
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 34, Number 2, Spring 2004

RECURRENCES FOR THE PARTITION
FUNCTION AND ITS RELATIVES

JOHN A. EWELL

ABSTRACT. For each integer n ≥ 0, (i) p(n) := the number
of unrestricted partitions of n, (ii) q(n) := the number of
partitions of n into distinct parts and (iii) q0(n) := the number
of partitions of n into distinct odd parts. Conventionally,
p(0) = q(0) = q0(0) := 1. Presented here are: two apparently
new recurrences for p(·) and three formulas expressing the
functions q0(·) and q(·) in terms of the function p(·).

1. Introduction. We begin our discussion with a definition.

Definition 1.1. As usual, P := {1, 2, 3, . . . }, N := P ∪ {0},
Z := {0,±1,±2, . . . } and Q := the set of all rational numbers. Then,
for each n ∈ N, (i) p(n) := the number of unrestricted partitions of
n, (ii) q(n) := the number of partitions of n into distinct parts and
(iii) q0(n) := the number of partitions of n into distinct odd parts.
Conventionally, p(0) = q(0) = q0(0) := 1. We also adopt the convention
that p(x) = q(x) = q0(x) := 0 whenever x ∈ Q− N.

Euler’s pentagonal number recurrence for the partition function p(·),
viz.,

p(n) =
∑
k∈P

(−1)k−1{p(n − k(3k − 1)/2) + p(n − k(3k + 1)/2)},

for each n ∈ P, where p(0) = 1, has been known for more than 250
years.

Doubtless, any new recurrence for p(·) will always be compared with
Euler’s recurrence. In this paper we present two new recurrences for
p(·), Theorems 1.2 and 1.3, below stated. Our concluding remarks
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provide a numerical example to show that the first of these two
recurrences is actually more efficient than Euler’s recurrence.

We also present three formulas which express the functions q0(·) and
q(·) in terms of the function p(·).

In responding to a question of Ramanujan regarding the parity of the
value p(1000), MacMahon [3, pp. 281 283] foresaw to a limited degree
the possibility of speeding up Euler. Then, modulo 2, he utilized the
fifth identity in our proof of Theorem 1.2.

In Section 2, proofs of the following six results are given.

Theorem 1.2. For each n ∈ N,

(1.1) p(n) =
∑
k∈N

p

(
n − k(k + 1)/2

4

)
+ 2

∑
k∈P

(−1)k−1p(n − 2k2).

Theorem 1.3. For each n ∈ N,

(1.2)

p(n) =
∑
k∈N

p

(
n − k(k + 1)/2

2

)

+
∑
k∈P

(−1)k−1{p(n − k(3k − 1)) + p(n − k(3k + 1))}.

Theorem 1.4. For each n ∈ N,

(1.3)
1 − (−1)n

2
q0(n) +

∑
k∈P

(−1)kq0(n − k2)

− (−1)n
∑
k∈P

(−1)kq0(n − 2k2) = 0.

Theorem 1.5. For each n ∈ N,

(1.4) q0(n) = p(n) + 2
∑
k∈P

(−1)k(n − 2k2).
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Theorem 1.6. For each n ∈ N,

(1.5) q0(n) = (−1)np(n) + 2(−1)n
∑
k∈P

(−1)kp(n − k2).

Theorem 1.7. For each n ∈ N,

(1.6) q(n) = p(n) +
∑
k∈P

(−1)k{p(n − k(3k − 1)) + p(n − k(3k + 1))}.

2. Proofs. Our proofs depend on the following identities, each of
which is valid for all complex numbers x such that |x| < 1.

(2.1)
∞∏
1

(1 + xn)(1 − x2n−1) = 1,

(2.2)
∞∏
1

(1 − xn) = 1 +
∑
k∈P

(−1)k{x1/2k(3k−1) + x1/2k(3k+1)},

(2.3)
∞∏
1

(1 − xn)(1 − x2n−1) = 1 + 2
∑
k∈P

(−1)kxk2
,

(2.4)
∞∏
1

1 − x2n

1 − x2n−1
=

∑
k∈N

xk(k+1)/2.

For a proof of (2.1), see [2, p. 277]; and for proofs of (2.2), (2.3) and
(2.4), see [2, pp. 282 284].

Proof of Theorem 1.2. First of all, we let x → x2 in (2.3), and observe
that the lefthand side of the resulting identity is

∞∏
1

(1 − x2n)(1 − x4n−2) =
∞∏
1

(1 − xn)(1 + xn)(1 − x2n−1)(1 + x2n−1)

=
∞∏
1

(1 − xn)(1 + x2n−1).
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The last step is justified by (2.1). Hence,

(2.5)
∞∏
1

(1 + x2n−1) =
∞∏
1

(1 − xn)−1

{
1 + 2

∞∑
1

(−1)kx2k2
}

.

Next, with the help of (2.1), we write the lefthand side of (2.4) as

∞∏
1

(1 − x2n)(1 + xn) =
∞∏
1

(1 − x2n)(1 + x2n)(1 + x2n−1)

=
∞∏
1

(1 − x4n)(1 + x2n−1).

Therefore, (2.4) becomes

∏
1

(1 + x2n−1) =
∞∏
1

(1 − x4n)−1
∞∑
0

xk(k+1)/2.

Between (2.5) and the foregoing identity we eliminate the product∏∞
n=1(1 + x2n−1) to get

∞∏
1

(1 − xn)−1

{
1 + 2

∞∑
1

(−1)kx2k2
}

=
∞∏
1

(1 − x4n)−1
∞∑
0

xk(k+1)/2,

or, equivalently,

∞∑
j=0

p(j)xj

{
1 + 2

∞∑
k=1

(−1)kx2k2
}

=
∞∑

j=0

p(j)x4j
∞∑

k=0

xk(k+1)/2.

Expanding both sides of the foregoing identity, and subsequently equat-
ing coefficients of like powers of x, we prove Theorem 1.2.
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Proof of Theorem 1.3. On the one hand, because of (2.2), where
x → x2, we get

∞∏
1

(1 + xn) =
∞∏
1

(1 − xn)−1

{
1 +

∞∑
1

(−1)k(xk(3k−1) + xk(3k+1))
}

=
∞∑

j=0

p(j)xj

{
1 +

∞∑
1

(−1)k(xk(3k−1) + xk(3k+1))
}

=
∞∑

n=0

p(n)xn +
∞∑

n=2

xn
∑
k≥1

(−1)kp(n − k(3k − 1))

+
∞∑

n=4

xn
∑
k≥1

(−1)kp(n − k(3k + 1)).

On the other hand, by (2.1) and (2.4), we get

∞∏
1

(1 + xn) =
∞∏
1

(1 − x2n)−1
∞∑
0

xk(k+1)/2

=
∞∑

j=0

p(j)x2j
∞∑

k=0

xk(k+1)/2

=
∞∑

n=0

xn
∑
k≥0

p

(
n − k(k + 1)/2

2

)
.

Between these two identities we now eliminate the product
∏

(1 + xn),
and subsequently equate coefficients of like powers of x to obtain the
desired conclusion.

Proof of Theorem 1.4. In (2.3) we let x → −x, to get

(2.6)
∞∏
1

(1 + x2n−1) =
∞∏
1

(1 − (−x)n)−1

{
1 + 2

∞∑
1

xk2
}

.

By (2.5) and (2.6),

∞∏
1

(1−xn)
{

1+2
∞∑
1

xk2
}

=
∞∏
1

(1−x2n)(1+x2n−1)
{

1+2
∞∑
1

(−1)kx2k2
}

,
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whence

1 + 2
∞∑
1

xk2
=

∞∏
1

(1 + xn)(1 + x2n−1)
{

1 + 2
∞∑
1

(−1)kx2k2
}

,

whence, due to (2.1),

∞∏
1

(1− x2n−1)
{

1 + 2
∞∑
1

xk2
}

=
∞∏
1

(1 + x2n−1)
{

1 + 2
∞∑
1

(−1)kx2k2
}

,

whence
∞∑

j=0

(−1)jq0(j)xj

{
1 + 2

∞∑
1

xk2
}

=
∞∑

j=0

q0(j)xj

{
1 + 2

∞∑
1

(−1)kx2k2
}

.

Now, expanding both sides of the foregoing identity, and subsequently
equating coefficients of like powers of x, we prove our theorem.

Proof of Theorem 1.5. Since

∞∏
1

(1 + x2n−1) =
∞∑
0

q0(n)xn,

(2.5) yields

∞∑
n=0

q0(n)xn =
∞∑

j=0

p(j)xj

{
1 + 2

∞∑
k=1

(−1)kx2k2
}

=
∞∑

n=0

p(n)xn + 2
∞∑

n=2

xn
∑
k≥1

(−1)kp(n − 2k2).

The conclusion follows upon equating coefficients of like powers of x.

Proof of Theorem 1.6. Beginning with (2.6) and arguing as in the
foregoing proof, we get

∞∑
n=0

q0(n)xn =
∞∑

n=0

(−1)np(n)xn + 2
∞∑

n=1

xn
∑
k≥1

(−1)n−kp(n − k2).
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The conclusion follows.

Proof of Theorem 1.7. Since
∞∏
1

(1 + xn) =
∞∑
0

q(n)xn,

the identity at the beginning of the proof of Theorem 1.3 yields
∞∑

n=0

q(n)xn =
∞∑

n=0

p(n)xn +
∞∑

n=2

xn
∑
k≥1

(−1)k(n − k(3k − 1))

+
∞∑

n=4

xn
∑
k≥1

(−1)kp(n − k(3k + 1)).

Upon equating coefficients of like powers of x, we prove our theorem.

Theorems 1.5, 1.6 and 1.7 present formulas for the functions q0(·) and
q(·) expressed in terms of the function p(·). The first such expressions
seem to be due to Watson [4, p. 551]. There he stated two identities,
essentially variants of (2.4), whose developments lead to

q0(n) =
∑
k≥0

p

(
n − k(k + 1)/2

4

)
, n ∈ N

and

q(n) =
∑
k≥0

p

(
n − k(k + 1)/2

2

)
, n ∈ N.

Although the foregoing formulas are valid, they do not provide
effective determinations of the functions q0(·) and q(·). The trouble
turns on using large values of p(·) to compute the relatively smaller
values of q0(·) and q(·). Effective recurrences for q0(·) and q(·) are
presented by the author [1, pp. 1 2], viz., for each n ∈ N,∑

k∈N

(−1)k(k+1)/2q0(n − k(k + 1)/2)

=
{ (−1)m if n = m(3m ± 1) for some m ∈ N,

0 otherwise,
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and

q(n) + 2
∑
k∈P

(−1)kq(n − k2)

=
{

(−1)m if n = m(3m ± 1)/2 for some m ∈ N,

0 otherwise.

Concluding remarks. As observed in [2, p. 286], for given n ∈ P,
computation of p(n) by Euler’s recurrence requires about

√
(8n)/3

of the values p(m), 0 ≤ m < n. Note that, for given n ∈ P, the
second sum on the righthand side of (1.1) requires about

√
n/2 of

the values p(m), 0 ≤ m < n, and the first sum requires less than√
2n/2 =

√
n/2 of these earlier values. Hence, computation of p(n) by

(1.1) requires less than 2
√

n/2 =
√

2n of the values p(m), 0 ≤ m < n.
In a word, the recurrence of Theorem 1.2 is more efficient than Euler’s
recurrence. We illustrate this with the numerical example n = 15,
where

√
(8n)/3 =

√
40 so that [

√
40] = 6; and

√
2n =

√
30, with

[
√

30] = 5.

By Euler’s recurrence,

p(15) = p(15 − 1) + p(15 − 2) − p(15 − 5) − p(15 − 7)
+ p(15 − 12) + p(15 − 15)

= p(14) + p(13) − p(10) − p(8) + p(3) + p(0)
= 135 + 101 − 42 − 22 + 3 + 1 = 176.

By recurrence (1.1),

p(15) = p

(
15 − 3

4

)
+ p

(
15 − 15

4

)
+ 2{p(15 − 2) − p(15 − 8)}

= p(3) + p(0) + 2{p(13) − p(7)}
= 3 + 1 + 2{101 − 15} = 4 + 172 = 176.

Comparison of recurrence (1.2) with Euler’s recurrence is not as
striking as the foregoing comparison. Details are left for the reader.
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