frac{n_{k+1}^{2}}{n_{k+2}}-1\right) \leq 0
$$

Then $\sum_{k=1}^{\infty} 1 / n_{k}$ is irrational except when $n_{k+1}=n_{k}^{2}-n_{k}+1$ for all $k \geq k_{0}$ where N_{k} is the least common multiple of n_{1}, \ldots, n_{k}.

Theorem 1.4. Let $\left\{a_{n}\right\}_{n=1}^{\infty}, n \geq 1$, be a sequence of positive integers such that

$$
a_{n+1} \geq a_{1} a_{2} \ldots a_{n}
$$

for each n. Furthermore, assume that, for every $C>0$ there is a natural number $n>C$ with the property that

$$
a_{n+1} \neq a_{n}^{2}-a_{n}+1
$$

Then $\sum_{n=1}^{\infty} 1 / a_{n}$ is an irrational number.

Later Erdös in [7] proved

Theorem 1.5. Let $n_{1}<n_{2}<\cdots$ be an infinite sequence of positive integers satisfying

$$
\limsup _{k \rightarrow \infty} n_{k}^{1 / 2^{k}}=\infty
$$

and

$$
n_{k}>k^{1+\varepsilon}
$$

for fixed $\varepsilon>0$ and for every $k>k_{0}(\varepsilon)$. Then

$$
\alpha=\sum_{k=1}^{\infty} \frac{1}{n_{k}}
$$

is irrational.

If the series tends to infinity very fast, then we can define the so-called linearly unrelated sequences.

Definition 1.1. Let $\left\{a_{i, n}\right\}_{n=1}^{\infty}, i=1, \ldots, K$, be the sequences of positive real numbers. If for every sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ of positive integers the numbers $\sum_{n=1}^{\infty} 1 /\left(a_{1, n} c_{n}\right), \sum_{n=1}^{\infty} 1 /\left(a_{2, n} c_{n}\right), \ldots, \sum_{n=1}^{\infty} 1 /\left(a_{K, n} c_{n}\right)$ and 1 are linearly independent, then the sequences $\left\{a_{i, n}\right\}_{n=1}^{\infty}, i=$ $1, \ldots, K$, are linearly unrelated.

This definition can be found in [9] where we also find the following theorem.

Theorem 1.6. Let $\left\{a_{i, n}\right\}_{n=1}^{\infty},\left\{b_{i, n}\right\}_{n=1}^{\infty}, i=1, \ldots, K-1$, be sequences of positive integers, and let $\varepsilon>0$ be a real number such that

$$
\begin{gathered}
\frac{a_{1, n+1}}{a_{1, n}} \geq 2^{K^{n-1}}, a_{1, n} / a_{1, n+1} \quad\left(a_{1, n} \text { divides } a_{1, n+1}\right) \\
b_{i, n}<2^{K^{n-(\sqrt{2}+\varepsilon) \sqrt{n}}}, \quad i=1, \ldots, K-1, \\
\lim _{n \rightarrow \infty} \frac{a_{i, n} b_{j, n}}{b_{i, n} a_{j, n}}=0 \quad \text { for all } j, i \in\{1, \ldots, K-1\}, \quad i>j,
\end{gathered}
$$

and

$$
a_{i, n} 2^{-K^{n-(\sqrt{2}+\varepsilon) \sqrt{n}}}<a_{1, n}<a_{i, n} 2^{K^{n-(\sqrt{2}+\varepsilon) \sqrt{n}}}, \quad i=1, \ldots, K-1
$$

hold for every sufficiently large natural number n. Then the sequences $\left\{\frac{a_{i, n}}{b_{i, n}}\right\}_{n=1}^{\infty}, i=1, \ldots, K-1$, are linearly unrelated.

The main result of this paper is a criterion for linear independence of series of rational numbers and one which is in Section 2. In Section 3 we
give reasons why it is impossible to prove that the relevant sequences are linearly unrelated, and we also give a criterion for a series to be irrational.

2. Main result.

Theorem 2.1. Let K be a positive integer, and let $\alpha, \varepsilon, A_{1}$ and A_{2} be positive real numbers such that $0<\alpha<1,1 \leq A_{1}<A_{2}$. Let $\left\{a_{i, n}\right\}_{n=1}^{\infty}$ and $\left\{b_{i, n}\right\}_{n=1}^{\infty}, i=1, \ldots, K$, be sequences of positive integers such that $\left\{a_{1, n}\right\}_{n=1}^{\infty}$ is nondecreasing and

$$
\begin{gather*}
\limsup _{n \rightarrow \infty} a_{1, n}^{1 /(K+1)^{n}}=A_{2} \tag{1}\\
\liminf _{n \rightarrow \infty} a_{1, n}^{1 /(K+1)^{n}}=A_{1}, \tag{2}\\
a_{1, n} \geq n^{1+\varepsilon} \tag{3}\\
b_{i, n}<2^{\left(\log _{2} a_{1, n}\right)^{\alpha}}, \quad i=1, \ldots, K, \tag{4}\\
\lim _{n \rightarrow \infty} \frac{a_{i, n} b_{j, n}}{b_{i, n} a_{j, n}}=0 \quad \text { for all } j, i \in\{1, \ldots, K\}, \quad i>j \tag{5}
\end{gather*}
$$

and

$$
\begin{equation*}
a_{i, n} 2^{-\left(\log _{2} a_{1, n}\right)^{\alpha}}<a_{1, n}<a_{i, n} 2^{\left(\log _{2} a_{1, n}\right)^{\alpha}}, \quad i=2, \ldots, K \tag{6}
\end{equation*}
$$

hold for every sufficiently large natural number n. Then the series $\sum_{n=1}^{\infty} \frac{b_{1, n}}{a_{1, n}}, \ldots, \sum_{n=1}^{\infty} \frac{b_{K, n}}{a_{K, n}}$ and the number 1 are linearly independent over the rational numbers.

Proof. We start in the usual way. Assume that there is a K-tuple of integers $\beta_{1}, \beta_{2}, \ldots, \beta_{K}$ (not all equal to zero) such that the sum

$$
\begin{equation*}
\beta=\sum_{j=1}^{K} \beta_{j} \sum_{n=1}^{\infty} \frac{b_{j, n}}{a_{j, n} c_{n}} \tag{7}
\end{equation*}
$$

is a rational number. Let R be a maximal index such that $\beta_{R} \neq 0$. This and (7) imply

$$
\begin{align*}
\beta & =\sum_{j=1}^{K} \beta_{j} \sum_{n=1}^{\infty} \frac{b_{j, n}}{a_{j, n} c_{n}}=\sum_{n=1}^{\infty} \sum_{j=1}^{R} \beta_{j} \frac{b_{j, n}}{a_{j, n} c_{n}} \\
& =\sum_{n=1}^{\infty} \frac{b_{R, n}}{a_{R, n} c_{n}}\left(\sum_{j=1}^{R-1} \beta_{j} \frac{b_{j, n} a_{R, n}}{a_{j, n} b_{R, n}}+\beta_{R}\right) \tag{8}
\end{align*}
$$

From this and (5) we obtain that the number

$$
\sum_{j=1}^{R-1} \beta_{j} \frac{b_{j, n} a_{R, n}}{a_{j, n} b_{R, n}}
$$

is sufficiently small. From this and (8) we can assume, without loss of generality, that

$$
\begin{equation*}
\sum_{i=1}^{K} \beta_{i} \frac{b_{i, n}}{a_{i, n}}>0 \tag{9}
\end{equation*}
$$

for every sufficiently large n. Let a and b be integers such that $b>0$ and $\beta=a / b$. Then, from (7) and (9), we obtain that

$$
\begin{aligned}
B_{N} & =\left(a-b \sum_{i=1}^{K} \beta_{i} \sum_{n=1}^{N-1} \frac{b_{i, n}}{a_{i, n}}\right) \prod_{n=1}^{N-1} \prod_{i=1}^{K} a_{i, n} \\
& =b\left(\prod_{n=1}^{N-1} \prod_{i=1}^{K} a_{i, n}\right) \sum_{i=1}^{K} \beta_{i} \sum_{n=N}^{\infty} \frac{b_{i, n}}{a_{i, n}}
\end{aligned}
$$

is a positive integer for every sufficiently large N. This implies that

$$
\begin{equation*}
1 \leq Q_{1}\left(\prod_{n=1}^{N-1} \prod_{i=1}^{K} a_{i, n}\right) \sum_{i=1}^{K} \sum_{n=N}^{\infty} \frac{b_{i, n}}{a_{i, n}} \tag{10}
\end{equation*}
$$

holds for every sufficiently large N, where Q_{1} is a suitable positive real constant, which does not depend on N. From (1) we obtain that, for every sufficiently large n,

$$
\begin{equation*}
a_{1, n}<\left(2 A_{2}\right)^{(K+1)^{n}} \tag{11}
\end{equation*}
$$

Now (4), (6), (10) and (11) imply

$$
\begin{align*}
1 & \leq Q_{1}\left(\prod_{n=1}^{N-1} \prod_{i=1}^{K} a_{i, n}\right) \sum_{i=1}^{K} \sum_{n=N}^{\infty} \frac{b_{i, n}}{a_{i, n}} \\
& \leq Q_{2}\left(\prod_{n=1}^{N-1} \prod_{i=1}^{K} a_{1, n} 2^{\left(\log _{2} a_{1, n}\right)^{\alpha}}\right) \sum_{i=1}^{K} \sum_{n=N}^{\infty} \frac{2^{\left(\log _{2} a_{1, n}\right)^{\alpha}}}{a_{1, n} 2^{-\left(\log _{2} a_{1, n}\right)^{\alpha}}} \\
& \leq Q_{2}\left(\prod_{n=1}^{N-1} a_{1, n}\right)^{K} 2^{K} \sum_{n=1}^{N-1}\left(\log _{2} a_{1, n}\right)^{\alpha} K \sum_{n=N}^{\infty} \frac{2^{2\left(\log _{2} a_{1, n}\right)^{\alpha}}}{a_{1, n}} \\
& \leq Q_{3}\left(\prod_{n=1}^{N-1} a_{1, n}\right)^{K} 2^{K} \sum_{n=1}^{N-1}\left(\log _{2}\left(2 A_{2}\right)^{\left.(K+1)^{n}\right)^{\alpha}} \sum_{n=N}^{\infty} \frac{2^{2\left(\log _{2} a_{1, n}\right)^{\alpha}}}{a_{1, n}}\right. \tag{12}\\
& \leq Q_{3}\left(\prod_{n=1}^{N-1} a_{1, n}\right)^{K} 2^{\log _{2}\left(2 A_{2}\right)(K+1)^{N \alpha}} \sum_{n=N}^{\infty} \frac{2^{2\left(\log _{2} a_{1, n}\right)^{\alpha}}}{a_{1, n}} \\
& \leq\left(\prod_{n=1}^{N-1} a_{1, n}\right)^{K} 2^{(K+1)^{N \gamma}} \sum_{n=N}^{\infty} \frac{2^{\left(\log _{2} a_{1, n}\right)^{\gamma}}}{a_{1, n}},
\end{align*}
$$

where Q_{2}, Q_{3} and γ are suitable positive real constants which do not depend on N and $1>\gamma>\alpha$. Let $S_{n}=a_{1, n}^{1 /(K+1)^{n}}$. Now the proof falls into two cases.

1. First assume that, for every sufficiently large n,

$$
\begin{equation*}
a_{n} \geq 2^{n} \tag{13}
\end{equation*}
$$

Then (13) and the fact that the function $2^{\left(\log _{2} x\right)^{\gamma}} x^{-1}$ is decreasing for sufficiently large x imply

$$
\begin{align*}
\sum_{n=N}^{\infty} \frac{2^{\left(\log _{2} a_{1, n}\right)^{\gamma}}}{a_{1, n}} & =\sum_{n \leq \log _{2} a_{1, N}} \frac{2^{\left(\log _{2} a_{1, n}\right)^{\gamma}}}{a_{1, n}}+\sum_{n>\log _{2} a_{1, n}} \frac{2^{\left(\log _{2} a_{1, N}\right)^{\gamma}}}{a_{1, n}} \tag{14}\\
& \leq \frac{2^{2\left(\log _{2} a_{1, N}\right)^{\gamma}}}{a_{1, N}}+\sum_{n>\log _{2} a_{1, N}} \frac{2^{\left.\log _{2} 2^{n}\right)^{\gamma}}}{2^{n}} \\
& =\frac{2^{2\left(\log _{2} a_{1, N}\right)^{\gamma}}}{a_{1, N}}+\sum_{n>\log _{2} a_{1, N}} \frac{1}{2^{n-n^{\gamma}}} \\
& \leq \frac{2^{2\left(\log _{2} a_{1, N}\right)^{\gamma}}}{a_{1, N}}+C \frac{1}{2^{\log _{2} a_{1, N}-\left(\log _{2} a_{1, N}\right)^{\gamma}}} \leq \frac{2^{\left(\log _{2} a_{1, N}\right)^{\omega}}}{a_{1, N}}
\end{align*}
$$

for sufficiently large N, where ω and C are positive real constants which do not depend on N and such that $1>\omega>\gamma$.

For a sufficiently small positive real number δ, it follows from (1) and (2) that there exists a positive integer s_{0} which is sufficiently large such that for every $n \geq s_{0}$,

$$
\max \left(1, A_{1}-\delta\right)<S_{n}<A_{2}+\delta
$$

This implies that for every $n \geq s_{0}$

$$
\begin{equation*}
\max \left(1,\left(A_{1}-\delta\right)\right)^{(K+1)^{n}}<a_{1, n}<\left(A_{2}+\delta\right)^{(K+1)^{n}} \tag{15}
\end{equation*}
$$

Let s_{1} be the least positive integer greater than $(K+1)^{s_{0}+1}$ such that

$$
\max \left(1, A_{1}-\delta\right)<S_{s_{1}}<A_{1}+\delta
$$

Then

$$
\begin{equation*}
\max \left(1,\left(A_{1}-\delta\right)\right)^{(K+1)^{s_{1}}}<a_{1, s_{1}}<\left(A_{1}+\delta\right)^{(K+1)^{s_{1}}} \tag{16}
\end{equation*}
$$

Let s_{2} be the least positive integer greater than s_{1} such that

$$
\begin{equation*}
A_{2}-\delta<S_{s_{2}}<A_{2}+\delta \tag{17}
\end{equation*}
$$

and s_{3} be the least positive integer greater than s_{1} such that

$$
\begin{equation*}
S_{s_{3}}>\left(1+\left(1 / s_{3}^{2}\right)\right) \max _{s_{1} \leq j<s_{3}}\left(S_{j}, A_{2}-2 \delta\right) \tag{18}
\end{equation*}
$$

and $s_{1}<s_{3} \leq s_{2}$. Such a number s_{3} must exist since otherwise using (17) we obtain

$$
\begin{aligned}
A_{2}-\delta<S_{s_{2}} & <\left(1+\frac{1}{s_{2}^{2}}\right) \max _{s_{1} \leq j<s_{2}}\left(S_{j}, A_{2}-2 \delta\right) \\
& <\left(1+\frac{1}{s_{2}^{2}}\right)\left(1+\frac{1}{\left(s_{2}-1\right)^{2}}\right) \max _{s_{1}<j<s_{2}-1}\left(S_{j}, A_{2}-2 \delta\right)<\cdots \\
& <\prod_{j=s_{1}}^{s_{2}}\left(1+\frac{1}{j^{2}}\right)\left(A_{2}-2 \delta\right)
\end{aligned}
$$

a contradiction for a sufficiently large s_{0}.

From (11), (15), (16), (18) and the fact that δ is a sufficiently small positive number, we obtain
(19)

$$
\begin{aligned}
a_{1, s_{3}}= & S_{s_{3}}^{(K+1)^{s_{3}}}>\left(1+\frac{1}{s_{3}^{2}}\right)^{(K+1)^{s_{3}}}\left(\max _{s_{1} \leq j<s_{3}}\left(S_{j}, A_{2}-2 \delta\right)\right)^{(K+1)^{s_{3}}} \\
\geq & \left(1+\frac{1}{s_{3}^{2}}\right)^{(K+1)^{s_{3}}} \max _{s_{1} \leq j<s_{3}}\left(S_{j}, A_{2}-2 \delta\right)^{K\left((K+1)^{s_{3}-1}+(K+1)^{s_{3}-2}+\cdots+1\right)} \\
\geq & \left(1+\frac{1}{s_{3}^{2}}\right)^{(K+1)^{s_{3}}}\left(\prod_{j=s_{1}+1}^{s_{3}-1} a_{1, j}\right)^{K}\left(A_{2}-2 \delta\right)^{K\left((K+1)^{s_{1}}+(K+1)^{s_{1}-1}+\cdots+1\right)} \\
\geq & \left(1+\frac{1}{s_{3}^{2}}\right)^{(K+1)^{s_{3}}}\left(\prod_{j=1}^{s_{3}-1} a_{1, j}\right)^{K} \\
& \times \prod_{j=s_{0}}^{s_{1}}\left(\frac{\left(A_{2}-2 \delta\right)^{(K+1)^{j}}}{a_{1, j}}\right)^{K} \frac{1}{\left(\prod_{j=1}^{s_{0}-1} a_{1, j}\right)^{K}}
\end{aligned}
$$

$$
\geq\left(1+\frac{1}{s_{3}^{2}}\right)^{(K+1)^{s_{3}}}\left(\prod_{j=1}^{s_{3}-1} a_{1, j}\right)^{K}\left(\frac{A_{2}-2 \delta}{A_{1}+\delta}\right)^{K(K+1)^{s_{1}}}
$$

$$
\times \prod_{j=s_{0}}^{s_{1}-1}\left(\left(\frac{A_{2}-2 \delta}{A_{2}+\delta}\right)^{(K+1)^{j}}\right)^{K} \frac{Q_{4}}{\prod_{j=1}^{s_{0}-1}\left(2 A_{2}\right)^{K(K+1)^{j}}}
$$

$$
\geq\left(1+\frac{1}{s_{3}^{2}}\right)^{(K+1)^{s_{3}}}\left(\prod_{j=1}^{s_{3}-1} a_{1, j}\right)^{K}
$$

$$
\times\left(\prod_{j=s_{0}}^{s_{1}-1}\left(\frac{\left(A_{2}-2 \delta\right)^{2}}{\left(A_{1}+\delta\right)\left(A_{2}+\delta\right)}\right)^{(K+1)^{j}}\right)^{K}\left(3 A_{2}\right)^{-(K+1)^{s_{0}+1}}
$$

$$
\geq\left(1+\frac{1}{s_{3}^{2}}\right)^{(K+1)^{s_{3}}}\left(\prod_{j=1}^{s_{3}-1} a_{1, j}\right)^{K}\left(3 A_{2}\right)^{-s_{3}}
$$

where Q_{4} is a positive real constant which does not depend on s_{0}. Now
from (11), (12), (14) and (19), we obtain

$$
\begin{aligned}
1 & \leq\left(\prod_{n=1}^{s_{3}-1} a_{1, n}\right)^{K} 2^{(K+1)^{\gamma s_{3}}} \sum_{n=s_{3}}^{\infty} \frac{2^{\left(\log _{2} a_{1, n}\right)^{\gamma}}}{a_{1, n}} \\
& \leq\left(\prod_{n=1}^{s_{3}-1} a_{1, n}\right)^{K} 2^{(K+1)^{\gamma s_{3}}} \frac{2^{\left(\log _{2} a_{1, s_{3}}\right)^{\omega}}}{a_{1, s_{3}}} \\
& \leq\left(\prod_{n=1}^{s_{3}-1} a_{1, n}\right)^{K} 2^{(K+1)^{\gamma s_{3}}} \frac{2^{\left(\log _{2}\left(2 A_{2}\right)^{\left.(K+1)^{s_{3}}\right)^{\omega}}\right.}}{\left(1+\left(1 / s_{3}^{2}\right)\right)^{(K+1)^{s_{3}}}\left(\prod_{j=1}^{s_{3}-1} a_{1, j}\right)^{K}\left(3 A_{2}\right)^{-s_{3}}} \\
& =2^{-\left(\log _{2}\left(1+\left(1 / s_{3}^{2}\right)\right)\right)(K+1)^{s_{3}}+(K+1)^{\gamma s_{3}}+\left(\log _{2}\left(2 A_{2}\right)\right)^{\omega}(K+1)^{\omega s_{3}}+\log _{2}\left(3 A_{2}\right) s_{3}}
\end{aligned}
$$

a contradiction for a sufficiently large number s_{3}.
2. Now assume that there exist infinitely many n such that

$$
\begin{equation*}
a_{n}<2^{n} \tag{20}
\end{equation*}
$$

Then (3) and the fact that the function $2^{\left(\log _{2} x\right)^{\gamma}} x^{-1}$ is decreasing for a sufficiently large x imply

$$
\begin{align*}
\sum_{n=N}^{\infty} \frac{2^{\left(\log _{2} a_{1, n}\right)^{\gamma}}}{a_{1, n}} & =\sum_{n<a_{1, N}^{\alpha}} \frac{2^{\left(\log _{2} a_{1, n}\right)^{\gamma}}}{a_{1, n}}+\sum_{n>a_{1, N}^{\alpha}} \frac{2^{\left(\log _{2} a_{1, n}\right)^{\gamma}}}{a_{1, n}} \\
& \leq \frac{2^{\left(\log _{2} a_{1, n}\right)^{\gamma} a_{1, N}^{\alpha}}}{a_{1, N}}+\sum_{n>a_{1, N}^{\alpha}} \frac{2^{\left(\log _{2} n^{1+\varepsilon}\right)^{\gamma}}}{n^{1+\varepsilon}} \tag{21}\\
& \leq a_{1, N}^{\frac{\alpha-1}{2}}+\sum_{n>a_{1, N}^{\alpha}} \frac{1}{n^{1+\varepsilon / 2}} \\
& \leq a_{1, N}^{\frac{\alpha-1}{2}}+\frac{1}{\left(a_{1, N}^{\alpha}\right)^{\varepsilon / 3}} \leq a_{1, N}^{-B}
\end{align*}
$$

for a sufficiently large N, where B is a suitable positive real constant, which does not depend on N. On the other hand, let $A=\left(1+A_{2}\right) / 2=$ $\left(A_{1}+A_{2}\right) / 2$. From this and (1) we obtain that there is a sufficiently large k such that

$$
\begin{equation*}
a_{1, k}>A^{(K+1)^{k}} \tag{22}
\end{equation*}
$$

Let k_{0} be a greatest positive integer less than k such that (20) holds. Let k_{1} be a least positive integer such that

$$
\begin{equation*}
S_{k_{1}}>\left(1+\frac{1}{k_{1}^{2}}\right) \max _{k_{0} \leq j<k_{1}} S_{j} \tag{23}
\end{equation*}
$$

and $k_{0}<k_{1} \leq k$. As in the previous case such a k_{1} must exist, since, otherwise,

$$
\begin{aligned}
1 & <A \leq S_{k}<\left(1+\frac{1}{k_{1}^{2}}\right) \max _{k_{0} \leq j<k_{1}} S_{j} \\
& <\left(1+\frac{1}{k_{1}^{2}}\right)\left(1+\frac{1}{\left(k_{1}-1\right)^{2}}\right) \max _{k_{0} \leq j<k_{1}-1} S_{j} \\
& <\cdots<\prod_{j=k_{1}}^{k}\left(1+\frac{1}{j^{2}}\right) S_{k_{0}}
\end{aligned}
$$

a contradiction for a sufficiently large number k_{0}. From (23) and the fact that the sequence $\left\{a_{1, n}\right\}_{n=1}^{\infty}$ is nondecreasing we obtain

$$
\begin{align*}
a_{1, k_{1}} & =S_{k_{1}}^{(K+1)^{k_{1}}}>\left(1+\frac{1}{k_{1}^{2}}\right)^{(K+1)^{k_{1}}}\left(\max _{k_{0} \leq j<k_{1}} S_{j}\right)^{(K+1)^{k_{1}}} \tag{24}\\
& \geq\left(1+\frac{1}{k_{1}^{2}}\right)^{(K+1)^{k_{1}}}\left(\max _{k_{0} \leq j<k_{1}} S_{j}\right)^{K\left((K+1)^{k_{1}-1}+(K+1)^{k_{1}-2}+\cdots+1\right)} \\
& \geq\left(1+\frac{1}{k_{1}^{2}}\right)^{(K+1)^{k_{1}}}\left(\prod_{j=1}^{k_{1}-1} a_{1, j}\right)^{K}\left(\prod_{j=1}^{k_{0}} a_{1, j}\right)^{-K} \\
& \geq\left(1+\frac{1}{k_{1}^{2}}\right)^{(K+1)^{k_{1}}}\left(\prod_{j=1}^{k_{1}-1} a_{1, j}\right)^{K} 2^{-k_{1}^{2}}
\end{align*}
$$

The definition of k_{1} implies that, for every $N, k_{0}<N<k_{1}$,

$$
S_{N} \leq\left(1+\frac{1}{N^{2}}\right) \max _{k_{0} \leq j<N} S_{j}
$$

Thus

$$
\begin{equation*}
S_{N} \leq\left(\prod_{j=k_{0}}^{N}\left(1+\frac{1}{j^{2}}\right)\right) S_{k_{0}}<C \tag{25}
\end{equation*}
$$

where C is a constant which depends on k_{0} and C tends to 1 as k_{0} tends to infinity. From (25) we obtain that for every $N=k_{0}, \ldots, k_{1}-1$,

$$
a_{1, N} \leq C^{(K+1)^{n}}
$$

This implies

$$
\begin{equation*}
\left(\prod_{j=1}^{k_{1}-1} a_{1, j}\right)^{K}=\left(\prod_{j=1}^{k_{0}-1} a_{1, j}\right)^{K}\left(\prod_{j=k_{0}}^{k_{1}-1} a_{1, j}\right)^{K} \leq 2^{K k_{0}^{2}} C^{(K+1)^{k_{1}}} \tag{26}
\end{equation*}
$$

Inequalities (14) and (21) and the definitions of k_{1} and k imply

$$
\begin{align*}
\sum_{n=k_{1}}^{\infty} \frac{2^{\left(\log _{2} a_{1, n}\right)^{\gamma}}}{a_{1, n}} & =\sum_{n=k_{1}}^{k-1} \frac{2^{\left(\log _{2} a_{1, n}\right)^{\gamma}}}{a_{1, n}}+\sum_{n=k}^{\infty} \frac{2^{\left(\log _{2} a_{1, n}\right)^{\gamma}}}{a_{1, n}} \tag{27}\\
& \leq \frac{2^{\left(\log _{2} a_{1, k_{1}}\right)^{\omega}}}{a_{1, k_{1}}}+\frac{1}{a_{1, k}^{B}}
\end{align*}
$$

Now from (11), (12), (22), (24), (26) and (27), we obtain

$$
\begin{aligned}
& 1 \leq\left(\prod_{n=1}^{k_{1}-1} a_{1, n}\right)^{K} 2^{(K+1)^{\gamma k_{1}}} \sum_{n=k_{1}}^{\infty} \frac{2^{\left(\log _{2} a_{1, n}\right)^{\gamma}}}{a_{1, n}} \\
& \leq \frac{\left(\prod_{n=1}^{k_{1}-1} a_{1, n}\right)^{K} 2^{(K+1)^{\gamma k_{1}}} 2^{\left(\log _{2} a_{1, k_{1}}\right)^{\omega}}}{a_{1, k_{1}}}+\frac{\left(\prod_{n=1}^{k_{1}-1} a_{1, n}\right)^{K} 2^{(K+1)^{\gamma k_{1}}}}{a_{1, k}^{B}} \\
& \leq \frac{\left(\prod_{n=1}^{k_{1}-1} a_{1, n}\right)^{K} 2^{(K+1)^{\gamma k_{1}}} 2^{\left(\log _{2} a_{1, k_{1}}\right)^{\omega}}}{\left(1+\left(1 / k_{1}^{2}\right)\right)^{(K+1)^{k_{1}}}\left(\prod_{j=1}^{k_{1}-1} a_{1, j}\right)^{K} 2^{-k_{1}^{2}}}+\frac{C^{(K+1)^{k_{1}}} 2^{(K+1)^{\gamma k_{1}}}}{A^{B(K+1)^{k}}} \\
& \leq \frac{2^{(K+1)^{\gamma k_{1}}} 2^{\left(\log _{2}\left(\left(2 A_{2}\right)^{(K+1)^{n}}\right)\right)^{\omega}}}{\left(1+\left(1 / k_{1}^{2}\right)\right)^{(K+1)^{k_{1}}} 2^{-k_{1}^{2}}}+\frac{C^{(K+1)^{k_{1}}} 2^{(K+1)^{\gamma k_{1}}}}{A^{B(K+1)^{k}}} \\
& \leq 2^{-\log _{2}\left(1+\left(1 / k_{1}^{2}\right)\right)(K+1)^{k_{1}}+(K+1)^{\gamma k_{1}}+\left(\log _{2}\left(2 A_{2}\right)\right)^{\omega}(K+1)^{n \omega}+k_{1}^{2}} \\
& +2^{\left(-B \log _{2} A+\log _{2} C\right)(K+1)^{k}+(K+1)^{\gamma k},}
\end{aligned}
$$

a contradiction for a sufficiently large k_{0}.

3. Comments and examples.

Theorem 3.1. Let $\alpha, \varepsilon, A_{1}$ and A_{2} be positive real numbers such that $0<\alpha<1$ and $1 \leq A_{1}<A_{2}$. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be two sequences of positive integers where $\left\{a_{n}\right\}_{n=1}^{\infty}$ is nondecreasing and

$$
\begin{gathered}
\limsup _{n \rightarrow \infty} a_{n}^{1 / 2^{n}}=A_{2} \\
\liminf _{n \rightarrow \infty} a_{n}^{1 / 2^{n}}=A_{1} \\
a_{n} \geq n^{1+\varepsilon}
\end{gathered}
$$

and

$$
b_{n} \leq 2^{\left(\log _{2} a_{n}\right)^{\alpha}}
$$

hold for every sufficiently large n. Then the series $\sum_{n=1}^{\infty} b_{n} / a_{n}$ is irrational.

By putting $K=1$ in Theorem 2.1, we immediately obtain Theorem 3.1.

Remark 3.1. The problem in Theorem 2.1 and Theorem 3.1 remains open for $A_{1}=A_{2}>1$. If a_{1} is a positive integer greater than 1 and for every $n>1 a_{n+1}=a_{n}^{2}-a_{n}+1$, then the series $\sum_{n=1}^{\infty} 1 / a_{n}$ is rational and $\lim _{n \rightarrow \infty} a_{n}^{1 / 2^{n}}>1$. On the other hand, the series $\sum_{n=1}^{\infty} 1 / 2^{2^{n}}$ is an irrational number.

Open problem 3.1. Is it the case that for every sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ of positive integers the series

$$
\sum_{n=1}^{\infty} \frac{2^{2^{n}}+1}{\left(3^{2^{n}}+n!\right) c_{n}}, \quad \sum_{n=1}^{\infty} \frac{3^{2^{n}}+1}{\left(4^{2^{n}}+n!\right) c_{n}}
$$

and the number 1 are linearly independent?

Open problem 3.2. Is it the case that for every sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ of positive integers the series

$$
\sum_{n=1}^{\infty} \frac{1}{\left(3^{2^{n}}+2^{n}\right) c_{n}}
$$

is an irrational number?

Example 3.1. Let $\pi(x)$ be the number of primes less than or equal to $x,[x]$ the greatest integer less than or equal to x, and K a positive integer greater than 1 . Then the series

$$
\sum_{n=1}^{\infty} \frac{3^{j 2 \pi([n / 4])}+n!}{2^{K^{2\left[\log _{2} n\right]}}+3^{n}}
$$

$j=1, \ldots, K$, and the number 1 are linearly independent over rational numbers.

Example 3.2. Let $[x]$ and $\pi(x)$ be defined as in the previous case. Then the series

$$
\sum_{n=1}^{\infty} \frac{3^{\pi(n)}+1}{2^{2^{2^{\left[\log _{2} \log _{2} n\right]}}}+n} \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{2^{\pi(n)}+3}{2^{2^{2^{\left[\log _{2} \log _{2} n\right]}}+2 n}}
$$

are irrational.

Acknowledgment. I would like to thank Professor James E. Carter of the College of Charleston for his help with the presentation of this paper.

REFERENCES

1. C. Badea, The irrationality of certain infinite series, Glasgow Math. J. 29 (1987), 221-228.
2. -, A theorem on irrationality of infinite series and applications, Acta Arith. 63 (1993), 313-323.
3. J.P. Bezivin, Linear independence of the values of transcendental solutions of some functional equations, Manuscripta Math. 61 (1988), no. 1, 103-129.
4. P.B. Borwein, On the irrationality of $\sum\left(1 / q^{n}+r\right)$, J. Number Theory 37 (1991), 253-259.
5. P.B. Borwein and P. Zhou, On the irrationality of certain q series, Proc. Amer. Math. Soc. 127, no. 6, (1999), 1605-1613.
6. D. Duverney, Sur les series de nombres rationnels a convergence rapide, C.R. Acad. Sci. Ser. I, Math. 328, no. 7, (1999), 553-556.
7. P. Erdös, Some problems and results on the irrationality of the sum of infinite series, J. Math. Sci. 10 (1975), 1-7.
8. P. Erdös and E.G. Straus, On the irrationality of certain Ahmes series, J. Indian Math. Soc. 27 (1968), 129-133.
9. J. Hančl, Linearly unrelated sequences, Pacific J. Math. 190 (1999), no. 2, 299-310.
10. K.K. Kubota, On the algebraic independence of holomorphic solutions of certain functional equations and their values, Math. Ann. 227 (1977), 9-50.
11. J.H. Loxton and A.J. van der Poorten, Algebraic independence properties of the Fredholm series, J. Austral. Math. Soc. Ser. A, 26 (1978), 31-45.
12. K. Nishioka, Mahler functions and transcendence, Lecture Notes in Math. 1631, Springer, New York, 1996.
13. V.N. Sorokin, Linear independence of logarithm of some rational numbers, Mat. Zametki 46 (1989), no. 3, 74-79, 127; Math. Notes 46 (1989), no. 3-4, 727-730 (in English).
14. T. Töpfer, Algebraic independence of the values of generalized Mahler functions, Acta Arith. 70 (1995), 161-181.

Department of Mathematics, University of Ostrava, Dvořákova 7, 701
03 Ostrava 1, Czech RepubliC
E-mail address: hancl@osu.cz

[^0]: AMS Mathematics Subject Classification. 11J72.
 Supported by grants no. 201/01/0471 and no. 201/04/0393 of the Czech Grant Agency.

