
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 34, Number 1, Spring 2004

A NEW CLASS OF NORMED SPACES WITH
NONTRIVIAL GROUPS OF ISOMETRIES

AND SOME ESTIMATES FOR
OPERATORS WITH GIVEN ACTION

B.L. CHALMERS AND M.I. OSTROVSKII

ABSTRACT. We introduce and study a new class of finite-
dimensional normed spaces with non-trivial groups of isome-
tries. We call it the class of spaces with distinguished bases.
The introduction of this new class is motivated by the fol-
lowing: (a) this class is a natural class that contains both the
class of spaces with unconditional bases and the class of spaces
spanned by characters in translation invariant function spaces
on compact abelian groups; (b) there is a very simple formula
for 2-summing norms of the operators that are diagonal with
respect to distinguished bases.

An additional motivation for introduction of the notion
of a distinguished basis is its relations with the problem of
the estimate of norms of operators with given action. More
precisely, let A be a k×k matrix and let V be a k-dimensional
normed space. The set of all operators on V whose matrix
with respect to some basis in V is A is denoted by LA(V ).
The problem is to estimate inf{||T || : T ∈ LA(V )}, where ||·||
is one of the natural norms on the space of linear operators on
V . The second part of the paper is devoted to some aspects
of this general problem.

1. Introduction. Different classes of spaces with nontrivial groups
of isometries play an important role in Banach Space Theory and
in Asymptotic Theory of Finite-Dimensional Normed Spaces (see, for
example, [41]). Three of such classes have been extensively studied.
These are the classes of (1) spaces with unconditional bases, (2) spaces
with symmetric bases, and (3) spaces with enough symmetries. The
purpose of this paper is to introduce one more class, we call it the
class of spaces with distinguished bases. The introduction of this new
class is motivated by the following: (a) this class is a natural class that
contains both the class of spaces with unconditional bases and the class
of spaces spanned by characters in translation invariant function spaces
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on compact abelian groups; (b) there is a very simple formula for π2-
norms of the operators that are diagonal with respect to distinguished
bases. This formula proves a special case of Conjecture 1 from [8].

At the end of the paper we discuss some more estimates for operators
with given action; in particular, we give a counterexample to Conjec-
ture 2 from [8].

We shall use the standard terminology and notation of Banach space
theory, see [41]. For the theory of absolutely summing operators and
π2 norms we refer to [35]. By B(X) we denote the unit ball of a normed
space X. By IV we denote the identity operator on a normed space V .
The subscript V is omitted if it is clear from context.

2. Spaces with distinguished bases.

Definition 1. Let V be a k-dimensional normed space. A basis
{ei}k

i=1 in V is called a distinguished basis if there exists a subgroup G
in the group of isometries on V satisfying the condition:

An operator S : V → V satisfies gS = Sg for every g ∈ G if and only
if S is diagonal with respect to {ei}k

i=1.

Proposition 1. (1) The condition from Definition 1 is equivalent
to: all elements in G are diagonal with respect to {ei}k

i=1, and for each
i �= j, (i, j ∈ {1, . . . , k}), there exists an element g ∈ G such that the
ith and the jth diagonal elements of g are different.

(2) The diagonal elements of g ∈ G have absolute values 1. In
particular, in the real case they are equal to ±1. Hence in the real
case g2 = IV for every g ∈ G.

(3) The cardinality of G is at least k.

Proof. The proof of (1) is straightforward. The statement (2) is a
special case of the well-known fact on spectral properties of isometries.

(3) The fact that elements of G are simultaneously diagonalizable (see
part (1)) implies that the group G is abelian. It will be convenient to
identify G with the set of functions on {1, . . . , k} (so that g(i) is the ith
diagonal element of g). It will be convenient to restate the condition
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from (1) as: the functions from G separate points of {1, . . . , k}.
There is nothing to prove if G is infinite. (Observe that by (1) and

(2) G can be infinite only in the complex case.) So we assume that
G is finite. By the fundamental theorem of abelian groups (see, e.g.,
[42, Section 12.3]) G is the direct sum of cyclic groups. Let g1, · · · , gm

be the generators of the cyclic groups. Then the cardinality of G is
equal to #G = r1 · · · rm, where r1, . . . , rm are the orders of g1, . . . , gm.
The values of gi are the rith roots of unity. Therefore the functions gi

split the set {1, . . . , k} onto at most ri subsets. Therefore the functions
g1, . . . , gm, and, hence, G can separate at most r1 · · · rm points. We
get k ≤ r1 · · · rm = #G.

Basic examples of spaces with distinguished bases.

Example 1. Any 1-unconditional basis {ei}k
i=1 is distinguished.

In fact, letG be the set of all matrices diagonal with respect to {ei}k
i=1

with ±1 on the diagonal. They are isometries by the definition of an
1-unconditional basis. It is clear that G satisfies the condition from
Proposition 1 (1).

Example 2. Let A be a compact abelian group. For each function f
on A and for each b ∈ A we define the b-translation of f = f(a), a ∈ A
by fb(a) = f(ab). Let X be a translation invariant function space on
A. Translation invariance means that fb ∈ X for all f ∈ X for all
b ∈ A, and ||fb||X = ||f ||X . Let {xi}k

i=1 be a finite set of characters of
A contained in X. Consider the linear span V of {xi}k

i=1 as a subspace
of X. Then {xi}k

i=1 is a distinguished basis of V .

In fact, by the definition of a translation invariant space we get:
f 
→ fb is an isometry on X. By the definition of a character we get

(1) (xi)b = xi(b)xi.

Hence the space V is invariant under translation. Let G be the group
of isometries of V that we obtain in such a way. By (1) each element of
G is diagonal with respect to the basis {xi}k

i=1. Also, since xi �= xj , for
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i �= j, then there exists b ∈ A such that xi(b) �= xj(b). The assertion
follows by Proposition 1 (1).

Example 3. Let X and Y be two finite-dimensional normed spaces
with distinguished bases. By L(X,Y ) we denote the space of all linear
operators from X to Y . Let α be a norm on L(X,Y ) satisfying the
conditions:

(A) α(AB) ≤ α(A)||B|| for every A ∈ L(X,Y ) and B ∈ L(X,X);

(B) α(CA) ≤ ||C||α(A) for every A ∈ L(X,Y ) and C ∈ L(Y, Y ).

Then the space (L(X,Y ), α) has a distinguished basis.

In fact, let {xi}n
i=1 be a distinguished basis in X, and let {yi}m

i=1 be a
distinguished basis in Y . We identify L(X,Y ) with the space of all m×
n-matrices in a natural way. Let GX and GY be groups corresponding
to the distinguished bases {xi}n

i=1 and {yi}m
i=1. Condition (A) implies

that the right multiplication by an element of GX is an isometry on
(L(X,Y ), α). Condition (B) implies that the left multiplication by an
element of GY is an isometry on (L(X,Y ), α). We consider the group
GL of isometries generated by these isometries on (L(X,Y ), α). Let
{li,j}m

i=1,
n

j=1
be a basis in L(X,Y ) consisting of all matrices with only

one nonzero entry. It is easy to see that each element in GX and
GY is diagonal with respect to this basis. Hence each element in GL is
diagonal with respect to it. Observe, also, that for each pair of different
elements in this basis we can find an element in GX or an element in
GY such that the corresponding diagonal entries are different. Hence
GL satisfies the condition from Proposition 1 (1), and {li,j}m

i=1,
n

j=1
is a

distinguished basis in (L(X,Y ), α).

Remark 1. It is known (see [11]) that a normed space of dimension
n, n �= 2, 4 in the real case, different from a Euclidean space, cannot
have two different 1-symmetric bases (that is, two 1-symmetric bases
that cannot be obtained from each other by permutations and multi-
plications by scalars). See also [18] and [37, Section 8 in Chapter IX],
for closely related results. The uniqueness of 1-unconditional bases in
complex Banach spaces was studied by Kalton and Wood [22]. They
proved a very strong uniqueness result (see Theorem 6.1 and Lemma
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5.2 in [22]). In the real case the situation is different; it was studied by
Lacey and Wojtaszczyk [27] and by Randrianantoanina (see Theorem
4 in [36]). Another type of uniqueness result was discovered by Linden-
strauss and PeClczyński [28]. They proved that a λ-unconditional basis
in ln1 , or ln∞, is c(λ)-equivalent to the unit vector basis in the space (see
the proof of Theorem 6.1 in [28]).

Distinguished bases do not have any of the uniqueness properties
introduced in the above-mentioned papers. In fact, let AN , where N
is a positive integer, be the Cantor group, that is AN = {−1, 1}N

with the coordinatewise product. Consider l1(AN ). This space has two
quite different distinguished bases: the unit vector basis and the basis
consisting of all characters of the group AN .

Remark 2. The norms satisfying the conditions (A) and (B) from
Example 3 have been studied in the theory of operator ideals, see [33]
(and also [19, p. 17] and [41, p. 19]).

Relations with some other classes of spaces with nontrivial
groups of isometries.

(1) There exist spaces with distinguished bases that do not have
enough symmetries. An example of such space can be constructed
in the following way. We consider the group G of all operators on Rk

that are diagonal with respect to the unit vector basis of Rk, and the
diagonal elements are ±1. By Theorem 3.1 of [18] there exists a norm
on Rk, whose group of isometries coincide with G. It is clear that the
corresponding normed space does not have enough symmetries.

(2) There exist spaces with distinguished bases that do not have
1−unconditional bases. This assertion follows, for example, from the
results of Gordon and Lewis [17] (see also [19, Section 12]). They
proved that many of the spaces described in Example 3 are far from
having 1−unconditional bases.

Theorem 1. There exist finite dimensional normed spaces with
enough symmetries that do not have distinguished bases.
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Proof. Our proof is based on the fact that there exist irreducible
representations of symmetric groups that do not have subgroups satis-
fying the conditions of Proposition 1. We are not going to describe the
conditions under which this phenomenon happens in any generality; we
shall rather give a completely concrete example.

Consider the symmetric group S5 and consider its irreducible repre-
sentation corresponding to the frame with three rows: the first row is
of length 3, the second row and the third row are of length 1 (we use
the terminology from [2, Chapter IV]). According to the well-known
formula, see formula (4.4) from [2, p. 119], the dimension of this repre-
sentation is equal to 6. This representation is faithful (see the discussion
in the introduction to Chapter IV of [2]) and real.

For readers who are not familiar with the representation theory we
summarize this discussion in the following way: there exists a subgroup
F of the orthogonal group O(6) on R6 satisfying the conditions:

(A) If T : R6 → R6 is a linear operator satisfying fT = Tf for all
f ∈ F , then T = λIRn for some λ ∈ R.

(B) The group F is isomorphic to S5.

Let F ∗ = F ∪ (−F ) ⊂ O(6), where by −F we denote the set of all
elements of F multiplied by −1. By a result of Gordon and Loewy,
[18, Theorem 3.1], there exists a norm on R6 such that F ∗ is the group
of (all) isometries of the corresponding normed space, which we will
denote by XF . The property (A) of the group F implies that XF has
enough symmetries.

To show that XF does not have a distinguished basis we need to show
that F ∪ (−F ) does not have a subgroup satisfying the condition of the
part (1) of Proposition 1. It is easy to see that it is enough to show
that F does not have such subgroup. By Proposition 1 it is enough to
show that F does not contain an abelian subgroup G of cardinality ≥ 6
such that g2 = I for every g ∈ G. By the condition (B) it is enough
to verify that any abelian subgroup H in S5 satisfying h2 = e for all
h ∈ H (where e is the unit permutation) has cardinality ≤ 4.

We prefer to prove the following more general result.

Lemma 1. Let H ⊂ Sn be an abelian subgroup satisfying h2 = e for
all h ∈ H. Then #H ≤ 2[n/2].
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Proof. By induction. The result is obvious for n = 1, 2. Suppose that
we have proved it for all positive integers ≤ n− 1.

Consider a subgroup H ⊂ Sn satisfying the conditions. If H is not
transitive on {1, . . . , n}, we can split {1, . . . , n} onto two invariant
subsets A and B. By the induction hypothesis #(H|A) ≤ 2[#A/2]

and #(H|B) ≤ 2[#B/2]. Also #H ≤ #(H|A)#(H|B). The inequality
follows.

In the case when H is transitive we prove that n is even and that
#H ≤ n. This estimate is sufficient for our purposes because n ≤ 2[n/2]

for every even n ∈ N.

Claim. Let H be transitive. Then n is even. If h ∈ H is such that
h �= e, then h does not fix any element of {1, . . . , n}.

Proof. We start with the second statement. Assume the contrary. Let
h ∈ H be such that h(i) = i and h(j) �= j for some i, j ∈ {1, . . . , n}.
Observe that the condition h2 = e implies that each element in H is
a product of disjoint transpositions. By transitivity there exist g ∈ H
such that (i, j) is one of the transpositions in the product representing
g. Since H is abelian, then hg = gh. We get j = g(i) = gh(i) =
hg(i) = h(j) �= j. This contradiction proves the second statement.

The first statement follows from the second because the product of
disjoint transpositions moves only even amount of numbers.

To derive the lemma from the claim observe that H cannot contain
more than one permutation whose representation as a product of
disjoint transpositions contains (1, i), because the product of such
permutations would have (at least two) fixed points. Hence H cannot
have more than n elements. This proves the lemma and the theorem.

Remark. The statement about symmetric groups mentioned at the
beginning of the proof of the theorem can be derived from known results
on permutation groups (see Theorem 5.8A and Exercise 5.8.2 in [10]).
We have preferred to give the elementary proof for the convenience of
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the reader.

The spaces with distinguished bases have the following important
property:

Theorem 2. Let V be a normed space with a distinguished basis
{ei}k

i=1. Let T be an operator diagonal with respect to {ei}k
i=1, with the

diagonal elements {di}k
i=1. Then

(2) π2(T ) =
( k∑

i=1

|di|2
)1/2

.

Proof. The fact that

(3) π2(T ) ≥
( k∑

i=1

|di|2
)1/2

is a special case of a result of Pietsch [32] (see also Proposition 2.a.1
from [23]).

So it remains to prove the estimate from above only.

It is well known (see, e.g., [19, Proposition 4.3 and Theorem 5.11])
that π2-norm is self-dual with respect to the trace duality.

Therefore

(4) π2(T ) = sup
S:V →V

tr(TS)
π2(S)

.

Let S be such that we have equality in (4). Let G be a group of
isometries of V corresponding to the distinguished basis {ei}k

i=1. Let
g ∈ G. Observe that π2(gSg−1) = π2(S) and Tg = gT . Hence

tr(TgSg−1) = tr(gTSg−1) = tr(TS).

Let
S̃ =

∫
G

gSg−1dµ(g),
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where µ is the normalized Haar measure on G. Then π2(S̃) ≤ π2(S)
and tr(T S̃) = tr(TS). Hence

π2(T ) ≤ tr(T S̃)
π2(S̃)

.

Standard verification shows that gS̃ = S̃g for every g ∈ G. Hence
S̃ is diagonal with respect to {ei}k

i=1. Let s1, . . . , sn be the diagonal
elements of S̃. Since they are the eigenvalues of S̃, by (3) we get

π2(S̃) ≥
( k∑

i=1

|si|2
)1/2

.

Using this inequality and the fact that tr (T S̃) =
∑k

i=1 disi, we get the
desired inequality.

Let V be an n-dimensional normed space.

Definition 2. Let {ei}n
i=1 be a basis in V . The distinguished basic

constant of {ei}n
i=1 is defined by

dbc ({ei}n
i=1) = inf

G
sup
g∈G

||g||,

where the infimum is taken over all groups G of operators on V
satisfying the condition

(5) gT = Tg for all g ∈ G⇐⇒ T is diagonal w.r.t. {ei}n
i=1.

The distinguished basic constant of V is defined by

dbc (V ) = inf
{ei}

dbc ({ei}n
i=1).

This definition is the natural analogue of the well-known definitions
of basic constants and asymmetry constants, see [13, p. 349], [31, p.
104] and [41, pp. 2 and 133].



68 B.L. CHALMERS AND M.I. OSTROVSKII

Our next purpose is to estimate

sup{dbc (V ) : dimV = n}.

John proved the following (by now well-known) estimate for the
Banach-Mazur distance [20] (see [31, p. 144]):

d(V, ln2 ) ≤
√
n.

This estimate and the fact that dbc (ln2 ) = 1 imply that dbc (V ) ≤ √
n

for every n-dimensional space V . It turns out that this estimate from
above cannot be significantly improved, at least in the real case. More
precisely, we prove

Theorem 3. There exists an absolute constant c > 0 such that

sup{dbc (V ) : V is real and dimV = n} ≥ c
√
n.

Remark. Similar results are already known for unconditional basic
constant [12] and for asymmetry constant [29].

Our proof of Theorem 3, as well as the proof in [29], is based on the
approach invented by Gluskin [15]. More precisely, we shall use the
following result of Szarek [39].

Consider Rn with its standard inner product, and denote by || · ||2 the
corresponding norm. Following [39] we will say that a linear operator
T : Rn → Rn satisfies the condition Mk,α (M for “mixing”) if

there exists a subspace H ⊂ Rn, dimH ≥ k, such that ||PH⊥Tx||2 ≥
α||x||2 ∀x ∈ H.

Here PH⊥ denotes the orthogonal projection onto H⊥.

Theorem 4 [39, Theorem 1.4]. Given δ > 0 there exists a norm
|| · ||B on Rn such that whenever T satisfies (Mk,α) with some k ≥ δn.
Then ||T : B → B|| ≥ cα

√
n, where c depends only on δ.

Let T : Rn → Rn be diagonal with respect to some basis in Rn with
diagonal entries equal to ±1.
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Claim. If the number of 1’s on the diagonal of T is between n/4 and
3n/4, then T satisfies (Mk,α) with k = [n/4] and α = 1.

Proof. In fact, let M1 ⊂ Rn be the eigenspace corresponding to 1
and let M−1 be the eigenspace corresponding to −1. It is easy to see
that we can find subspaces L1 ⊂M1 and L−1 ⊂M−1 such that L1 and
L−1 are orthogonal, and dimL1 = dimL−1 ≥ [n/4].

Let S : L1 → L−1 be an isometry. We introduce a subspace H ⊂ Rn

by

H = {l + Sl : l ∈ L1}.

Observe that for x = l + Sl ∈ H we have Tx = l − Sl, hence Tx⊥H
and ||PH⊥Tx||2 = ||Tx||2 = ||x||2.

Proof of Theorem 3. We are going to show that the space B
constructed in Theorem 4 satisfies dbc (B) ≥ c

√
n where c is the

constant that corresponds to some δ < 1/4 in Theorem 4.

By the claim above it is enough to prove that for any group G of
operators on Rn satisfying the condition of Proposition 1 (1), there
exists an operator T ∈ G such that the amounts of 1’s and −1’s in the
diagonal representation of T are ≥ n/4.

As in the proof of Proposition 1 we identify G with the corresponding
subgroup of the multiplicative group of functions on {1, . . . , n} with
the values in {−1, 1}. It is enough to prove that for at least one of the
functions the sum of its values is ≤ n/2.

By the fundamental theorem of abelian groups (see [42, Section 12.3])
there exist elements g1, . . . , gl ∈ G such that G is the direct product of
the groups generated by g1, . . . , gl.

The functions g1, . . . , gl separate points of {1, . . . , n}, see Proposi-
tion 1 (1). Therefore, to each collection f from {−1, 1}l there corre-
sponds one or none point x from {1, . . . , n} satisfying f = {gi(x)}l

i=1.
In this way the set {1, . . . , n} is mapped onto a subset Z in {−1, 1}l.

Let g ∈ G. We need to estimate
∑n

i=1 g(i). Let g = gi1 · · · gip
be

the (uniquely determined) representation of g as a product of some of
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{g1, . . . , gl}. Then
n∑

i=1

g(i) =
∑
z∈Z

wA(z),

where wA is the Walsh function on {−1, 1}l corresponding to {i1, . . . , ip}
⊂ {1, . . . , l}.
Hence we have reduced our problem to the following. Consider the

Cantor group {−1, 1}l endowed with the counting measure, and a
subset Z ⊂ {−1, 1}l of cardinality n. Show that there exist a Walsh
function wA on {−1, 1}l such that

(6) |〈wA, χZ〉| ≤ n

2
,

where χZ is the characteristic function of Z and the scalar product is
computed with respect to the counting measure.

Observe that

(7) ||χZ ||2 =
∑
A

|〈wA, χZ〉|2
||wA||2 ,

where the norms correspond to the scalar product described above.

Observe that ||χZ ||2 = n, ||wA||2 = 2l. There are 2l summands in
the righthand side of (7). Hence (7) implies that

2l |〈wA, χZ〉|2
||wA||2 ≤ ||χZ ||2

for some A. This inequality implies |〈wA, χZ〉| ≤ √
n. Since

√
n ≤ n/2

for n ≥ 4, we have proved (6).

3. Estimates of π2-norms and extension norms for operators
with given action. Now we turn to the following problem. Let A
be a k × k matrix and let V be a k-dimensional space. By LA(V ) we
denote the set of all operators on V whose matrix with respect to some
basis is A. The problem is to estimate from below, and, if possible, to
minimize the values of some natural norms over the set LA(V ). Some
aspects of this problem were studied in the well-known papers on basic
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constants (Gluskin [16] and Szarek [38] and [39]). In these papers the
problem was studied in the case when A is diagonal with 0s and 1s on
the diagonal, and the norm is the usual operator norm. A systematic
study of this problem for arbitrary A and extension norms, defined
below, was initiated in [4] and [7] (and continued in [8], [9] and [30]).
This study led to the study of this problem for the π2-norm, see [8].
The remaining part of the present paper is devoted to some problems
that arise naturally in connection with the results of [4], [7] and [8].
We refer to LA(V ) as to the set of operators with given action.

For a Banach space X containing V as a subspace and for a linear
operator T : V → V by e(T,X) we denote the infimum of norms
of operators T̃ : X → V satisfying T̃ |V = T . By e(T ) we denote
the supremum of e(T,X) taken over all Banach spaces X containing
isometric copies of V and over all isometric embeddings V ⊂ X. It can
be shown that e(·) is a norm on L(V ). We call this norm the extension
norm.

Let V be a k-dimensional normed space and let A be a k× k-matrix.
The problem mentioned above is to estimate

E(A, V ) := inf
T∈LA(V )

e(T ).

The well-known Kadets-Snobar theorem, see [21], can be restated as:

E(I, V ) ≤
√
k,

where I is the identity matrix of order k.

LetD be a diagonal matrix with the numbers {di}k
i=1 on the diagonal.

One of the natural directions of generalization of the Kadets-Snobar
theorem is to ask:

whether

(8) E(D,V ) ≤
( k∑

i=1

|di|2
)1/2

for any V ? (See [4], where a stronger assertion was conjectured. See
also the discussion below.)
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Observe that the Pietsch factorization theorem [34] (see [35, p. 11])
implies that e(T ) ≤ π2(T ) for every T . Hence

E(A, V ) ≤ inf
T∈LA(V )

π2(T ).

Let D be a diagonal k × k matrix with the entries d1, . . . , dk on the
diagonal. Let V be a k-dimensional normed linear space.

In [8, Conjecture 1, p. 73], the following stronger form of (8) was
conjectured:

(9) inf
T∈LD(V )

π2(T ) =
( k∑

i=1

|di|2
)1/2

Theorem 2 implies that this conjecture is true for spaces with distin-
guished bases. In fact, observe that

inf
T∈LD(V )

π2(T ) ≥
( k∑

i=1

|di|2
)1/2

is an immediate consequence of (3).

The inequality

inf
T∈LD(V )

π2(T ) ≤
( k∑

i=1

|di|2
)1/2

immediately follows from Theorem 2.

Our next purpose is to prove the inequality (8) for a class of spaces.
(It can be shown that this class of spaces contains spaces without
distinguished bases.)

Let us denote by I the canonical mapping from lk2 into lk∞. We say
that V has the Dvoretzky-Rogers constant 1 if there exist operators
α : lk2 → V and β : V → lk∞ such that I = βα and ||α|| = ||β|| = 1.

Proposition 2. The inequality (8) is valid for spaces with the Dvo-
retzky-Rogers constant 1.
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Proof. Let V be a space with the Dvoretzky-Rogers constant 1, α
and β be as in the corresponding definition, and let X be a Banach
space containing V as a subspace.

We need to find an operator T : V → V and its extension T̃ : X → V
such that T ∈ LD(V ) and ||T̃ || ≤ (

∑k
i=1 |di|2)1/2.

Let C = β−1B(lk∞). Then C ⊃ B(V ). The Hahn-Banach theorem
implies that there exists a projection P : X → V satisfying P (B(X)) ⊂
C.

Let e1, . . . , ek ∈ V be the pre-images of the unit vector basis of lk∞
under β.

We define T by the equations Tei = diei, i = 1, . . . , k. Let T̃ = TP .
It is clear that T̃ is an extension of T to X.

To show that ||T̃ || ≤ (
∑k

i=1 |di|2)1/2 we observe that since ||α|| = 1,
then

||T̃ (x)|| ≤ ||α−1T̃ (x)||lk2 .

Let x ∈ B(X). Since P (B(X)) ⊂ C, the formula for T̃ implies that

(10) α−1T̃ (x) =
k∑

i=1

diωiα
−1ei, where |ωi| ≤ 1.

Since {α−1ei}k
i=1 is the unit vector basis in lk2 , then (10) implies

||α−1T̃ (x)||lk2 ≤
( k∑

i=1

|di|2
)1/2

.

Remark 1. It is well known (see [19, Theorem 0.10], [31, Corollary
15.2] or [41, Proposition 14.6]) that for every k-dimensional space
X there exist operators γ : lk1 → V and δ : V → lk∞ such that
||γ|| = ||δ|| = 1 and I = δγ, where I is the canonical mapping from lk1
into lk∞. Using the same argument as in Proposition 2 we can prove

(11) E(D,V ) ≤
k∑

i=1

|di|.
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Hence

(12) E(D,V ) ≤
√
k

( k∑
i=1

|di|2
)1/2

.

Estimates (11) and (12) can be improved using the result of Gi-
annopoulos [14]. It should be mentioned that straightforward appli-
cations of the result from [14] improve (12) in a nontrivial way only
for sequences {di}k

i=1 that are “small” perturbations of sequences with
“many” zeros. For example, combining Theorem 1 from [14] and the
argument of Proposition 2 we get: if at least half of the elements of
{di}k

i=1 are zeros, then

E(D,V ) ≤ 2c
( k∑

i=1

|di|2
)1/2

,

where c is the absolute constant from [14, Theorem 1].

Remark 2. Szarek [40] proved that there exist spaces with large
Dvoretzky-Rogers constants.

Let A be an operator in a k-dimensional normed space V . By {αi}k
i=1

we denote the sequence of eigenvalues of A (each eigenvalue is listed
according to its algebraic multiplicity). Let ρ = |∑k

i=1 αi|, the absolute
value of the trace of A, and let β =

∑k
i=1 |αi|2.

In [26] (see also [25] and [24]) the following inequality was proved
for the case A = I (the identity operator on a k-dimensional normed
space V ).

(13) E(A, V ) ≤ fA(k, n(k)) with n(k) :=
{
k(k + 1)/2 R

k2 C

}
,

where fA(k, n) := ρ/n+
√
(n− 1)(nβ − ρ2)/n.

The truth of (13) and the fact that it is best possible, for k = 2, R, A
diagonalizable, and V2 an unconditional space, has been shown in [6].

Straightforward verification shows that fA(k, n) ≤ √
β and

lim
n→∞ fA(k, n) =

√
β. (Note that the aforementioned inequality is an

equality if and only if ρ =
√
β, i.e., if and only if

∑
i 	=j αiαj = 0.)
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Our next purpose is to prove the inequality (13) in a special case
where there is no apparent distinguished basis.

Let V be a two-dimensional subspace of l(3)1 . Then it is easy to see,
by simple algebraic considerations, that V is isometric to one of the
subspaces V (a, b) where

V (a, b) := span {(1, a, 0), (0, b, 1)}; 1 ≥ a, b ≥ 0.

Now consider the following matrix T̃ given by:

ρT̃ =d1


 a+ b+ b2(1 + a) a(1 + b) −ab(1 + b)

a(a+ b) a2(1 + b) + b2(1 + a) b(a+ b)
−ab(1 + a) b(1 + a) a+ b+ a2(1 + b)




+
d1 − d2

4


 ε1(a, b) ε2(a, b) ε3(a, b)
ε4(a, b) ε5(a, b) ε4(b, a)
ε3(b, a) ε2(b, a) ε1(b, a)


 ,

where ρ := a + b + a2(1 + b) + b2(1 + a), ε1(a, b) := (a2 − b2)(2 +
ab) − (2(a + b) + a3 + 3ab2)), ε2(a, b) := (b − a)2 + b(b2 − a2) − 4a,
ε3(a, b) := (a2− b2)(b2+ b)+2(a+ b)2+4ab2+2(a+ b), ε4(a, b) := (a+
b)(2(b−a)+a(b2−a2)+2(a2+b2), ε5(a, b) := (a−b)(a2−b2)−4(a2+b2).

Consider T̃ as an operator from l
(3)
1 onto V with respect to the

basis (v1, v2) = ((1, a, 0), (0, b, 1)). Now it is a direct check that
if (w1, w2) = ((1, a + b, 1), (−1, b − a, 1)), then T̃w1 = d1w1 and
T̃w2 = d2w2. Furthermore if we replace (a, b) by [(a+ b/2), (a+ b/2)]
in the above formulas, then T̃ is transformed into the operator T̃u,
where T̃u is an operator from l

(3)
1 onto the two-dimensional subspace

Vu with unconditional basis (z1, z2) = (1, a + b, 1), (−1, 0, 1) and
T̃u(z1, z2) = (d1z1, d2z2). Furthermore if |d1 − d2| is sufficiently small,
then the sign configuration of T̃ is clearly

(sign d1)


+ + −
+ + +
− + +


 ,

and the norms of T̃ and T̃u can be calculated from the absolute column
sums (all equal):

‖T̃‖ = (a+b)(a2(d1−d2)+(1+b)(b(d1−d2)+2d2)+a(d1+d2+2bd2))
2(a+a2+b+a2b+b2+ab2)
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and

‖T̃u‖ = (2 + a+ b)(ad1 + bd1 + 2d2)
4 + a2 + 2b+ b2 + 2a(1 + b)

.

Next, in the case |d1 − d2| is sufficiently small, we calculate

‖T̃u‖ − ‖T̃‖ = ((d2 − d1)(a+ b)2 + 4d2)q,

where q = (a− b)2(1 + a+ b)/(2(a+ a2 + b+ a2b+ b2 + ab2)(4 + a2 +
2b+ b2 + 2a(1 + b))) is clearly nonnegative. We conclude that for each
space V = span {(1, a, 0), (0, b, 1)} = span {(1, a + b, 1), (−1, b− a, 1)}
there is associated the unconditional space

Vu = span {(1, a+ b, 1), (−1, 0, 1)}

with ‖T̃‖ ≤ ‖T̃u‖, provided d2 > 0 and |d1 − d2| is sufficiently small.
But ‖T̃u‖ ≤ fD(2, 3) by Lemma 1 of [6]. We summarize this discussion
in the following. (Note that we also use the well-known fact that L1 is
a maximal overspace for any 2-dimensional real subspace.)

Theorem 5. Let V be a two-dimensional subspace of l(3)1 . Then

E(D,V ) ≤ fD(2, 3) ≤
√
d2
1 + d2

2

if d2 > 0 and |d1 − d2| is sufficiently small.

Remark 3. Although, for the purposes of this paper, we have shown
the above result only for d2 > 0 and |d1 − d2| sufficiently small (T̃ was
represented in the above form for precisely this reason), this assumption
is not necessary, as further analysis, analogous to that found in [6], will
show.

Remark 4. By use of the theory of [3], the operators T̃ and T̃u above
can be shown to be minimal with respect to the prescribed action on
V and Vu respectively. (See [5] for example.)

Remark 5. The proof of the theorem above uses the basis (w1, w2) =
(1, a+ b, 1), (−1, b− a, 1) for V to obtain an associated unconditional
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basis (z1, z2) = (1, a+b, 1), (−1, 0, 1) for the associated space Vu. This
association can be described in a systematic way as follows. First, V
is isometric to the subspace [1, t] of L1(µ), where

µ(t) = δ−1(t) + (a+ b)δb−a/a+b(t) + δ1(t).

Now “symmetrize” µ as follows by defining

µs(t) := (µ(t) + µ(−t))/2 = δ−1 +
a+ b

2
δ a−b

a+b
+
a+ b

2
δ b−a

a+b
+ δ1.

Then let Vs be the subspace [1, t] of L1(µs) Next, following the
procedure in [6], we construct the unconditional space Vu from the
unconditional space Vs and obtain that E(D,Vs) ≤ E(D,Vu). We
conjecture that in fact E(D,V ) ≤ E(D,Vs). What we have shown
here in this paper (see the theorem and note above) is that E(D,V ) ≤
E(D,Vu) directly. The process that leads from V to Vs above and the
accompanying conjecture that E(D,V ) ≤ E(D,Vs) indicates that we
might want to say that (1, a+b, 1), (−1, b−a, 1) is a near-unconditional
basis for V and generalize the notion of a near-unconditional basis first
to any 2-dimensional space and then to an arbitrary k-dimensional
space. (Note that any 2-dimensional space is isometric to a subspace
[1, t] of L1(µ) for some measure µ.)

Now we shall disprove Conjecture 2 from [8, p. 75]. The conjecture
states that for each δ > 0 there exists N ∈ N such that for any n > N
and any n-dimensional matrix A with spectral radius 1 we have

inf
T∈LA(ln∞)

e(T ) ≤ 1 + δ.

We refer to [8] for the background material that led to this conjecture.

A counterexample. Consider the matrix

B =
[
1/
√
2 −1/√2

1/
√
2 1/

√
2

]
.

It is easy to see that

B4 =
[−1 0

0 −1
]
.
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It follows, in particular, from here that ρ(B) = 1, the spectral radius.

Let An = B ⊕ In−2, the direct sum of B and the identity matrix of
the size (n− 2)× (n− 2). It is clear that ρ(An) = 1 for every n ≥ 2.

It is well known that ||T || = e(T ) for T ∈ L(ln∞). Hence we need to
show that there exists δ > 0 such that ||T || > 1+ δ for every n and any
T ∈ LAn

(ln∞).

Assume the contrary. Then for any δ > 0 there exist n ∈ N and an
operator Tn ∈ LAn

(ln∞) satisfying ||Tn|| ≤ 1 + δ. Let V ⊂ ln∞ be the
linear span of the first two vectors of the corresponding basis. Then

P =
In − T 4

n

2
,

where In is the identity operator on ln∞, is a projection onto V and
its norm is ≤ 1 + (1 + δ)4/2. By the result of Zippin [43], [44] (see
also [1]) if δ > 0 is small enough, this estimate implies the following
estimate for the Banach-Mazur distance: d(V, l2∞) ≤ f(δ), where f is a
function defined for small δ > 0 and such that f(δ) → 1 as δ → 0.

In [8, Theorem 2] it was proved that any operator on l2∞ whose matrix,
in some basis, is B has norm ≥ √

2. Therefore, any operator on V
whose matrix is B has norm ≥ √

2/d(V, l2∞). Choose δ in such a way
that

√
2/f(δ) > 1 + δ. We get a contradiction.

4. Open problems. It seems that the asymptotic behavior of
the quantitative relations between different basic constants and the
asymmetry constant has not been studied so far. In particular, we
suggest to estimate the asymptotic, as n→ ∞, growth of the numbers

Dn = sup
{
dbc (V )
s(V )

: dimV = n

}

and

dn = sup
{

s(V )
dbc (V )

: dimV = n

}
,

where s(V ) is the asymmetry constant (as it was defined in [13, p. 349],
see also [41, p. 133]).

It is clear that 1 ≤ dn ≤ √
n, 1 ≤ Dn ≤ √

n. The results of [13,
pp. 353 354] imply that dn ≥ cn1/4, but it is difficult to believe that
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this estimate is the best possible, see [29], [39] for relevant results.
Our Theorem 1 is a rather ‘isometric’ result. It does not provide any
asymptotic estimates for Dn.

We also would like to mention here that Conjecture 1 from [8] (we
reproduced the most important case of it as the equality (9)), and the
problem on the generalization of the Kadets-Snobar theorem (see the
inequality (8) above) remain open.
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Math. 22 (1963), 161 179.

33. , Operator ideals, North-Holland Publ. Co., Amsterdam, 1980.

34. , Absolut p-summierende Abbildungen in normierten Räumen, Studia
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