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RING DECOMPOSITIONS INDUCED
BY CERTAIN LIE IDEALS

LEONARD CASCIOTTI

ABSTRACT. This paper studies a decomposition of a semi-
prime ring R with involution ∗ containing a subring U which
is both a self-adjoint Lie ideal of R and contains a fixed power
of each element of R. These results are applied to the case
where U is the subring generated by the symmetric elements
S and the norm elements {xx∗ | x ∈ R}.

1. Introduction. This paper will investigate the procedure by
which the Lie ideals of a ring R are used to determine certain charac-
terizations of R itself. Conditions of “self-adjoint” and “simple Jordan”
are imposed on the Lie ideals, from which the exact structure of the
ring R is determined.

R is an associative ring with involution denoted by ∗. The involution
∗ is defined for each x, y ∈ R such that

(x∗)∗ = x, (x + y)∗ = x∗ + y∗, (xy)∗ = y∗x∗.

Let S = {x ∈ R | x = x∗} denote the set of symmetric elements of the
ring R. Then S = {∑ s1s2s3 · · · sn | si ∈ S} is the subring generated
by the symmetric elements S. A Lie multiplication is defined for the
ring R as follows [u, r] = (ur − ru), u, r ∈ R. An additive group U of
R is said to be a Lie ideal of R if [U, R] ⊆ U , that is, [u, r] ∈ U , for all
u ∈ U , r ∈ R.

For any arbitrary subsets A, B of R, [A, B] denotes the additive
subgroup generated by finite sums of products of the form ±[a, b], i.e.,
{∑±[a, b] | a ∈ A, b ∈ B}.

R is 2-torsion free if 2x = 0 implies x = 0. Therefore, R is 2-torsion
free implies R is not of characteristic 2.

2. ∗-simplicity. A set L is self-adjoint if L = L∗. A self-adjoint
ideal I of R is called a ∗-ideal. The notation I ⊕ K denotes an ideal
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direct sum for any ideals I, K of R. Recall that R is a simple ring if
R2 �= (0) and the only 2-sided ideals of R are (0) and R. Analogously
R is ∗-simple if R2 �= (0) and the only ∗-ideals are (0) and R. Z(R)
denotes the center of the ring R.

The following technical lemmas are needed to carry out the main
ring decomposition theorem. The first lemma concerning ∗-simple
rings appears in the literature in several places, Aburawash [1] and
Birkenmeier [3].

Definition 2.1. An idea I of R is said to be a simple ideal if and
only if I2 �= (0) and there exists no proper nonzero ideals J , of I. That
is, (0) �= J ⊆ I implies J = I.

Lemma 2.2. If R is not a simple ring, then R is ∗-simple if and
only if R = I ⊕ I∗ for I a simple ideal.

Proof. Assume R is ∗-simple but not simple. There exists an ideal
I, (0) �= I �� R. Clearly I + I∗ and I ∩ I∗ are ∗-ideals and hence
R = I ⊕ I∗. Let K be a 2-sided ideal of I, i.e., IKI ⊆ K, then
RKR = (I ⊕ I∗)K(I ⊕ I∗) ⊆ K and so K is an R-ideal. Now K + K∗

is a ∗-ideal of R implies K + K∗ = R or (0). K + K∗ = (0) implies
K = (0). If K + K∗ = R, then I ⊆ K, hence I Is a simple ideal. If
I2 = (0), then I(I ⊕ I∗) = (0). I ⊆ annihilator Ra, which is a ∗-ideal
of R, and therefore Ra = R or (0). Since R2 �= (0), then Ra = (0)
which implies I = (0).

Now the other direction. Let M be ∗-ideal of R. Then I ∩ M �= (0)
implies I ⊆ M in which case I∗ ⊆ M and therefore M = R. If
I ∩ M = (0), then a simple argument shows M = (0).

Example 2.3. Let R be a subset of the 2 × 2 matrices of the
form

(
0 b

a 0

)
with entries from a division ring D. The operations are(

0 b

a 0

)
+

(
0 d

c 0

)
=

(
0 b+d

a+c 0

)
,

(
0 b

a 0

) (
0 d

c 0

)
=

(
0 db

ac 0

)
and

(
0 b

a 0

)∗
=(

0 a

b 0

)
. Clearly R is not commutative and the transpose ∗ is an

involution. To show R is ∗-simple, let M �= (0) be a ∗-ideal where
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(
0 b

a 0

)
∈ M and either a or b �= (0). Now M is closed under all the

operations and certainly contains an element of the form
(

0 a

a 0

)
∈ M

with a �= (0). Since D is a division ring, then aD = Da = D. Hence(
0 a

a 0

) (
0 D

D 0

)
=

(
0 D

D 0

)
∈ M . This shows R ⊆ M . Let I be the

ideal
(

0 D

0 0

)
. Properties of a division ring imply I is a simple ideal and

maximal. So R =
(

0 D

0 0

)
+

(
0 D

0 0

)∗
.

Lemma 2.4. If R is ∗-simple, then one of the following holds.

(i) For R not simple, then Z(R) = Z(I) ⊕ Z(I∗) for a simple ideal,
I, of R.

(ii) For R simple and Z(R) �= (0), then R has an identity and Z(R)
is a field.

(iii) If R is simple, 2-torsion free and Z(R) = (0), then R and (0)
are the only subrings which are Lie ideals of R.

Proof. Parts (i) and (ii) can be found in most standard texts on rings
(Jacobson [8]) and part (iii) in Hestein [6, Theorem 1.2].

The next lemma first stated by Zuev [12] utilizes Lie ideals in a
fundamental way.

Lemma 2.5. Let U be a Lie ideal of R. Then W (U) = {w ∈ U |
wR ⊆ U for U a Lie ideal of R} is a 2-sided ideal of R.

Proof. Let W = W (U). Clearly, W is a right ideal of R. To
reach the desired conclusion, one need only show RW ⊆ W . One
first notes [w, r] = wr − rw ∈ U for all w ∈ W , r ∈ R. By
the definition of W , rw ∈ U for all r ∈ R. Therefore, rw ∈ U .
Clearly, for all r′ ∈ R, (rw)r′ − r′(rw) = [rw, r′] ∈ U . Regrouping
(rw)r′ − r′(rw) = (rw)r′ − (r′r)w). One has from the previous
statement (r′r)w ∈ U . Therefore, (rw)r′ ∈ U for all r′ ∈ R. Hence for
all r ∈ R, rw ∈ W and so W is a left ideal of R.
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Corollary 2.6. If U is self-adjoint and a Lie ideal of R, then W (U)
is a self-adjoint ideal of R.

Proof. W (U) ⊆ U implies W ∗(U) ⊆ U since U is self-adjoint. One
notes that w∗R ⊆ (R∗w)∗ ⊆ (Rw)∗ ⊆ W ∗(U) ⊆ U . Hence w∗ ∈ W (U)
for w ∈ W (U).

Corollary 2.7. If U is a Lie ideal and a subring, then [U, U ] ⊆
W (U).

Proof. Consider [u, v]r for u and v ∈ U , r ∈ R. One notes:
[u, v]r = uvr − vur = (u(vr) − (vr)u) + (vru − vur) = [u, vr] − v[u, r].
Since U is both a Lie ideal and a subring of R, the latter summands
are in U . Hence [u, v]R ⊆ U and so [u, v] ∈ W (U). Thus one concludes
[U, U ] ⊆ W (U).

One defines in an obvious manner the condition for a ring R with
involution to be R ∗-semi-prime; namely, if A is a ∗-ideal and A2 = (0)
implies A = (0). It is known that R ∗-semi-prime is equivalent to
R semi-prime, [1]. One notes that if R is a semi-prime ring with
involution, then it is obvious that R is ∗-semi-prime. Suppose R is
∗-semi-prime and I is an ideal of R with I2 = (0). Clearly (I∗)2 = (0).
(I + I∗)2 = II∗ + I∗I ⊆ I implies ((I + I∗)2)2 ⊆ I2 = (0). Since R
is ∗-semi-prime, then (I + I∗)2 = (0) and in addition (I + I∗) = (0).
Hence I = −I∗ implies I is a ∗ ideal and consequently I2 = (0) implies
I = (0). Thus R is semi-prime.

Lemma 2.8. Let U be both a Lie ideal and a subring in a semi-
prime ring R. If U is 2-torsion free, then U is a semi-prime ring and
Z(U) = Z(R) ∩ U .

Proof. To show that U , as a subring, is semi-prime, one needs to
show K2 = (0) for an ideal K of U implies K = (0). By Lemma 2.5,
W = W (U) ⊆ U is a 2-sided ideal of R. Since WKW ⊆ K, then
(WK)2 ⊆ (WK)(WK) ⊆ (WKW )K ⊆ KK ⊆ K2 = (0). Thus, WK
is a nilpotent left ideal of R. Since R is semi-prime, WK = (0). Thus,
K ⊆ R(W ), the right annihilator of W . Now (K ∩W ) ⊆ (R(W ) ∩ W )
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and (R(W )∩W )2 = (0). From this, one concludes (R(W )∩W ) = (0).

By Corollary 2.7, [U, U ] ⊆ W . Let x ∈ R and t ∈ K. Since U is
a Lie ideal of R and, by the above, one concludes −2txt = [t, [t, x]] ∈
K ∩ W = (0). In a semi-prime ring R, (2t)R(2t) = (0) implies 2t = 0.
Since U is 2-torsion-free, then 2t = (0) implies t = (0). Thus, K = (0)
and U is semi-prime.

Next Z(U) = Z(R) ∩ U . One need only show Z(U) ⊆ Z(R) ∩ U .
Let h ∈ Z(U) and r ∈ R. Then [h, r] ∈ U . Hence [h, [h, r]] = 0.
2[h, a][h, b] = 0 for a, b ∈ R follows from Herstein [6, Lemma 1.3]. Since
U is 2-torsion free, a Lie ideal, and a subring, then [h, a][h, b] = 0. The
Herstein lemma then shows in a semi-prime R that [h, a] = 0 for a ∈ R.
Hence h ∈ Z(R).

Corollary 2.9. If R is a semi-prime ring and S is 2-torsion free,
then S is a semi-prime ring.

Proof. The proof will follow if S satisfies the conditions imposed
on U in Lemma 2.8. One need only show that the subring S is a
Lie ideal. For s ∈ S, r ∈ R, [s, r] = sr − rs = ((sr + r∗s) −
(r + r∗)s) ∈ S. Assuming the induction hypothesis on the generators
s1s2s3 · · · sn in S, [s1s2s3 · · · sn, r] ∈ S. One has [s1s2s3 · · · sn+1, r] =
[s1s2s3 · · · sn, sn+1r] + [sn+1, r(s1s2s3 · · · sn)] ∈ S. Thus by induction
and the distributive rule, S is a Lie ideal.

One now states and proves the main structure theorem whose moti-
vation can in part be found in [10, Theorem 3.8]. Recall R is ∗-prime
if, for ∗-ideals A, B and AB = (0), then either A = (0) or B = (0).
This follows the well-known characterization for a prime ring R.

Theorem 2.10. Let U be a ∗-simple subring and a self-adjoint Lie
ideal of a semi-prime ring R. In addition, let xn ∈ U for x ∈ R where
n is a fixed positive integer.

(i) If Z(R) �= 0 and [U, U ] �= (0), then R = U is either a ∗-simple
ring or a simple ring with unit.

(ii) If Z(R) �= 0 and [U, U ] = (0), then R is a commutative ring and
U = F or U = F ⊕ F for a subfield F ⊂ R.
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(iii) If Z(R) = (0) and [U, U ] �= (0), then R is a ∗-prime ring and U
is a unique minimal ∗-ideal of R.

(iv) If Z(R) = (0) and [U, U ] = (0), then 2R = (0).

Proof. (i) The ∗-simple subring U satisfies the hypothesis of
Lemma 2.4 and thus either Z(U) = Z(I) ⊕ Z(I∗) for U ∗-simple or
Z(U) is a field for U simple. For U simple, then Z(U) �= (0). Suppose
otherwise then zn ∈ (Z(R)∩U) ⊆ Z(U) = (0) for all z ∈ Z(R). There-
fore Z(R) = (0) leads to a contradiction since the semi-prime ring R
would contain nilpotent elements.

In the case Z(U) = Z(I)⊕Z(I∗) either Z(I) or Z(I∗) �= (0). Assume
Z(I) �= (0), then Z(I) is the center of a simple ring I and therefore a
field. Let e be the identity in I and set h = e+e∗ then h2 = h �= 0. For
(i + j∗) ∈ U = I ⊕ I∗, then h(i + j∗) = (e + e∗)(i + j∗) = ei + e∗j∗ =
i+j∗ = ie+j∗e∗ = (i+j∗)(e+e∗) = (i+j∗)h. It follows that h ∈ Z(U)
and hu = u for u ∈ U . This, together with the fact that U is both a
Lie ideal and a subring of R, implies h[h, x] = [h, x] = [h, x]h for x ∈ R.
This results in h ∈ Z(R).

Therefore h is a central idempotent of R and R has the ideal decom-
position R = Rh ⊕ R(1 − h). Applying Corollary 2.6, together with U
is ∗-simple, leads to U = W (U) and U is a ∗-ideal of R. This, together
with Corollary 2.7, implies (0) �= [U, U ] ⊆ W (U) = U = Uh ⊆ Rh ⊆ U
and therefore Rh = U .

Let x ∈ R(1 − h), then xn ∈ U ∩ R(1 − h) = (0). Thus R(1 − h)
is a nil ideal of a bounded index in a semi-prime ring R and, by [6],
R(1 − h) = (0). Hence R = Rh = U with identity h, thus disposing of
the case U is ∗-simple.

For the case where U is simple, Z(U) �= (0) contains a central
idempotent h and the above argument, repeated verbatim, results in
the same conclusions.

(ii) Under the hypothesis, U is a Lie ideal and subring. By [6, Lemma
1.3] either U ⊆ Z(R) or 2R = (0). For the case U ⊆ Z(R) with R semi-
prime and xn ∈ Z(R) for all x ∈ R, R is commutative, see [8, page
218]. If U is simple, then U is a subfield of R and if U is ∗-simple, then
U = I ⊕ I∗ where I, I∗ are subfields.

In case 2R = (0), one notes for all x ∈ R, [u, x] ∈ U and [u, [u, x]] ∈
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[U, U ] = (0). Using the identity [u2, x] = [u, [u, x]] + (uxu + uxu) −
(xu2 + xu2) = 0, one concludes that u2 ∈ Z(R) for u ∈ U . Recalling
xn ∈ U , then (xn)2 ∈ Z(R) for x ∈ r. Using Jacobson’s result once
again, R is commutative. Therefore, as above, the same conclusions
follow.

(iii) Corollaries 2.6 and 2.7 imply (0) �= [U, U ] ⊆ W (U) = U and
hence U is a ∗-ideal of R. Let L �= (0) be a ∗-ideal of R, the ∗-simplicity
of U implies either L∩U = (0) or U ⊆ L. The case L∩U = (0) implies L
is a nil ideal of bounded index in a semi-prime ring R and therefore (0).
Otherwise U is a minimal ∗-ideal contained in every ∗-ideal of R. Let
A, B be nonzero ∗-ideals of R such that AB = (0). Clearly U2 = (0).
However R is semi-prime. Therefore U = (0), a contradiction. Hence,
either A = (0) or B = (0). That is, R is ∗-prime.

(iv) As shown in Case (ii) above, the Herstein results yield 2U ⊆
Z(R) = (0). 2(xn) = (2x)n = (0) for all x ∈ R and so (2R)n = (0).
Therefore, 2R is a nil ideal of bounded index in the semi-prime ring R;
thus 2R = (0).

Corollary 2.11. Let U be a simple subring and a Lie ideal of a
semi-prime ring R and further for n a fixed positive integer, xn ∈ U
for all x ∈ R.

(i) If Z(R) �= 0 and [U, U ] �= (0), then R = U is a simple ring with
unit.

(ii) If Z(R) �= (0) and [U, U ] = (0), then R is a commutative ring
and U is a subfield of R.

(iii) If Z(R) = (0) and [U, U ] �= (0), then R is a prime ring and U is
a unique minimal ideal of R.

(iv) If Z(R) = (0) and [U, U ] = (0), then 2R = (0).

Proof. The corollary follows directly from the theorem by replacing
U is ∗-simple with U is simple.

The second structure theorem shows the relation of the Lie ideal U
in which the nil elements in Theorem 2.10 are replaced with a type of
symmetric elements of R.
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Theorem 2.12. Let U be a ∗-simple subring and a self-adjoint Lie
ideal of a semi-prime ring R. Further, assume both x + x∗, xx∗ ∈ U
for all x ∈ R.

(i) If Z(R) �= (0) and [U, U ] �= (0), then R = U is either a ∗-simple
ring or a simple ring with unit.

(ii) If Z(R) �= (0) and [U, U ] = (0), then either R = Z(R) a field or
[R : Z(R)] = 4 or 2R = (0).

(iii) If Z(R) = (0) and [U, U ] �= (0), then R is a ∗-prime ring and U
is a unique minimal ∗-ideal of R.

(iv) If Z(R) = (0) and [U, U ] = (0), then 2R = (0).

Proof. (i) The proof models case (i) of Theorem 2.10 to the point
where U = Rh in the ideal direct sum R = Rh⊕R(1−h) = U⊕R(1−h)
for h a central idempotent. Let y ∈ R(1−h) and, since U and R(1−h)
are ideals, then yy∗, y(y + y∗) ∈ U ∩ R(1 − h) = (0). It follows that
y2 = y(y + y∗) − yy∗ = 0 and so R(1 − h) is a nil ideal of bounded
index. Now the proof picks up again in case (i) of Theorem 2.10.

(ii) Utilizing [6, Lemma 1.3], either U ⊆ Z(R) or 2R = (0). For
U ⊆ Z(R), the polynomial identity x2 − x(x + x∗) + xx∗ = 0 holds for
x ∈ R. If R is simple, then by a theorem of Kaplansky, R is primitive
and [R : Z(R)] ≤ 4. This can be sharpened using [8, Theorem 2, p.
122] to [R : Z(R)] = 1 or [R : Z(R)] = 4. Hence R is a field or is
four-dimensional over its center. The remaining case is 2R = (0).

(iii) The proof models case (iii) of Theorem 2.10 to the point where
L ∩ U = (0). For y ∈ L and yy∗, y(y + y∗) ∈ (L ∩ U) = (0) implies
y2 = y(y + y∗) − yy∗ = 0. L is a nil ideal of bounded index in a semi-
prime ring R and therefore (0). The proof continues as in case (iii) of
Theorem 2.10.

(iv) Under the hypothesis that U is a Lie ideal and subring, then
from [6, Lemma 1.3] either U ⊆ Z(R) or 2R = (0). For U ⊆ Z(R), the
polynomial identity x2 − x(x + x∗) + xx∗ = 0 holds for x ∈ R. Clearly,
x + x∗, xx∗ = 0 and so x2 = 0 for x ∈ R. Hence (2x)2 = 4(x2) = (0)
for x ∈ R and so (2R)2 = (0) which implies 2R is a nil ideal of bounded
index in R semi-prime, thus 2R = 0.

The above ring decompositions were achieved without the assump-
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tions of chain conditions or idempotents. The presence of Lie ideals
is a structural property of any associative ring, and the next example
shows that requiring Lie ideals is not a trivial condition.

Example 2.13. Let R be a subset of the 2× 2 matrices with entries
from a ring. The operations are

( x y

z w

)
+

(
x′ y′

z′ w′

)
=

(
x+x′ y+y′

z+z′ w+w′

)
and

( x y

z w

) (
x′ y′

z′ w′

)
=

(
xx′−yz′ xy′+yw′

zx′+wz′ zy′+ww′

)
. Let U =

{(
a b

0 a

)}
, then U is a

subring under the usual addition and the multiplication
(

a b

0 a

) ( x c

0 x

)
=(

ax ac+bx

0 ax

)
. U is a Lie ideal of R under the Lie multiplication(

a b

0 a

) ( x y

z w

) − ( x y

z w

) (
a b

0 a

)
=

(
−bz bw−xb

0 −bz

)
. However, U is not an

ideal of R as seen by
(

a b

0 a

) ( x y

z w

)
=

(
ax−bz ay+bw

az aw

)
.

In general, every two-sided ideal of R is a Lie ideal, but a Lie ideal
may not be an ideal of R. The Lie ideal structure was essential for the
above results.

3. Jordan simplicity and applications. A Jordan ideal structure
on S induces additional decompositions on the ring R. In Osborn and
Lanski’s work (Lanski[9], Osborn11]), the elements of S were either nil
or invertible; however, for this paper only the ideal properties play a
role and so provide a “global” versus a “local” approach.

All relevant assumptions in the Introduction remain intact. A Jordan
structure is now imposed on the ring R by defining a multiplication as
follows. x◦y = xy+yx, x, y ∈ R. If A and B are subsets of R, then the
additive subgroup A ◦ B = {∑±(a ◦ b) | a ∈ A, b ∈ B}. An additive
group J is a Jordan ideal of S if J ◦ S ⊆ J , i.e., j ◦ s ∈ J for j ∈ J ,
s ∈ S. S is Jordan simple if (0) and S are the only Jordan ideals of S.

One now continues the investigation into the characterizations of R by
considering a special subset N ⊆ S. These sets are partially dealt with
in Lanski [10] and his results will be generalized. The norm N is defined
as the additive subgroup N = {∑±xix

∗
i | xi ∈ R} generated by finite

sums of products of xix
∗
i . Clearly N ⊆ S. N = {∑ n1n2n3 · · ·nk |

ni ∈ N} is the subring generated by finite sums of products of ni ∈ N .
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The following lemmas are needed to prove the next structure theorem
for a semi-prime ring R.

Lemma 3.1. N is a Jordan ideal of S.

Proof. Clearly (
∑

xix
∗
i )◦s =

∑
(xix

∗
i )◦s. For xix

∗
i ∈ N the following

holds. xix
∗
i ◦ s = xix

∗
i s + sxix

∗
i = (xi + sxi)(xi + sxi)∗ − xix

∗
i −

(sxi)(sxi)∗ ∈ N . Hence, N ◦ S ⊆ N and therefore N is a Jordan ideal
of S.

Lemma 3.2. If R = R2, then N is a self-adjoint Lie ideal of R.

Proof. Clearly N is self-adjoint. Now R = R2 implies that, for any
x ∈ R, x =

∑
ziyi where zi, yi ∈ R.

One observes that zy + y∗z∗ = (z + y∗)(z + y∗)∗ − zz∗ − y∗(y∗)∗ ∈ N
for all z, y ∈ R. Since, as above, x =

∑
ziyi, then [n, x] = [n,

∑
ziyi] =∑

(nziyi − ziyin) =
∑

(n(ziyi + y∗
i z∗i ) − ((ziyi)n + n∗(ziyi)∗)) ∈ N for

n ∈ N . Hence [n, x] ∈ N . Using induction, assume [n1n2 . . . nk, x] ∈ N
for all x ∈ R. Then [n1n2 · · ·nknk+1, x] = (n1n2 · · ·nk)[nk+1, x] +
[n1n2 · · ·nk, x]nk+1 ∈ N completes the induction argument. Finally,
one observes [(

∑
n1n2 · · ·nk), x] =

∑
[n1n2 · · ·nk, x]. Thus, N is a Lie

ideal.

Lemma 3.3. If R = R2 and I an ideal of R such that N ⊆ I, then
2R ⊆ I.

Proof. Let x =
∑

zy. Then x + x∗ =
∑

(zy + y∗z∗) ∈ N follows
from the observation in Lemma 3.2. From the hypothesis N ⊆ I one
concludes x + x∗, xx∗ ∈ I for x ∈ R. Now x2 = x(x + x∗) − xx∗ ∈ I
and so x2 ∈ I for x ∈ R. Substitute x + y for x in x2, called
linearizing, one obtains x ◦ y = (xy + yx) = ((x + y)2 − x2 − y2) ∈ I
for x, y ∈ R. Using the preceding statement and the identity 2(xyz) =
(xy) ◦ z − (zx) ◦ y + (yz) ◦ x ∈ I. Hence, 2(xyz) ∈ I for x, y, z ∈ R.
Therefore, 2R3 ⊆ I and from R2 = R and clearly 2R ⊆ I.
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Lemma 3.4. If R = R2, characteristic R �= 4, and N is simple
Jordan, then N is a ∗-simple subring.

Proof. First one establishes the fact that R is 2-torsion free. T =
{x ∈ R | 2x = 0} is clearly a ∗-ideal of R. Since N ∩ T is a Jordan
ideal of S, then either N ∩ T = (0) or N ⊆ T .

Suppose N ⊆ T , Lemma 3.3 implies 2R ⊆ T and therefore 4R = (0)
contrary to the hypothesis characteristic R �= 4.

Otherwise N ∩T = (0). Let x ∈ T ; then xx∗ ∈ N ∩T and so xx∗ = 0.
Thus x3 = x(x+x∗)(x+x∗)∗ = 0. Hence T is a nil ideal in a semi-prime
ring R and therefore (0).

Hence R is two-torsion free and certainly N is two-torsion free. Now,
from Lemma 3.2, N is a self-adjoint Lie ideal and two-torsion free.
Applying Lemma 2.8, one concludes that N is semi-prime.

One next proves that N is ∗-simple. Let I be a ∗-ideal of N . Then
either I∩N = (0) or N ⊆ I. Suppose N ⊆ I. Then

∑
n1n2n3 · · ·nk ∈ I

and therefore I = N . Using the exact argument above for the ideal T ,
the case I ∩ N = (0) implies I = (0) since N is semi-prime.

Finally, one shows N
2 �= (0). Assume N

2
= (0). Then xx∗yy∗ = 0

for x, y ∈ R. Substituting y + z for y in xx∗yy∗ = 0 results in
xx∗(yy∗ + yz∗ + zy∗ + zz∗) = xx∗yz∗ + xx∗zy∗ = 0 for x, y, z ∈ R.
Pre-multiply the last result by z and post-multiply by zxx∗z to obtain
z(xx∗yz∗ + xx∗zy∗)zxx∗z = zxx∗y(z∗zxx∗)z + (zxx∗z)y∗(zxx∗z) =
(zxx∗z)y∗(zxx∗z) = 0. Since R is semi-prime, zxx∗z = 0. Post-
multiplying by xx∗, one obtains (zxx∗)2 = 0. Hence Rxx∗ is a nil left
ideal of bounded index 2 in a semi-prime ring R, and so xx∗ = 0 for
all x ∈ R. Substituting x + y in xx∗ = 0 one obtains xy∗ + yx∗ = 0. If
one post-multiplies by (x∗)∗, one concludes that xRx = (0). Since R
is semi-prime, x = 0. Therefore R = (0), which is false. Hence, N is
∗-simple.

In the next structure theorem the norm now plays a major role. One
uses arguments similar to those of Theorems 2.10 and 2.12. This is a
generalization of Lanski’s work on S.
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Theorem 3.5. If R = R2, characteristic R �= 4 and N is simple
Jordan.

(i) If Z(R) �= (0) and [N, N ] �= (0), then R = N is either a ∗-simple
ring or a simple ring with unit.

(ii) If Z(R) �= (0) and [N, N ] = (0), then either R = Z(R) a field,
or [R : Z(R)] = 4 or 2R = (0).

(iii) If Z(R) = (0) and [N, N ] �= (0), then R is a ∗-prime ring and N
is a unique minimal ∗-ideal of R.

(iv) If Z(R) = (0) and [N, N ] = (0), then 2R = (0).

Proof. (i), (iii). From Lemmas 3.2 and 3.4, N is a Lie ideal and
∗-simple subring of R. Replacing N for U in case (i) of Theorem 2.10
shows N to be a ∗-ideal of R. Now xx∗ ∈ N . Hence x3 = (x(x +
x∗)(x + x∗)∗ − x(xx∗) − (xx∗)x∗ − (xx∗)x) ∈ N . The hypothesis of
Theorem 2.10 (i) and (ii) is satisfied with U = N . Hence, the resulting
conclusions follow.

(ii), (iv). The proof of Lemma 3.3 shows x + x∗, xx∗ ∈ N for x ∈ R.
The hypothesis of Theorem 2.12 (ii) and (iv) is satisfied with U = N .
The resulting conclusions follow.

The following theorem shows the scope of von Neumann’s influence
in algebra. A ring R is von Neumann regular if for 0 �= x ∈ R there
exists a y �= 0 such that xyx = x. Clearly, R2 = R(x = y(x)). See [5]
for a discussion on von Neumann regular rings.

Theorem 3.6. Let R be von Neumann regular, and let N be simple
Jordan.

(i) If [N, N ] �= 0, then R = N is a ∗-simple ring.

(ii) If [N, N ] = (0), then R = eRe ⊕ (1 − e)Re ⊕ eR(1 − e) ⊕ (1 −
e)R(1 − e) where e is a symmetric idempotent (e �= 0) ∈ N . Further,
N ⊆ eRe and (1 − e)R(1 − e) is a nil subring of bounded index 3.

(iii) If [N, N ] = (0), then either R = Z(R) a field, or [R : Z(R)] = 4
or 2R = (0).
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Proof. (i) One first shows that R is ∗-simple. Let I be a ∗-ideal of
R, then as in Lemma 3.4 either I ∩ N = (0) or N ⊆ I. If N ⊆ I, then
xx∗ ∈ I for x ∈ R. Linearizing on x in xx∗ one concludes xy∗+yx∗ ∈ I.
Post-multiply by x; then xy∗x+ y(x∗x) ∈ I and so xRx ⊆ I for x ∈ R.
Now R von Neumann regular implies R ⊆ I. The case I ∩ N = (0)
implies xx∗ = 0 for x ∈ I.

Since I is a ∗-ideal, if one linearizes on x in xx∗, then one obtains
xy + y∗x∗ = 0 for x, y ∈ I. Post-multiply by x and replace y by yr
yield xyrx = 0 for x, y ∈ I and r ∈ R. Hence xyR is a nil right ideal
of bounded index 2 in a semi-prime ring R. Therefore, xy = 0. That
is, I2 = (0). R semi-prime implies I = (0). Hence, from the above, R
is ∗-simple. Since R is von Neumann regular, R2 = R, and thus from
Lemma 3.2, N is a self-adjoint Lie ideal of R. By Corollaries 2.6 and
2.7, [N, N ] ⊆ W (N) ⊆ N where W (N) is a ∗-ideal of R. Since R is
∗-simple, [N, N ] �= (0) implies R = N .

(ii) For [N, N ] = (0), then N ⊆ S. Assume N is not simple,
then I ∩ N = (0) where (0) �= I �� N for some ideal I. Define
Q = {G | (0) �= G �� N, and G∩N = (0)} for ideals G contained in N .
Q �= ∅ since I ∈ Q. Therefore, by Zorn’s lemma, Q contains a maximal
ideal M . Since N ⊆ S, then for x ∈ M , x2 = xx∗ ∈ M ∩ N = (0).
Hence M is a nil ideal of bounded index 2. Let N/M be a quotient
ring and suppose N

2 ⊆ M . Since M is of index 2, then (xy)2 = 0
and in particular x4 = 0 for all x ∈ N . Since N is a Lie ideal of R,
then (yr)5 = [y, r]4(yr) = 0 for all y ∈ M , r ∈ R. Hence yR is a nil
right ideal of bounded index 5 which implies y = 0. Thus, M = (0)
which is false. Therefore, N

2 �⊆ M together with [N, N ] = (0) shows
N/M �= (0) and commutative. Since M is maximal, then N/M is a
field.

Let ū ∈ N/M be the identity. Then ū2 = ū. Thus (u2 − u) ∈ M for
u ∈ N . Since M is nil of index 2, then u4 − 2u3 + u2 = (u2 − u)2 = 0.
Using this relation and N ⊆ S, consider the element e = (3u2 − 2u3).
Clearly e ∈ N is symmetric and e2 = e. Furthermore, e �= 0 since
otherwise 3u2 = 2u3 and 3ū2 = 2ū3 in N/M . Using ū2 = ū, this
reduces to 3ū = 2ū which implies ū = 0 contradicting ū as the field
identity.

The idempotent e induces in the ring R a two-sided Peirce decom-
position where eRe and (1 − e)R(1 − e) are ∗-subrings of R. Further,



56 L. CASCIOTTI

e ∈ (eRe ∩ N) �= (0) because e = eee = ee∗ and, since N is sim-
ple Jordan, then N ⊆ eRe. Now N ∩ (1 − e)R(1 − e) = (0). For
x ∈ (1 − e)R(1 − e), one then has xx∗, x + x∗ ∈ (1 − e)R(1 − e). How-
ever xx∗ ∈ N and therefore xx∗ = 0. Thus x3 = x(x+x∗)(x+x∗) = 0.
Therefore, (1 − e)R(1 − e) is a nil ring of bounded index 3.

(iii) Since R is von Neumann regular, for x ∈ R, x = x(yx) for some
y ∈ R. Assume N is simple. Let z = yx. Then x + x∗ = xz + z∗x∗ =
((x+z∗)(x+z∗)−xx∗−zz∗) ∈ N for all x ∈ R. Now x+x∗, xx∗ ∈ N .
Setting U = N , the result follows from Theorem 2.12 (ii).

The next extension is to weaken the condition on N and see what
further characterizations can be made on the ring R. The following
material and relevant definitions can be found in [4]. Recalling the
definition of prime ring, N is said to be Jordan prime if A∪B = (0),
under quadratic multiplication, then either A = (0) or B = (0) for
Jordan ideals A, B of N .

Theorem 3.7. If N is Jordan prime, then either R is a prime ring or
R is a subdirect sum of two rings R/I ⊕R/I∗ for an ideal (0) �= I �⊆ R.

Proof. Assume R is not prime. IJ = (0) for some proper, nonzero
ideals I, J of R. Now (I ∩ N)∪(J∩N) ⊆ IJ = (0). Since N is
Jordan prime, then either (I ∩ N) = (0) or (J ∩ N) = (0). Clearly,
(I ∩ I∗) ∩ N = (0). x3 = x(x + x∗)(x + x∗) ∈ (I ∩ I∗) ∩ N = (0) for
x ∈ I ∩ I∗. Therefore, the ∗-ideal I ∩ I∗ = (0) since it is of bounded
index 3 in a semi-prime ring R. Hence R is a subdirect sum [8, page
14].

Theorem 3.8. If N is Jordan prime and R is an involution ring.
Further, let L be a semi-prime, self-adjoint subring of R; then L is a
∗-prime ring.

Proof. Let I, J be ∗-ideal of L such that IJ = (0). Then, as
in Theorem 3.7, (I ∩ N)∪(J∩N) = (0) for which one can assume
(I ∩ N) = (0). Since xx∗ ∈ (I ∩ N) for x ∈ I; then, as above, x3 = 0.
Hence I is a nil ideal of bounded index 3 in the semi-prime subring L.
Therefore, I = (0) implying L is ∗-prime.
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