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THE RATIONALITY OF THE MODULI SPACES
OF BIELLIPTIC CURVES OF GENUS FIVE
WITH MORE BIELLIPTIC STRUCTURES

GIANFRANCO CASNATI

0. Introduction and notations. Let C be an irreducible, smooth,
projective curve of genus g ≥ 2, defined over the complex field C. The
curve C is called bielliptic if it admits a degree 2 morphism π: C → E
onto an elliptic curve E: such a morphism is called a bielliptic structure.

If g ≥ 6 then the bielliptic structure is unique. If g = 3, 4, 5 this
holds true generically, but there exist curves C carrying more than one
bielliptic structure.

We denote by Mbe,n
g the locus of points representing curves with at

least n bielliptic structures inside the coarse moduli space Mg of smooth
curves of genus g. There are the following sharp bounds: n ≤ 21, 10, 5
if g = 3, 4, 5 respectively (see Corollary 5.8 of [3]).

We focus our interest on the case g = 5. It is already known that
Mbe,1

5 is rational (see [6]). The aim of this paper is to prove the
following

Main Theorem. The loci Mbe,2
5 , Mbe,3

5 and Mbe,4
5 = Mbe,5

5 are
irreducible and rational of respective dimensions 5, 4 and 2.

The loci Mbe,n
5 play a helpful role in the description of the structure

of the Chow ring A(M5) (see Section 4 of [8] where Mbe,n
5 =: Bn).

For the proof of the main theorem above we proceed imitating the
method used in [6] for proving the rationality of Mbe,1

5 . Let [C] ∈ M5

be the isomorphism class of a curve C. The canonical model C̃ of C is
the base locus of a net of quadric hypersurfaces N in P4

C. Let N be
a projective plane parametrizing the quadrics in N . The discriminant
curve D ⊆ N of N is a stable plane quintic.
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If [C] ∈ Mbe,n
5 , then D is the union of a n distict lines L0, . . . , Ln−1

and an integral curve F of degree 5 − n. Moreover F is endowed
(in a natural way) with a non-effective theta-characteristic η (i.e. an
invertible sheaf η on the normalization F̂ of F such that η⊗2 ∼= ω

F̂
and

h0
(
F̂ , η

)
= 0). One can associate to C the triple (F, η,∪n−1

i=0 Li) and
the existence of a birational equivalence

Mbe,n
5 ≈ {(F, η,∪n−1

i=0 Li)}/ PGL3,

can be shown (see Section 1) so that the rationality of Mbe,n
5 follows

by proving the rationality of the quotient on the right (see Section 2).

Notations. As usual we denote by OX and ωX the structure sheaf
and the canonical sheaf of the irreducible, smooth, projective variety X.
For each invertible sheaf L on X we denote by |L| the projectivization
of H0

(
X,L)

.

GLn is the general linear group of order n, PGLn is the general
projective linear group of order n.

If g1, . . . , gh are in a certain group (respectively, vector space) G
then 〈g1, . . . , gh〉 denotes the subgroup (respectively, the subspace) of
G generated by g1, . . . , gh.

We denote by ∼= isomorphisms and by ≈ birational equivalences.

1. Bielliptic curves of genus 5. In this section, following [5],
we will construct a birational model of Mbe,n

5 . Such a construction is
analogous to the one used in [6] for proving the rationality of Mbe,1

5 .

If C is a bielliptic curve of genus g ≥ 5, then it is neither hyperelliptic
nor trigonal by the Castelnuovo-Severi inequality (see [1]). Assume
now g = 5. Then the canonical model C̃ ⊆ P4

C of C is the complete
intersection of three quadric hypersurfaces, say Q0, Q1, Q2. Let N
denote the projective plane, with homogeneous coordinates ν0, ν1, ν2,
parametrizing the quadrics of the net N = {ν0Q0 + ν1Q1 + ν2Q2}: if
P ∈ N we denote by QP the corresponding quadric.

In N there is defined the discriminant D of the net N , i.e. the locus
of points P such that QP is singular.
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Lemma 1.1. D ⊆ N ∼= P2
C is a curve of degree 5. It has at most

ordinary double points as singularities. More precisely

(i) P ∈ N \ D if and only rk(QP ) = 5;

(ii) P is a regular point of D if and only if rk(QP ) = 4;

(iii) P is a singular point of D if and only if rk(QP ) = 3.

Proof . To N we can associate naturally a quadric bundle (see [5],
Lemma 6.1) and D is its discriminat curve (see [5], 6.2). Then we can
apply Proposition 1.2 of [5].

Each morphism π: C → E of degree 2 onto an elliptic curve induces

π∗: W 1
2 (E) ∼= E ↪→ W 1

4 (C)

where, for each smooth curve Γ, the symbol W r
d (Γ) denotes the subva-

riety of Picd(Γ) parametrizing the complete linear series on Γ of degree
d and dimension at least r.

It follows that W 1
4 (C) must contain the elliptic curve π∗E. Since the

g1
4 ’s on C̃ are cut out by the rulings of the quadrics of rank at most

4 through C̃, there exists a two-to-one morphism ε from the variety
W 1

4 (C) onto D. Such a morphism ε is ramified exactly at the points
of W 1

4 (C) corresponding to the quadrics of rank 3 in N . Moreover the
images of the points of ramification of ε are the singularities of D. It
follows from the Hurwitz formula, that D contains a line L (namely
ε(π∗E)) and then it is the union of L and a quartic F .

Proposition 1.2. Let C be a bielliptic curve of genus g = 5. Then
there is a bijective correspondence between lines L ⊆ D and bielliptic
structure on C.

Proof . We have shown above that each bielliptic structure on C
induces a line L ⊆ D. For the proof see exercises F-11 and F-12 of
Chapter VI of [2].

Now assume that C carries n bielliptic structures. Then the discrim-
inant curve D splits as the union of n lines, say L0, . . . , Ln−1, and a
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plane curve F of degree 5−n. In particular we then have n = 1, 2, 3, 5.
Since the case n = 1 has been described in [6] from now on we will
always assume that n = 2, 3, 5.

Let D̂
d−→D be the normalization of D. Notice that D̂ is the disjoint

union of the normalization F̂ of F and of the lines L0, . . . , Ln−1.

We can define a map s: D̂ → P4
C associating to P ∈ D̂ the vertex

s(P ) of the corresponding quadric QP ∈ N . We have

s∗OP4
C
(1) ∼= ω

D̂
⊗ θ

where θ is an invertible sheaf on D̂ such that θ⊗2 ∼= ω
D̂

and h0
(
D̂, θ

)
=

0, i.e. a non-effective theta characteristic on D̂ (see [5], 6.12 and
Lemma 6.12). Since each theta characteristic on P1

C is OP1
C
(−1) then

the datum of θ is equivalent to the datum of a non-effective theta
characteristic η on F̂ . In this way we can associate to C a unique triple
(F, η,∪n−1

i=0 Li).

Let C ′ be another bielliptic curve of genus 5 and (F ′, η′,∪n′−1
i=0 L′

i) its
associated triple. The class [C] determines the canonical model of C up
to projective isomorphisms: it follows that if C ′ ∼= C, then there exists
ϕ ∈ PGL3 such that ϕ(F ) = F ′, ϕ(∪n−1

i=0 Li) = ∪n′−1
i=0 L′

i and ϕ̂∗(η′) = η
(ϕ̂ is the extension of ϕ to the normalizations).

Let Sn|ON (1)| be the nth-symmetric product of |ON (1)| (i.e. Sn|ON (1)|
:= |ON (1)|×n/Sn). Following [7] we denote by |ON (5−n)| the variety
of pairs (F, η) where F and η are as above and set Xn := |ON (5 − n)|×
Sn|ON (1)|. The above construction shows, when n = 2, 3, 5, that
C → (F, η,∪n−1

i=0 Li) induces a rational map

m: Mbe,n
5 ��� Xn/ PGL3 .

Proposition 1.3. For each n = 2, 3, 5 the map m is birational.
Moreover Mbe,n

5 is irreducible.

Proof . The open set

U := { (F, η,∪n−1
i=0 Li) ∈ Xn | F ∪ L0 ∪ · · · ∪ Ln−1 is stable }
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is non-empty. Then it turns out that the map m is onto U by
Proposition 6.23 of [5]. It is also injective on U by proposition 6.19
of [5].

Finally its inverse induces a surjection U → Mbe,n
5 , whence the

irreducibility of Mbe,n
5 follows.

2. The proof of the main theorem.

2.1. The rationality of Mbe,2
5 . If n = 2, then F is a cubic.

In particular the general F carries exactly three non-effective theta-
characteristics.

Lemma 2.1.1. There exists a PGL3-equivariant birational map

h: |ON (3)| ��� |ON (3)|.

Proof . The map h is defined in 5.7 of [7]. It assigns to a plane cubic
the Hessian invariant of the net of polar cubics. For the proof of the
lemma see Theorem 5.7.1 and Remark 5.7.3 of [7].

The above lemma yields the existence of a PGL3-equivariant bira-
tional map

H: X2 ��� X2 := |ON (3)| × S2|ON (1)|
whence X2/ PGL3 ≈ X2/ PGL3. We conclude that we have to prove

Lemma 2.1.2. The quotient X2/ PGL3 is rational of dimension 5.

Proof . Let V := H0
(
N,ON (3)

)
, U := { q ∈ H0

(
N,ON (2)

) | rk(q) =
2 }, G := GL3 ×C∗, H := { (ωI, ω) |ω3 = 1 } ⊆ G. G := G/H is
a group acting on E := V × U as follows: GL3 acts in the natural
way both on V and U , C∗ acts on U via homotheties. It is clear that
X2/ PGL3 ≈ E/G ∼= E/G. Consider the G-equivariant morphism of
vector bundles µ: H0

(
N,ON (1)

) × U → E sending (	, q) �→ (	q, q). In
this way we obtain a new G-invariant vector bundle over U , namely
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E′ := E/ im(µ). The fibre of E′ over q ∈ U is V/qH0
(
N,ON (1)

) ∼= C7,
hence dim(E′) = 12.

The natural quotient projection π:E → E′ is G-equivariant too and
it induces on E a structure of vector bundle on E′ with fibre C3.

Moreover notice that dim(G) = dim(G) = 10.

Claim 2.1.2.1. The action of G over E′ is almost free.

Assuming the claim we obtain that E/G is a vector bundle over E′/G.
Since the last quotient is unirational of dimension 2 it follows from a
theorem of Castelnuovo that it is actually rational. It follows that
X2/ PGL3 ≈ E/G is rational too.

Proof of Claim 2.1.2.1. Choose a general element e := ([f ], q) ∈ E′.
With a proper choice of the homogeneous coordinates ν0, ν1, ν2 in
N ∼= P2

C we can assume that q = ν0ν1. By the very definition of
E′ we can assume that

f(ν0, ν1, ν2) = f0ν
3
0 + f1ν

3
1 + f2ν

2
0ν2 + f3ν

2
1ν2 + f4ν0ν

2
2 + f5ν1ν

2
2 + f6ν

3
2 .

Since each element of the stabilizer Ge of e inside G must fix ν0ν1 then
Ge ⊆ 〈µ〉 · Ge,0 ⊆ G where

Ge,0 :=

〈⎛⎝⎛⎝ α0,0 0 0
0 α1,1 0

α2,0 α2,1 α2,2

⎞⎠ , α−1
0,0α

−1
1,1

⎞⎠〉
, µ :=

⎛⎝⎛⎝ 0 1 0
1 0 0
0 0 1

⎞⎠ , 1

⎞⎠ .

Assume α ∈ Ge,0. Then a direct substitution yields the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0α
3
0,0 + f2α

2
0,0α2,0 + f4α0,0α

2
2,0 + f6α

3
2,0 = f0

f1α
3
1,1 + f3α

2
1,1α2,1 + f5α1,1α

2
2,1 + f6α

3
2,1 = f1

f2α
2
0,0α2,2 + 2f4α0,0α2,0α2,2 + 3f6α

2
2,0α2,2 = f2

f3α
2
1,1α2,2 + 2f5α1,1α2,1α2,2 + 3f6α

2
2,1α2,2 = f3

f4α0,0α
2
2,2 + 3f6α2,0α

2
2,2 = f4

f5α1,1α
2
2,2 + 3f6α2,1α

2
2,2 = f5

f6α
3
2,2 = f6.
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Let f be general. The last equation yields α3
2,2 = 1. Then from

the fifth one α2,0 = f4(α2,2 − α0,0)/3f6 hence, from the third one,
(3f2f6−f2

4 )(α0,0−α2,2)(α0,0+α2,2) = 0, whence we get α0,0 = ±α2,2. If
α0,0 = −α2,2, substituting the expression for α2,0 in the first equation,
we finally obtain 27f0f

2
6−9f2f4f6+2f3

4 = 0, i.e. f would not be general:
thus α0,0 = α2,2 hence α2,0 = 0.

Working now with the even equations we also get α1,1 = α2,2,
α2,1 = 0. Since α3

2,2 = 1, we conclude α ∈ H, whence Ge ⊆ 〈µ〉 ·H and
an easy computation shows that µ ·H ∩Ge = ∅, then Ge = H, i.e. the
action of G is almost free.

The proof of the above claim concludes the proof of the lemma.

Remark 2.1.3. Let X be the locus of points [C] ∈ M5 for which
D splits as the union of a cubic and a conic. Then it is clear that
Mbe,n

5 ⊆ X for each n ≥ 2. Notice that X contains all the points [C]
representing non-trigonal curves C carrying an involution i ∈ Aut(C)
such that C/i is a smooth curve of genus 3 (see [2], Exercise F-23 of
Chapter VI).

Then the map h defined in Lemma 2.1.1 induces a birational equiv-
alence X ≈ |ON (3)| × |ON (2)|/ PGL3. The quotient on the right is
rational, since it is birationally equivalent to Mbe

4 (see [4]).

2.2. The rationality of Mbe,3
5 . If n = 3, then F is a, necessarily

non-singular, conic. In particular F ∼= P1
C hence ωF

∼= η⊗2 yields
η = OP1

C
(−1), thus |ON (2)| = |ON (2)|, hence X3

∼= X3 := |ON (2)| ×
S3|ON (1)|.

We conclude that the proof of the main theorem in this case is then
equivalent to prove

Lemma 2.2.1. The quotient X3/ PGL3 is rational of dimension 3.

Proof . Let Y := {(F, {ν0ν1ν2 = 0})} ⊆ X3. If α ∈ PGL3 is such
that α(Y ) ⊆ Y then α must fix {ν0ν1ν2 = 0}, hence α is represented
by a 3 × 3 matrix which is the product of a diagonal matrix and a
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permutation matrix. In particular

α ∈ H := S3 · PD ∼= 〈σ, τ 〉 · PD ⊆ PGL3

where PD is the image via GL3 → PGL3 of the torus D ⊆ GL3 of
diagonal matrices and σ, τ are the classes of⎛⎝ 1 0 0

0 0 1
0 1 0

⎞⎠ ⎛⎝ 0 1 0
0 0 1
1 0 0

⎞⎠
respectively. Since Y is obviously PGL3 dense inside X3 it follows that
Y is a (PGL3, H)-section of X3 (see Section 2.8 of [9] for the definition
and properties of relative sections).

Since PD � H it suffices to show that

C(Y )H ∼= (C(Y )PD)H/PD ∼= (C(H0
(
N,ON (2)))D)S3

is rational.

First we describe C(H0
(
N,ON (2)))D. If q(ν0, ν1, ν2) :=∑

i,j pi,jν
2−i−j
0 νi

1ν
j
2 and t := (t0, t1, t2) ∈ D, then

t(q)(ν0, ν1, ν2) =
∑
i,j

(t2−i−j
0 ti1t

j
2pi,j)ν

2−i−j
0 νi

1ν
j
2

Since D leaves the space generated by each monic monomial invariant,
then the field above is generated by D-invariant fractional monomials.
It is easy to see that M :=

∏
i,j p

αi,j

i,j is D-invariant if and only if
(α0,0, α0,1, α0,2, α1,1, α1,2, α2,2) is a solution of the system⎧⎨⎩

2α0,0 + α0,1 + α0,2 = 0
α0,1 + 2α1,1 + α1,2 = 0
α0,2 + α1,2 + 2α2,2 = 0.

Let A be the matrix of the above system and set

U :=

⎛⎝ 1 −1 −1
0 1 0
0 0 1

⎞⎠ V :=

⎛⎜⎜⎜⎜⎜⎝
1 0 0 1 1 1
0 1 0 −2 −1 0
0 0 1 0 −1 −2
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ .
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Since

UAV =

⎛⎝ 2 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞⎠

it follows that C(H0
(
N,ON (2)))D = C(X1, X2, X3) where X1 :=

p0,0p1,1/p2
0,1, X2 := p0,0p1,2/p0,1p0,2, X3 := p0,0p2,2/p2

0,2.

Let Y1 := X1/X2, Y2 := X3/X1, Y3 := X2 so that C(X1, X2, X3) =
C(Y1, Y2, Y3). We have C(Y )H ∼= C(Y1, Y2, Y3)S3 and σ(Y1, Y2, Y3) =
(Y2, Y1, Y3), τ (Y1, Y2, Y3) = (Y2, Y3, Y1).

It follows that 〈Y1, Y2, Y3〉 ⊆ C(Y1, Y2, Y3) is the usual linear repre-
sentation of S3 via permutation: then the action on 〈Y1, Y2, Y3〉 is gen-
erated by pseudoreflections, whence C[Y1, Y2, Y3]S3 ∼= C[Z1, Z2, Z3] for
suitable S3-invariant elements Zi ∈ C[Y1, Y2, Y3] ⊆ C(Y1, Y2, Y3) (see
[9], Theorem 8.1).

On the other hand the group of characters of S3 is finite, hence
C(Y1, Y2, Y3)S3 is exactly C(Z1, Z2, Z3), thus it is rational.

2.3. The rationality of Mbe,4
5 = Mbe,5

5 . Again η = OP1
C
(−1), thus

|ON (1)| = |ON (1)|, hence X4 = X5
∼= X5 := S5|ON (1)|.

Again the proof of the main theorem for n = 4, 5 in this case is
equivalent to

Lemma 2.3.1. The quotient X5/ PGL3 is rational of dimension 2.

Proof . X5/PGL3 is a unirational of dimension 2, hence it is rational
from a well known theorem of Castelnuovo.

We are now ready to give the

Proof of the Main Theorem. The main theorem now follows from
Proposition 1.3 and Lemmas 2.1.2, 2.2.1, 2.3.1.
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Norm. Sup. 10 (1977), 309 391.

6. G. Casnati, A. Del Centina, The rationality of the moduli space of bielliptic
curves of genus five, Bull. London Math. Soc. 28 (1996), 356 362.

7. I.V. Dolgachev and V. Kanev, Polar covariants of plane cubics and quartics,
Adv. Math. 98 (1993), 216 301.

8. E. Izadi, Chow rings of moduli space of curves of genus 5, in The moduli space
of curves (R. Dijkgraaf, C. Faber and G. van der Geer, eds.), Progr. Math., vol.
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