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ON ASSOCIATIVE SUPERALGEBRAS OF MATRICES

S. DǍSCǍLESCU, P.D. JARVIS, A.V. KELAREV AND C. NǍSTǍSESCU

1. Introduction. This work is a contribution to ongoing inves-
tigations of algebraic structures in relation to the theoretical descrip-
tion of physical systems. Matrix methods have been used by various
mathematical physicists in the late nineteenth century and have been
applied, for example, in the exploration of quaternions and other di-
vision algebras as a generalization of the complex number system for
quantum physics, see, for example, [25]. One of the deepest results
permeating physics is the spin-statistics theorem, see [27], according
to which the space-time properties (spin) of elementary particles are
correlated with their quantum statistical description. The two classes
of particle statistics, Bose-Einstein and Fermi-Dirac, respectively, can
be accommodated naturally in a larger algebraic scheme incorporating
the notion of grading to accommodate various sign factors in defining
relations (in this regard see, for example, [3, 8, 15, 23, 24, 29, 30]).

At the level of nonassociative algebras, the structure and representa-
tion theory of Z2-graded Lie superalgebras have been extensively stud-
ied as symmetry algebras of physical systems (for examples of appli-
cations we refer to [2, 7, 11, 13, 14]). In recent years the study of
two-dimensional systems has led to the realization that richer algebraic
schemes such as the so-called quantum algebras may be relevant (the
spin-statistics theorem is also weaker in the two-dimensional case).

In the present paper we relax the notion of a superalgebra and
investigate associative rings graded by semigroups. Retaining, in this
paper, a bipartite decomposition of the underlying space into a ‘Bose-
like’ and a ‘Fermi-like’ piece, we therefore study the five classes of two-
element semigroups. Since matrix rings play important roles in this
research direction (see [1, 5, 10, 12, 26]), the first natural step is to
investigate the matrix algebras graded by the two-element semigroups.

Let S be a semigroup. An associative ring R is said to be S-graded,
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586 DǍSCǍLESCU, JARVIS, KELAREV AND NǍSESCU

if R = ⊕s∈sSRs is a direct sum and RsRt ⊆ Rst for all s, t ∈ S. If
R is an F -algebra, we say that R is an S-graded F -algebra if R is an
S-graded ring such that all the homogeneous components Rs are F -
vector subspaces of R. For earlier results on semigroup-graded rings
and groupoid-graded rings, we refer to the surveys [19, 20, 21] and to
the monograph [22].

Let F be a field. An interesting example of a semigroup grading
of a matrix algebra was given in [28] by Wedderburn, who showed
that the full matrix algebra Mn(F ) over a field F of characteristic zero
can be graded by a rectangular band, i.e., by a semigroup satisfying
the identities xyx = x and x2 = x, so that all the components are
isomorphic to the field F .

The general problem of describing all semigroup gradings of a full
matrix algebra was posed by Zel’manov, see [19]. An obvious type of
grading of Mn(F ) to look at is one for which all the matrix units eij

are homogeneous elements. Such a grading is called a good grading.
Good gradings were studied in the group-grading case in [9] and in a
different setting in [16] and [17], where they were constructed from
weight functions on the complete graph Γ on n points, using the fact
that Mn(F ) is a quotient of the path algebra of the quiver Γ.

The problem of finding all, not necessarily good, gradings of the
F -algebra Mn(F ) by a semigroup S has already been considered in
the literature. The special case of Z2-gradings was solved in [9], in
particular providing examples of gradings which are not good gradings.
If F is algebraically closed, it was shown that any Z2-grading of M2(F )
is isomorphic to a good grading. However, if F is not algebraically
closed, it may be possible to find Z2-gradings of M2(F ) which are not
isomorphic to a good grading. In Section 2 we describe all gradings
of M2(F ) by semigroups with two elements which are not groups and
determine the isomorphism types of such gradings. It is interesting that
all these gradings are isomorphic to good gradings, independently on
the structure of the field F . In Section 3 we look at gradings of matrix
algebras which are not full; more precisely, we describe gradings of an
upper triangular 2 × 2 matrix algebra T by all semigroups with two
elements. In this case the structure of the field F does not have any
influence on the number of isomorphism types of such gradings. The
situation is different from the full matrix algebra case, any Z2-grading
of T being isomorphic to a good grading. The same fact is true for
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gradings by a left zero semigroup. However, we find gradings of T by
the semi-lattice with two elements which are not isomorphic to a good
grading.

2. Gradings of full matrix algebras. It is a folklore, and easily
follows, for example, from [6, Lemma 2.26 and Theorem 3.5] that there
exist five isomorphism types of semigroups with two elements: the
group Z2 with two elements, the semi-lattice, i.e., a monoid which
is not a group, the left zero semigroup, i.e., the semigroup satisfying
the identities xy = x and x2 = x, the right zero semigroup, i.e., the
semigroup satisfying the identities xy = y and x2 = x, and the null
semigroup, i.e., the semigroup with zero satisfying the identity xy = 0.
The left zero semigroup and the right zero semigroup cases are similar
and so in the first theorem we consider only one of these cases.

Theorem 1. Let S = {s, r} be a left zero semigroup with two
elements. Then any S-grading of the algebra A = M2(F ) is of one
of the following three types:

(i) As = A, Ar = 0;

(ii) As = 0, Ar = A;

(iii)

As =
{(

u v
λu λv

) ∣∣∣∣u, v ∈ F

}
, Ar =

{(
µu µv
u v

) ∣∣∣∣u, v ∈ F

}
,

for some λ, µ ∈ F such that λµ �= 1;

(iv)

As =
{(

0 0
u v

) ∣∣∣∣u, v ∈ F

}
, Ar =

{(
u v
µu µv

) ∣∣∣∣u, v ∈ F

}
,

for some µ ∈ F ;

(v)

As =
{(

λu λv
u v

) ∣∣∣∣u, v ∈ F

}
, Ar =

{(
u v
0 0

) ∣∣∣∣u, v ∈ F

}
,

for some λ ∈ F .
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Apart from the gradings obtained from µ = 0 in type (iv) and λ = 0 in
type (v), there are no other identical gradings in the list. Any grading
of type (iii) is isomorphic to the grading

As =
(
F F
0 0

)
, Ar =

(
0 0
F F

)
,

and any grading of type (iv) or (v) is isomorphic to the grading

As =
(

0 0
F F

)
, Ar =

(
F F
0 0

)
.

In particular, there exist four isomorphism types of S-algebra gradings
on M2(F ).

Proof. For any a, b ∈ A we have that

(ab)s = asbs + asbr

= asbs + as(b− bs)
= asb.

Thus the map ϕ : A→ A, ϕ(a) = as, is a morphism of right A-modules.
Therefore it is of the form ϕ(a) = ha for some h ∈ A. Moreover, since
ϕ2 = ϕ, we must have h2 = h. Let

h =
(
α β
γ δ

)
.

Then h2 = h is equivalent to

α2 + βγ = α, β(α+ δ) = β, γ(α+ δ) = γ, δ2 + βγ = δ.

If α + δ �= 1, then β = γ = 0 and α, δ ∈ {0, 1}; thus, either α = δ = 0
or α = δ = 1. In this case we obtain two solutions, h = 0 and h = I2.
If h = 0, then we obtain the trivial grading As = 0, Ar = A. If h = I2,
then we have the other trivial grading As = A, Ar = 0.

If α+ γ = 1, the solutions are of the form

h =
(
α β
γ 1 − α

)
,
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where α ∈ F and β, γ ∈ F such that βγ = α− α2. In this case, if

a =
(
x y
z t

)
∈ A,

then the homogeneous component of degree s of a is

as =
(

αx+ βz αy + βt
γx+ (1 − αz) γy + (1 − α)t

)
.

Note that

γ(αx+ βz) = α(γx+ (1 − α)z), γ(αy + βt) = α(γy + (1 − α)t).

Let us consider first the case when α �= 0. For any u, v ∈ F choose
some z, t ∈ F and x = u− βz/α, y = v−βt/α. Then αx+ βz = u and
αy + βt = v. It follows that

As =
{(

u v
(γ/α)u (γ/α)v

) ∣∣∣∣u, v ∈ F

}
.

By a similar computation we find that

Ar =
{(−(β/α)u −(β/α)v

u v

) ∣∣∣∣u, v ∈ F

}
.

We claim that the pair [(γ/α),−(β/α)] can take any value (λ, µ) ∈ F 2

with λµ �= 1. Indeed, if α, β, γ ∈ F such that α �= 0 and βγ = α(1−α),
then (γ/α)(−β/α) = α − 1/α �= 1. Conversely, if λ, µ ∈ F satisfy
λµ �= 1, then take

α =
1

1 − λµ
, β =

−µ
1 − λµ

, α =
λ

1 − λµ
.

Then clearly α �= 0, βγ = α(1 − α) and λ = γ/α, µ = −β/α. Thus we
obtain gradings of type (iii).

If α = 0, then either β = 0 or γ = 0. In the first case we obtain
gradings of type (iv), while in the second case we find gradings of type
(v).
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Let us show that a grading of type (iii), given by the parameters λ, µ
with λµ �= 1, is isomorphic to the grading

As =
(
F F
0 0

)
, Ar =

(
0 0
F F

)
.

Take

X =
(

1 −µ
−λ 1

)
,

which is clearly an invertible matrix. Then the map f : A→ A defined
by f(a) = XaX−1 for any a ∈ A is an algebra isomorphism, and it is
straightforward to check that

f
( (

u v
λu λv

) )
∈

(
F F
0 0

)
and f

( (
µu µv
u v

) )
∈

(
0 0
F F

)
.

Thus f is an isomorphism of S-graded algebras. Similarly, the gradings
of type (iv) and (v) are isomorphic to the grading

As =
(

0 0
F F

)
, Ar =

(
F F
0 0

)
.

Proposition 2. Let S = {1, s} be a semi-lattice, and let A = M2(F ).
Then there exist exactly two S-algebra gradings of A, namely,

(i) A1 = A, As = 0, and

(ii) A1 = 0, As = A.

Proof. For any structure of an S-graded algebra of A, we clearly have
that As is a two-sided ideal of A. Then either As = 0 and the grading
is of type (i), or As = A and the grading is of type (ii).

Finally, if S is the zero group, it is obvious what an S-grading must
be.

Proposition 3. Let S be a null semigroup, not necessarily with two
elements, and A an F -algebra. Then there exists only one S-grading of
A; this is A0 = A and As = 0 for any s �= 0.
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Proof. We have

A = AA =
( ∑

s∈S

As

)( ∑
t∈S

At

)
=

∑
s,t∈S

AsAt ⊆
∑

s,t∈S

Ast = A0,

and so A = A0. Then, obviously As must be 0 for all s �= 0.

3. Gradings of upper triangular matrix algebras. Let us
consider the F -algebra of 2 × 2 upper triangular matrices

T =
[
F F
0 F

]
.

Theorem 4. Assume that the field F has a characteristic different
from 2. Then any grading of the F -algebra T by the group Z2 = {e, g}
is of one of the following two types.

(i) The trivial grading, i.e., Te = T , Tg = 0.

(ii)

Te =
{(

x a(x− z)
0 z

) ∣∣∣∣x, z ∈ F

}
, Tg =

(
0 F
0 0

)
,

for some a ∈ F .

Moreover, any grading of type (ii) is isomorphic to the grading

Te =
(
F 0
0 F

)
, Tg =

(
0 F
0 0

)
.

In particular, there exist two isomorphism types of Zs-graded algebra
structure on T .

The following lemma can be proved by a straightforward but tedious
computation.

Lemma 5. Let φ : T → T be an F -linear map. Then φ is an algebra
automorphism of T if and only if there exist a ∈ F and b ∈ F ∗ such
that

φ(e11) = e11 + ae12, φ(e12) = be12, φ(e22) = −ae12 + e22.
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In this case φ2 = Id if and only if either b = 1 and a = 0, when φ = Id
or b = −1 and a ∈ F .

Proof of Theorem 4. If T = Te ⊕Tg is a Z2-grading of T , let us define
the map φ : T → T by φ(A) = Ae −Ag for any A ∈ T . Then

φ(AB) = (AB)e − (AB)g

= AeBe + AgBg −AeBg −AgBe

= φ(A)φ(B)

and since φ is clearly bijective we obtain that φ is an algebra automor-
phism of T . Moreover, φ2(A) = φ(Ae − Ag) = Ae + Ag = A, thus
φ2 = Id. In terms of the automorphism φ, the grading is

Te = {Ae | A ∈ T} =
{

1
2
(A+ φ(A)) | A ∈ T

}
,

Tg = {Ag | A ∈ T} =
{

1
2
(A− φ(A)) | A ∈ T

}
.

Lemma 5 shows that either φ = Id or φ(e11) = e11 + ae12, φ(e12) =
−e12, φ(e22) = −ae12 + e22 for some a ∈ F . In the first case we obtain
the trivial grading. In the second case, for

A =
(
x y
0 z

)

we have

φ(A) =
(
x a(x− z) − y
0 z

)
,

and then

Te =
{(

x (a/2)(x− z)
0 z

) ∣∣∣∣x, z ∈ F

}
, Tg =

(
0 F
0 0

)
,

which proves the first part of the statement.

If for any a ∈ F we denote by T (a) the algebra T with the grading

T (A)e =
{(

x a(x− z)
0 z

) ∣∣∣∣x, z ∈ F

}
, T (a)g =

(
0 F
0 0

)
,
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then the map ψ : T (a) → T (0) defined by

φ

( (
x y
0 z

) )
=

(
x a(x− z) − y
0 z

)

is an isomorphism of Z2-graded algebras.

Theorem 6. Let S = {s, r} be the left zero semigroup. Then an
S-grading of the F -algebra T is of one of the following types.

(i) Ts = 0, Tr = T .

(ii) Ts = T , Tr = 0.

(iii)

Ts =
(
F F
0 0

)
, Tr =

{(
0 cz
0 z

) ∣∣∣∣z ∈ F

}
for some c ∈ F .

(iv)

Ts =
{(

0 cz
0 z

) ∣∣∣∣z ∈ F

}
, Tr =

(
F F
0 0

)
for some c ∈ F .

Moreover, any grading of type (iii) is isomorphic to the grading

Ts =
(
F F
0 0

)
, Tr =

(
0 0
0 F

)
,

and any grading of type (iv) is isomorphic to the grading

Ts =
(

0 0
0 F

)
, Tr =

(
F F
0 0

)
.

In particular, there exist four isomorphism types of S-gradings of the
F -algebra T .

Proof. If T = Ts ⊕ Tr is an S-grading of T , define φ : T → T by
φ(A) = As for any A ∈ T . Then, as in the proof of Theorem 1, we
see that there exists h ∈ T with h2 = h such that φ(A) = hA for any
A ∈ T , and

Ts = {φ(A) | A ∈ T}, Tr = {A− φ(A) | A ∈ T}.
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Straightforward computations show that h must be one of the following
matrices

0, I2,
(

0 c
0 1

)
,

(
1 c
0 0

)
,

for some c ∈ F . If h = 0, we obtain Ts = 0, Tr = T . If h = I2, we
have Ts = T , Tr = 0. If h =

(
1 c

0 0

)
, the homogeneous components of

the matrix A =
( x y

0 z

) ∈ T are

As = φ(A) = hA =
(
x y − cz
0

)
and Ar = A−φ(A) =

(
x cz
0 c

)
,

producing a grading of type (iii). Similarly, h =
(

0 c

0 1

)
produces a

grading of type (iv).

Finally, if we denote by T (c) the algebra T with the grading

Ts =
(
F F
0 0

)
, Tr =

{(
0 cz
0 z

) ∣∣∣∣z ∈ F

}
,

we have the map f : T (0) → T (c) defined by

f

( (
x y
0 z

) )
=

(
x −c(x− z) + y
0 z

)

is an isomorphism of S-graded algebras. Similarly for gradings of type
(iv).

Theorem 7. Let S = {1, s} be a semi-lattice. Then an S-grading of
the F -algebra T is of one of the following types.

(i) T1 = T , Ts = 0.

(ii) T1 = 0, Ts = T .

(iii)

T1 =
{(

0 cx
0 x

) ∣∣∣∣x ∈ F

}
, Ts =

(
F F
0 0

)
,

for some c ∈ F .

(iv)

T1 = FI2, Ts =
(
F F
0 0

)
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(v)

T1 =
{(

x cx
0 0

) ∣∣∣∣x ∈ F

}
, Ts =

(
0 F
0 F

)
,

for some c ∈ F .

(vi)

T1 = FI2, Ts =
(

0 F
0 F

)
.

(vii)

T1 =
{(

x α(x− y)
0 y

) ∣∣∣∣x, y ∈ F

}
, Ts =

(
0 F
0 0

)
,

for some c ∈ F .

Moreover, a grading of type (iii) is isomorphic to the grading

T1 =
(

0 F
0 0

)
, Ts =

(
F F
0 0

)
,

a grading of type (v) is isomorphic to the grading

T1 =
(
F 0
0 0

)
, Ts =

(
0 F
0 F

)
,

a grading of type (vii) is isomorphic to the grading

T1 =
(
F 0
0 F

)
, Ts =

(
0 F
0 0

)
,

and the isomorphism types (i) (vi) and (vii) of S-gradings are different.
In particular, there exist seven isomorphism types of S-gradings of the
F -algebra T , five of them being good gradings, and the other two not
isomorphic to good gradings.

Proof. As in the proof of Proposition 2, Ts is a two-sided ideal of T .
Thus, Ts is one of

0, T,
(
F F
0 0

)
,

(
0 F
0 F

)
,

(
0 F
0 0

)
.
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If Ts = 0, we obtain T1 = T . If Ts = T , we get T1 = 0. If

Ts =
(
F F
0 0

)
,

then T1 has dimension one over F , more precisely,

T1 = F

(
a c
0 b

)
,

for some a, b, c ∈ F with c �= 0. Since T1T1 ⊆ T1, we see that either
a = b and c = 0 or a = 0. In the first situation we obtain a grading of
type (iv), in the second one a grading of type (iii).

Similarly, if Ts =
(

0 F

0 F

)
, then we obtain gradings of types (v) and

(vi).

Assume now that Ts =
(

0 F

0 0

)
. Then it is easy to see that T1 has a

basis consisting of the matrices

(
1 α
0 0

)
and

(
0 β
0 1

)

for some α, β ∈ F . If we write that the product of these two matrices
is in T1, thus spanned by the two matrices, we obtain that β = −α.
Then

T1 =
{
x

(
1 α
0 0

)
+ y

(
1 −α
0 0

) ∣∣∣∣x, y ∈ F

}

=
{(

x α(x− y)
0 y

) ∣∣∣∣x, y ∈ F

}
,

i.e., we have a grading of type (vii). The rest of the claim follows now
as in the proof of Theorem 4.

In conclusion, we note that gradings of T by the null semigroup have
been already described in Proposition 3.

Acknowledgments. The authors are grateful to the referee for
several corrections.
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