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A NEW INTEGRAL REPRESENTATION
OF THE RIEMANN ZETA FUNCTION

WU YUN-FEI

ABSTRACT. The series Zzozl(l/nHl)e*Zk/”k, k is any
positive integer, [ is a positive odd number and [ < 2k — 1,
is studied, and for each pair (k,!), an integral representation
of the Riemann zeta function is given. For small pairs, this
provides known representations.

1. Introduction. In [2], Tennenbaum discussed the series
3" (1/n?)e~*/™ and mainly obtained a proof of the functional equa-
tion of the Riemann zeta function. In [6] Zhang studied the se-
ries 220:1(1/712)6_22/ "’ and gave two integral representations and
three different proofs of the functional equation of the Riemann zeta
function. In [4], Wu researched the series $3°° (1/nkt1)e==""/n*"
and generalized all results in [6]. In [5], Wu discussed the series
Soo2 , n?/(n*! +22%) and deduced integral representations for the Rie-
mann zeta function which hold for Re(s) > 1. Now in this paper we
study the series Zle(l/nl“)e_zk/”k, where k is any positive integer,
l is a positive odd number and I < 2k—1 and imply a new integral repre-
sentation for the Riemann zeta function which holds for —I < Re (s) < 0
or Re (s) > 0, that is, we prove the following theorem
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Theorem. For each pair (k,1) and o >0 or —l < o < 0, we have

(1)

sin(m(s +1)/2k)
r = SMMS T 1/ 2E)
(s)¢(s) 2 cos(ms/2)
" /+°° = (‘Umvk’m’l sinh(z Ak, m) — Wk m,t SIN(2Th m)
0 = cosh(zAg, m) —cos(TTg,m)
)
_ i ps1 de,
sin(ml/2k)
where
_(@2m+)r _@m+1)(k—-l)m [0 —l<o<0,
Pk,m = 2%k ; Hk,mJ = 2%k ) 6(8) 11 >0,
Ak,m = sin Pk,m> Tkym = COS Pk, m,
Uk, = SN Ok m 1, Vkm,i = CcOSOk m i,

and k is any positive integer, | is a positive odd number and l < 2k —1.

From the theorem we can see that all results in [2, 4-6] are included
as our special cases. In (1), setting (k,l) = (1,1), we obtain the well-
known integral representation (see [7] and [3])

+oo e—xxs—l

T(s)((s) = /0 —dz, o>1;

l—e*

setting (k,1) = (2,1) or (k,1) = (2,3), we give all results in [6]; setting
k = 21 or 3k = 2, we deduce all results in [4]; setting o > 1, we achieve
the integral representations in [5].

2. Proof of theorem. For convenience, first we show four lemmas.
Finally we give the proof of the theorem.

Lemma 1. Let Re(s) =0 > 0, | a positive real number, and
— 1

(2) Jra(z) = Z T e

n=1
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we have
l

(3) r(%rl)g(l —5) = k/0+oo {tlfk,l(t) - %F(Eﬂts_l dt.

Proof. For o > —I, we see that

+oo
r s+1 :/ ot p (D /E=1 gy
k 0

Replacing z by (t/n)F, we obtain

L s+1 LR S

Summing over all n > 1, we get

s+1 — [t* 1 —t% /nk s -1

Since

1 7tk/nkts+l71
i+1 €
n

dt

[ee] +o0

o ot
<k) Tl ottt gy
- 0 nl+1

n=1

=r("7”)<<1—a>7

we can interchange the order of summation and integration and obtain

) T 3”) ek [ SHA G <o <0.
(4) ( L ¢( 5) /0 fea()t t <o <

It is clear that the series (2) converges absolutely and uniformly in
any bounded domain; therefore, fi;(2) is an entire function.
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Now we estimate approximate property on the fj;(t) for t — +o0.
Let gg(z) = 1/xl+le*tk/””k and, by the Euler-Maclaurin formula, we
deduce

& +oo 400
_ T m—1
S gam = [ e dw+Z =gV Ry
n=2
where

—1)et+1 oo
Rq—%/l By(x — [a])g¥) (z) d,

By(z) is a Bernoulli polynomial, and B,, is a Bernoulli number.
Obviously, we have

k
(m) _ 1 t ik gk
gkl( )_Im+l+1pm<ﬁ)e / )

where P, is a polynomial of degree m. Because

g @)= =0 e ™), t— oo,

+oo k
1 t —tk /P
|Rq|§6/1 W‘Pz(;)‘e dx

ik
G [ @D (e dy = O (L)
0

< tat+l tat+l
and
e —tk/a® 1 ¢ 1/k—1_—y
We dr = W Y e Ydy
1
+oo
Tkt (/ /t )
k
—Lr k)+0( )
we deduce
1 l 1
(5) feat) = =y Pl o | +OL s )t = oo,

where ¢ is any positive integer.
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For —l < o <0, by (4) and (5) we have
(6) 1
l
F<%)C(1—s) :k;/o fea(tt T at

+o00o
+k/1 [fk,l(t) —%F(é)}ts”_ldt—él“(é).

The first integral of the right side in (6) is an analytic function of s in
the half-plane 0 > —I. The second integral of right side in (6) is an
entire function of s. Therefore, (6) provides an analytic continuation,
that is, T'((s+1)/k){(1—s) is analytic for all o > — except for a simple
pole at s = 0 with residue I'(l/k). Noting that

! 1
/ z*rdr=—-, o>0,
0 S

and by (6) we deduce (3).

Lemma 2. Let

(7)
hkl(x)_k/+oo tk_lfkl(t)—l].—‘ i tk_l_l sin i kdt x>0
’ 0 ’ k k X ’ ’
we have
©  2k—I—1
_ Lk n _ T k—1
(®) hiea(@) = @ Z n2k 4+ 2k 2k sin(wl/2k) *

n=1

Proof. By (7), we have

k

+oo
hkvl(:zr) = k/o tkilf]“l(t) sin (%) dt

l —+o0 t k
—I‘<—)/ tF ==L gin (—> dt
k) Jo T
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+oo t
= —xk/ S (t) dcos (—)
o x

l Too
_F(k) ’“—l/ tF ==L gin ¢ dt

400 0 n k
_ Lk k-1
= ¥ fr1(0) — ka* / Z nk+l+1 n* k=1 cog (E) dt

n=1

L p (D p(E =1 o 7=
- = T T
kY (k) ( k )Sm ok
+oo 0 n k
k —t m k 1
=2z fr(0 k‘x/ E nk+l+1 /n® S(k) dt

7T£C

B 2ksin(7rl/2k)'

k

Since

oo +oo
1 —th/nk k-1
Z /O ‘m (& kt COS ‘ dt

n=1
< - 1 e 7tk/nk’ k—1 _
n=1

we can interchange the order of summation and integration, and obtain

oo o0 k—1
: u T
h B —u/nk —dy - —
k() = 2" fi1(0 gnk"‘“‘l/ o8 Tk 4 2k sin(wl/2k)
oo :L‘2k ka—l

_ .k _ .k _
=z fk,l( ) € Zlnl+1(n2k+x2k) kain(ﬂ-l/gk)

n

0 2k -1 ka_l

¥k _
Z n2k + 22k 2k sin(wl/2k)

This proves Lemma 2. ]



REPRESENTATION OF RIEMANN ZETA FUNCTION 1183

Lemma 3. Let Sy .(x) = 2:(112’1)/(712]C +2?%), 2a =2k —1—1, L is

n=1
a positive odd number and | < 2k — 1, we have

(9)

T
S =
kal®) = S
T k—1 oo
+ mz::O(_l)m ; e~ oS (2T Th 1 + Ok 1)
1<a<k-—1,
(10)
1 m
S, =—
ko(@) 22k + 2kx?* =1k 0
. k—1 )
+ T2 1 Z(—l)mz e 2nTEAem cos(2nm T m 40k, m,2k—1)
m=0 n=1
and
(11)
k—1 . .
Ska(2) s (_Umvk,mJ sinh (27 m) — Wk m 1 SIN(2TLTY )
o 2kt cosh(2max A, m) — cos(2m LTy m,) ’
1<a<k-—-1,
(12)
1 s
Siol®) = g + gpgm1
o lif( 1)mvk7m72k,1 sinh (2w Ak ) — Uk, m 2k—1 SIN(2TXTE 1)
= cosh(2mx A m) —cos(2T Ty m,) ’
Proof. Let

2a

= ———cotmz;
22k + 12k ’
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we consider the contour integral f‘z‘:R Fy.o(2) dz, where R is no integer.
By the residue theorem, and letting R — 400, we achieve

(13)
1 0 n2a k—1
= ) T T Y [Res (Fia(2), 2m) +Res (Fra(2), Zm)] = 0,
n=-— m=0
where z, = xze®mtUm/2k py — 01,... k — 1. Writing z5,,

2me™/F 0 < |6 < 1, noting that

k—1
H (25 )(25,, — Zn)
n=0
2k gk nm+o . (n+1 m+46
2 H sin ( T T sin % %
2k—1

o2k m—+ 4

= 92k gk Hmn(——T)w

= —22%2§ sin(m + &),

we obtain

2a

Res (Fj,q(2), 2m) = lim (6, — 2m)2,,
T 0 (1)1 22k 2k sin o
. (1 _ eféwi/k)22a7k+1
= lim e cot(mzs,, )
5—0 (=1)m+12zk sin om
_1\m2a—k+1
= (1)2;;—;3@ cot(mzm )

cot(mzs,, )

and
(_1)m+123’$—k+1

2kixk

Res (Fi,a(2), Zm) = cot(mZm ).

Therefore, (13) gives us

=
2/€:chC i

Sk.a(z) =

—1)mp2a=hktl COt(ﬂ'Zm)}, a #0.

m:O
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Recalling the formula

2
t =i(ll4+ ———
cotmz z( +627”Z—1)’

we have

kS

-1

(14) Skya( ) 2kxl {Z

m=0

2
105,11
xe 1+ e 2T m 2TITT m — | » @ 75 0.

Since

k—1
= Re {e(Qak+1)7Ti/2k Z (_1)m62m(2ak+1)ﬂ-i/2k}
m=0

1 1 1

T sin(2a+ D)7/(2k)  Mea sin(nl/2k)

we can expand (14) into the power series

Sk.a()
s k-1 0o
= +Re{ meiek'mvl e_2n7raj)‘k,m+2n77iflf7'k7m }:|
kal {2/\1@ a m§=:O n§=:o :
a # 0.

This implies (9). On the other hand, by (14), we deduce

k—1

i ; sinh 2wz )+ 8in (2727 1m)
Sk.a(z) = =—R —1)mekma : : )
ka(?) el { mZ:o( )re cosh(2max A, ) —cos(2TT Ty 1m)

a#0,

which implies (11). Similar to (9) and (11), we achieve (10) and (12).
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Lemma 4. Let

—+oo
(15) Ikﬁl(s) = / hkvl(x)xs_k"rl_l dl’,
0
and, for o >0 or =l < o <0, we have
(16)
. 4+o0o  k—1
Iru(s) = 2k/ L@z—:o(_l)
U, SN (272 Ak 1m) = Uk 1 SN2 TR ) 6(8) 1y
cosh(2mx A, m) —cos(2mz Ty m) Ak.a
and

(1) Tea) = g P00 32 (177 os [T~ ) ]

where

—~

5(5)_{0 —l<0o<0,
1 o>0.

Proof. First we give that (16) and (17) hold for I < 2k—1. Combining
(15) and (8), we have

+oo -
(18) I (s) = /0 [S;w(x) — m} 25 e

Obviously, (9) gives us

™

_ i —2nxAg .
2kx!sin(wl/2k) O<xl ¢ >’ = +oo;

therefore, Iy ;(s) is an analytic function of s for ¢ > 0. For o > 0 and
by (18), we have

oo 4i-1 ™
I S 5T de —
bl / / / ka T 25k Ana

s+1—1
/1 {S;m( ) — 72/%‘)\1”25 }x dx.

Sk.a(T)

(19)
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Similar to (6), we can see that Iy ;(s) is analytic for all ¢ > —I except
for a simple pole at s = 0 with residue 7/2k\x . Noting that

+oo
Y 1 e
1y = — l<o<0
2N /1 S WS Vi 7=

we have (16). On the other hand, combining (18) and (9), we have
(20)

™

400 k—1 oo
I (s)= z /0 Z (—1)’"2 e~ 2NNk m cos(2n7rx7k7m+9k7myl)xs_1 dx.

m=0 n=1

Since, for o > 1,

o 40
Z / }672"”)"“” cos(2nmx Ty m + 0k7m7l)x571} dx
n=1"0

o0 “+oo 1
< em T em oL g <~ _T(5)((0),
<>/ = @y

n=1

we can calculate the integral in (20) term by term and obtain

IkJ(S)
. k—1 %S 400
=7 Z (=™ Z / e 2T IR o8 (2nT LT + Op )2 d
m=0 n=170
k-1
T (_1)m +oo 3 .
= —((s) —/ e~ cos(ucot i m + Okm 1 )u’" " du.
k mz::O (27T)\k’m)5 0 m m
Recalling the formula
s—1,—(p+ig)t gy _ —isarctan(q/p)
/0 i e dt = (P2 + ¢2)*/ € , po>0,

we have

k—1

) = 1 T60) 3 (<10 05 |5 5 =ptm ) 0k 71

m=0
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Obviously, (17) holds for o > 0 or —I < ¢ < 0 by analytic continuation.
Similarly, we obtain that (16) and (17) hold for | = 2k — 1. This proves
Lemma 4. |

Proof of Theorem. Combining (7) and (15), we have
(21)

Ik,l S)

(
/+Oox5k+lldx/+ook th=1f (t)—lI‘ L t*=1=1] sin 2 kdt
0 0 k.t k; k X
oo 1._/[1 oo t\*
/0 {tklfk,l(t)—EF<E)tkll} dt/o sin (5) LR
oo 1 T Sinx
k—1 k—1-1

r
:%P(HZ)C ( s—l) . 7r(k—2]:—l)

nC(1~5)
2ksin(m(s +1)/2k)

Il
e

Il
S—

Recalling the functional equation

(22) (1 —s)= I'(s)¢(s) cos -

and, combining (17), (21) and (22), we have

rs . m(s+1) = m T
(23) cos - = sin —— (=1)™cos |s 5~ Pham + Okt |-

m=1

By combining (16), (17) and (23), and replacing 27z by z, we deduce
(1), and the theorem is complete. O
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