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DEPTH FORMULAS, RESTRICTED
TOR-DIMENSION UNDER BASE CHANGE

TIRDAD SHARIF AND SIAMAK YASSEMI

ABSTRACT. Let R be a commutative Noetherian ring, and
let M and N be R-modules. It is shown that

sup{i | Tor R
i (M, N) �=0}= sup{depthRp−depthRp

Mp

−depthRp
Np | p∈Supp M∩Supp N}

provided that M has finite flat dimension. Assume that R is
a complete local ring, M a finitely generated R-module, and
N an R-module of finite flat dimension. It is then proved that

sup{i | Ext i
R(N, M) �= 0} = depthR − depthN.

Set

TdRM = sup{i ∈ N0 | Tor R
i (T, M) �= 0 for some

T of finite flat dimension}.

In addition, some results concerning TdRM under base change
are given.

1. Introduction. Throughout this paper all rings are assumed to
be commutative and Noetherian. It is well known that flat dimension
of an R-module M can be computed by the following formula

fdRM = sup{i ∈ N0 | Tor R
i (T, M) �= 0 for some R-module T}.

If flat dimension of M is finite, then it can be computed by
Chouinard’s formula [5, Corollary 1.2]; fdRM = sup{depthRp −
depthRp

Mp|p ∈ Spec R}. Foxby has studied the restricted Tor-
dimension: TdRM = sup{i ∈ N0 | Tor R

i (T, M) �= 0 for some T with
fdRT < ∞}. Over a ring of finite Krull dimension it is easy to see
that TdRM ≤ dim R < ∞ for any R-module M . In this case TdRM
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is equal to sup{depthRp − depthRp
Mp | p ∈ Spec R}, cf. [6, Theorem

5.3.6]. The restricted Tor-dimension is a refinement of the flat dimen-
sion, i.e., TdRM ≤ fdRM , and equality holds if fdRM is finite.

In [11, Theorem 2.2], Jorgensen has given a generalization of the
Auslander-Buchsbaum formula by proving the following result:

sup{i ∈ N0 | Tor R
i (M, N) �= 0}

= sup{depthRp−depthRp
Mp−depthRp

Np | p∈Supp M ∩ SuppN}
while M and N are finitely generated modules over a local ring R and
pdRM < ∞. In Section 2 we prove this equality for any R-modules M
and N while fdRM < ∞ without assuming that M and N are finitely
generated and R is local. In this section the following result is also given
(Theorem 2.5). Let R be a complete local ring, M a finitely generated
R-module and N an R-module of finite flat dimension. Then

sup{i | Ext i
R(N, M) �= 0} = depthR − depthRN.

In Section 3, we study the behavior of restricted Tor-dimension under
change of rings. One of the main results in this section is the following
statement (Proposition 3.4). Let ϕ : R → S be a ring homomorphism.
For any S-module M , TdRM ≤ TdRS+TdSM . The equality holds for
arbitrary S-module if it holds for any S-module M with TdSM ≤ 1.

Assume that (R, m) is a Cohen-Macaulay local ring, x1, x2, . . . , xr

∈ m an R-regular sequence. Set S = R/(x1, x2, . . . , xr). Further-
more assume that M is an R-module of finite flat dimension and
(x1, x2, . . . , xr)M = 0, such that any S-regular sequence y1, y2, . . . , ys

∈ m is a weak M -regular. Then Ischebeck has proved that fdRM ≤ r.
The following statement, Theorem 3.6 (a), generalizes this result for
restricted Tor-dimension. Let ϕ : R → S be a local homomorphism
with cmdS := dimS − depthS ≤ 1, and let M be an R-module and let
n ≥ 0 be an integer. Suppose that any R-regular sequence of length
less than or equal to n is also M -regular. Then, for any R-module N ,
TdR(M ⊗L

R N) ≤ fdRN + depthS + TdRS − n.

In Section 4 we study the restricted covariant Ext-dimension that is
a dual notion of the restricted Tor-dimension. The restricted covariant
Ext-dimension of R-module M is denoted by EdRM and is defined by

EdRM = sup{i ∈ N0 | Ext i
R(T, M) �= 0 for some T with pdRT < ∞}.
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From the definition it is easy to see that EdRM ≤ dim R < ∞.

In this paper definitions and results are formulated within the frame-
work of the derived category of the category of modules. Thus, we
outline some definitions on complexes that we use in the rest of the
paper. The reader is referred to [8] for details of the following brief
summary of the homological theory of complexes of modules.

An R-complex X is a sequence of R-modules Xl and R-linear maps
∂X

l , l ∈ Z,

X = · · · −→ Xl+1

∂X
l+1−→ Xl

∂X
l−→ Xl−1 −→ · · ·

such that ∂X
l ∂X

l+1 = 0 for all l ∈ Z. We call Xl and ∂X
l the module

in degree l and the lth differential of X, respectively. We identify any
module M with a complex of R-modules, which has M in degree zero
and is trivial elsewhere.

A homology isomorphism is a morphism α : X → Y such that H(α)
is an isomorphism; homology isomorphisms are marked by the sign 	,
while ∼= is used for isomorphisms. The equivalence relation generated
by the homology isomorphisms is also denoted by 	.

The supremum and infimum of X are defined by

sup X = sup{l ∈ Z | Hl(X) �= 0}
inf X = inf{l ∈ Z | Hl(X) �= 0}.

The symbol D(R) denotes the category of R-complexes and mor-
phisms of R-complexes.

The full subcategories D−(R), D+(R), Db(R) and D0(R) of D(R)
consist of complexes X with Xl = 0, for respectively l � 0, l � 0,
|l| � 0 and l �= 0. By Df (R) we denote the full subcategory consisting
of complexes X with all homology modules Hl(X) finitely generated
over R.

The right derived functor of the homomorphism functor of
R-complexes and the left derived functor of the tensor product of
R-complexes are denoted by RHom R(−,−) and −⊗L

R −, respectively.

The following results hold, cf. [9, Lemma 2.1].
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Theorem 1.1. Let X ∈ D+(R) and Y ∈ D−(R). Then
RHom R(X, Y ) ∈ D−(R) and there is an inequality:

sup(RHom R(X, Y )) ≤ sup Y − inf X.

With i = inf X and s = sup Y , we have

Hs−i(RHom R(X, Y )) = Hom R(Hi(X), Hs(Y )).

In particular,

sup(RHom R(X, Y )) = sup Y − inf X ⇐⇒ Hom R(Hi(X), Hs(Y )) �= 0.

Theorem 1.2. Let X, Y ∈ D+(R). Then X ⊗L
R Y ∈ D+(R) and

there is an inequality

inf(X ⊗L
R Y ) ≥ inf X + inf Y.

With i = inf X and j = inf Y we have

Hi+j(X ⊗L
R Y ) = Hi(X) ⊗R Hj(Y ).

In particular,

inf(X ⊗L
R Y ) = inf X + inf Y ⇐⇒ Hi(X) ⊗R Hj(Y ) �= 0.

The injective R-module E is called faithfully injective if the functor
Hom R(−, E) is faithful. Every ring R admits a faithfully injective
module E, e.g.,

E =
∏

m∈Max R

E(R/m),

where E(R/m) is the injective hull of R/m. For any faithful injective
module E we use the notation −∨ for RHom R(−, E). If E is a faith-
fully injective R-module, then for any X ∈ D(R) we have
sup(X∨) = − inf(X) and inf(X∨) = − sup(X).

A complex X ∈ Db(R) is said to be of finite projective (injective
or flat, respectively) dimension if X 	 U , where U is a complex
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of projective (injective or flat, respectively) modules and Ul = 0 for
|l| � 0.

The full subcategories of Db(R) consisting of complexes of finite
projective, injective or flat dimension are denoted by P(R), I(R) and
F(R), respectively.

Theorem 1.3. Let ϕ : R → S be a ring homomorphism. Then the
following identities hold, cf. [6, pp. 179 180].

(a) For all Y ∈ Db(R) and X, Z ∈ Db(S)

RHom R(Z ⊗L
S X, Y ) 	 RHom S(Z,RHom R(X, Y )).

(b) Let X, Y ∈ Db(S) and Z ∈ Df
b (S). If Y ∈ I(R) or Z ∈ P(S),

then

Z ⊗L
S RHom R(X, Y ) 	 RHom R(RHom S(Z, X), Y ).

The support of the complex X, Supp X, consists of all p ∈ Spec R
with the localization Xp not homologically trivial. Thus Supp X =
{p ∈ SpecR | Xp �	 0}.

The (Krull) dimension of a complex X ∈ D+(R) is defined in terms
of the (Krull) dimensions of its homology modules by the formula
dimRX = sup{dimRHl(X) − l | l ∈ Z}, with the convention that
the dimension of the zero module is equal to −∞.

Over a local ring (R, m, k) the depth of a complex X ∈ D−(R) is
defined as

depthRX = − sup(RHom R(k, X)).

The following result is immediate by Theorem 1.1.

Theorem 1.4. For X ∈ D−(R),

depthRp
Xp ≥ − sup Xp ≥ − sup X,

and for X not homologically isomorphic to 0;

p ∈ AssR(Hsup X(X)) ⇐⇒ depthRp
Xp = − sup X.
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For the homological dimensions of the complexes of modules the
following results hold, cf. [6, pp. 181 182].

Theorem 1.5. For any X ∈ Db(R),

(a) pdRX =sup{inf W−inf(RHom R(X, W )) | W ∈Db(R)∧H(W ) �=
0};

(b) idRX = sup{− sup U−inf(RHom R(U, X)) | U ∈ Db(R)∧H(U) �=
0}; and

(c) fdRX = sup{sup(U ⊗L
R X) − sup U | U ∈ Db(R) ∧ H(U) �= 0}.

2. The Auslander-Buchsbaum formula. In this section a
generalization of the Auslander-Buchsbaum formula is given. First we
bring the general version of the Auslander-Buchsbaum formula [10,
Theorem 4.1].

Theorem 2.1. Let R be local. If X ∈ F(R) and Y ∈ Db(R), then

depthR(X ⊗L
R Y ) = depthRX + depthRY − depthR.

Theorem 2.2. Let X, Y ∈ Db(R) with fdX < ∞. Then

sup(X ⊗L
R Y )

= sup{depthRp−depthRp
Xp−depthRp

Yp | p ∈ Supp (X)∩Supp (Y )}.

Proof. For p ∈ SpecR, using Theorems 1.4 and 2.1, we have

sup(X ⊗L
R Y ) ≥ −depthRp

(X ⊗L
R Y )p

= −depthRp
(Xp ⊗L

Rp
Yp)

= depthRp − depthRp
Xp − depthRp

Yp.

The equality holds if p ∈ AssRHs(X ⊗L
R Y ) where s = sup(X ⊗L

R Y ).

The following corollary is a generalization of Jorgensen’s result, cf.
[11, Theorem 2.2].
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Corollary 2.3. Let M and N be R-modules and fdRM < ∞. Then

sup{i|TorR
i (M, N) �= 0}

= sup{depthRp−depthRp
Mp−depthRp

Np | p ∈ Supp M∩Supp N}.

Proof. Put X = M and Y = N in Theorem 2.2.

Corollary 2.4. If R is a ring (not necessarily local) and X ∈ F(R),
then

fdRX = sup{depthRp − depthRp
Xp | p ∈ Supp (X)}.

Proof. The assertion follows from [2, Proposition 2.2] and
Theorem 2.2.

Theorem 2.5. Let (R, m) be a complete local ring, X ∈ Df
b (R) and

Y ∈ F(R). Then

− inf(RHom R(Y, X)) = depthR − inf X − depthRY.

In particular, for any finitely generated R-module M and any R-module
N with fdN < ∞,

sup{i | Ext i
R(N, M) �= 0} = depthR − depthRN.

Proof. Let E = E(R/m) be the injective hull of R/m. Using [12,
Theorem 18.6] and Theorem 1.3(b), we have

RHom R(RHom R(X, E), E) = X ⊗L
R RHom R(E, E) = X,

and hence,

− inf(RHom R(Y, X))
= − inf(RHom R(Y,RHom R(RHom R(X, E), E)))
= − inf(RHom R(Y ⊗L

R RHom R(X, E), E)) (by using 1.3(a))
= sup(Y ⊗L

R RHom R(X, E)).
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Now the assertion follows from Theorem 2.2.

3. Restricted Tor-dimension under base change. In this
section we assume that ϕ : R → S is a ring homomorphism of
commutative Noetherian rings. For X ∈ D+(R) the restricted Tor-
dimension of X is defined as

TdRX = sup{sup(T ⊗L
R X) | for some R-module T

of finite flat dimension}.
The following results will also be used.

Theorem 3.1 [6, Theorem 5.3.8]. If X ∈ Db(R), then

TdRX = sup{sup(U ⊗L
R X) − sup U | U ∈ F(R) ∧ H(U) �= 0}.

Theorem 3.2 [6, Theorem 5.3.10]. If R is a Cohen-Macaulay local
ring, and X ∈ Df

b (R), then

TdRX = depthR − depthRX.

Proposition 3.3. The following hold:

(a) If X ∈ Db(S) and Y ∈ F(R), then

TdR(X ⊗L
R Y ) ≤ TdSX + TdRS + fdRY.

(b) If Y ∈ Db(R), X ∈ F(S), and fdϕ < ∞, then

TdS(X ⊗L
R Y ) ≤ fdSX + TdRY.

(c) If X ∈ Db(S) and Y ∈ F(S), then

TdR(X ⊗L
S Y ) ≤ TdRX + fdSY.

Proof. (a) Choose the R-module T with finite flat dimension such
that

TdR(X ⊗L
R Y ) = sup(T ⊗L

R (X ⊗L
R (Y )).
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Since T ⊗L
R Y ∈ F(R) we have that (T ⊗L

R Y ) ⊗L
R S ∈ F(S) and thus

TdR(X ⊗L
R Y ) = sup(((T ⊗L

R Y ) ⊗L
R S) ⊗L

S X)
≤ TdSX + sup((T ⊗L

R Y ) ⊗L
R S)

≤ TdSX + TdRS + sup(T ⊗L
R Y )

where the last two inequalities follow from Theorem 3.1. Now the
assertion follows from Theorem 1.5(c).

(b) Choose the S-module T of finite flat dimension such that

TdS(X ⊗L
R Y ) = sup(T ⊗L

S (X ⊗L
R Y )).

Therefore, TdS(X ⊗L
R Y ) = sup((T ⊗L

S X) ⊗L
R Y ). Since T ⊗L

S X ∈
F(S) ⊆ F(R), we have that TdS(X ⊗L

R Y ) ≤ sup((T ⊗L
S X)) + TdRY

by Theorem 3.1. Now the assertion follows from Theorem 1.5(c).

(c) Choose the R-module T of finite flat dimension such that

TdR(X ⊗L
S Y ) = sup(T ⊗L

R (X ⊗L
S Y )).

Then we have

TdR(X ⊗L
S Y ) = sup((T ⊗L

R X) ⊗L
S Y )

≤ sup(T ⊗L
R X) + fdSY

where the last inequality follows from Theorem 1.5(c). Now the
assertion holds.

Corollary 3.4. If X ∈ Db(S), then TdRX ≤ TdSX + TdRS.

Proof. Set Y = R in Theorem 3.3(a).

Proposition 3.5. For any S-module M ,

TdRM ≤ TdRS + TdSM.

The equality holds for arbitrary S-module if it holds for any S-module
M with TdSM ≤ 1.
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Proof. The first inequality follows from Corollary 3.4. Now assume
that the equality holds for all S-modules M with TdSM ≤ 1. Let
TdSM = n ≥ 2 and set TdRS = s. Consider the exact sequence
0 → K → F → M → 0 of S-modules and S-homomorphisms where
F is free. Clearly we have TdRF = s and TdSK = n − 1. By the
induction hypothesis TdRK = TdSK + TdRS = s + n − 1. For any
R-module T of finite flat dimension the following long exact sequence
is induced

· · ·→TorR
i (T, F )→TorR

i (T, M)→TorR
i−1(T, K)→TorR

i−1(T, F )→· · · .

Since TdRK = s + n − 1, there exists L ∈ F0(R) such that
TorR

s+n−1(L, K) �= 0. If i > s + n, then TorR
i (L, M) = 0. Since

TorR
s+n−1(L, F ) = 0, we have TorR

s+n(L, M) �= 0 and, hence, TdRM =
s + n.

Let a be an R-regular element, S = R/aR and M an S-module with
fdSM < ∞. Then it is a well-known result that fdRM = fdSM + 1.
In the following theorem we generalize this result for restricted Tor-
dimension.

Theorem 3.6. Let x = x1, x2, . . . , xr be an R-regular sequence,
S = R/(x) and X ∈ Db(S). Then TdRX = TdSX + r.

Proof. It is sufficient to prove the equality for r = 1. Assume that
TdSX = n. There exists an S-module T with finite flat dimension such
that Hn(T⊗L

S X) �= 0. Let F be a flat resolution of S-complex X. Then
Hn(T ⊗S F ) �= 0. Since T ⊗L

R X = T ⊗L
R (S ⊗L

S X) = (T ⊗L
R S) ⊗L

S X,
the complex T ⊗L

R X is represented by (T ⊗R K(x)) ⊗S F , where
K(x) is the koszul complex for x. Set L = T ⊗R K(x) : 0 → T

x→
T → 0 which is a complex concentrated in degrees 0 and 1. We have
(L ⊗S F )l = (T ⊗S Fl) ⊕ (T ⊗S Fl−1). Since Hn(T ⊗S F ) �= 0 we
have Hn+1(L ⊗S F ) �= 0 and hence Hn+1(T ⊗L

R X) �= 0. Therefore,
TdRX ≥ n + 1 = TdSX + 1. Now the assertion follows from
Corollary 3.3.

For an R-module M and an integer n ≥ 0, we say that M is (an) R-
module if any R-regular sequence of length at most n is also M -regular
(for n = 1 this simply means that M is torsion free).
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Assume that (R, m) is a Cohen-Macaulay ring x1, x2, . . . , xr ∈ m
an R-regular sequence. Set S = R/(x1, x2, . . . , xr). Furthermore,
assume that M is an R-module with (x1, x2, . . . , xr)M = 0 and
fdRM < ∞ such that any S-regular sequence y1, y2, . . . , ys ∈ m is
weak M -regular. Then Ischebeck has proved that fdRM ≤ r. In the
proof of this result the assumption “R is a Cohen-Macaulay ring” is
not necessary and we only need that “for all p, q ∈ SpecR if p ⊆ q
then depthRp

Rp ≤ depthRq
Rq.” With this remark, Foxby noted that

if cmd R (Cohen-Macaulay defect of R) is at most 1, fdRM is finite,
and any R-regular sequence is weak M -regular, then M is flat. In the
following theorem we generalize this result for restricted Tor-dimension.

Theorem 3.7. Let ϕ : R → S be a local homomorphism. Then the
following hold.

(a) If cmd S ≤ 1 and M is (an) as an S-module, then for any
R-module N ,

TdR(M ⊗L
R N) ≤ fdRN + depthS + TdRS − n.

(b) If cmd R ≤ 1 and M is (an) as an R-module, then for any
S-module N ,

TdR(M ⊗L
S N) ≤ depthR + fdSN − n.

(c) Let ϕ be a flat homomorphism, i.e., S is a flat R-module such
that the closed fiber of ϕ, S/mS, is (an) as an R-module, and let M
be (an) as an S-module. If cmd S ≤ 1, then for any R-module N ,
TdR(M ⊗L

S N) ≤ depthR + fdSN − n.

Proof. First we show that for any local ring Q with cmdQ ≤ 1 and
any Q-module M with (an) property we have TdQM ≤ depthQ − n.
There exists p ∈ Supp M such that TdQM = depthQp − depthQp

Mp.
Since cmd Q ≤ 1 we have depth Qp = grade (p, Q) (the length of
maximal Q-sequence in p), cf., [7, Theorem 5.1]. Set grade (p, Q) = t.
If t ≤ n, then it is an M -regular sequence and hence an Mp-regular.
Therefore, depthQp

Mp ≥ t. Thus, TdQM = 0.

If t > n then there exists a Q-regular sequence of length n in p.
Therefore we have depthQp

Mp ≥ n and thus TdQM ≤ depthQp − n.
Therefore, TdQM ≤ depthQ − n.
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(a) Suppose that fdRN < ∞. Since cmdS ≤ 1 and M is (an)
S-module, the assertion follows from Proposition 3.3(a).

(b) Suppose that fdSN < ∞. Since cmdR ≤ 1; the assertion follows
from Proposition 3.3(c).

(c) Let r1, r2, . . . , rn ∈ m be an R-sequence. Set ϕ(ri) = si for any
1 ≤ i ≤ n. Since S/mS is (an) R-module, thus for any 1 ≤ i ≤ n,
si is S/mS-regular and hence S-regular, cf. [12, p. 177]. Therefore, S
is (an) R-module and hence M is (an) R-module. Now the assertion
follows from [4, Proposition 1.2.16].

Corollary 3.8. Let (R, m) be a Cohen-Macaulay ring. If x1, x2, . . . ,
xr ∈ m is an R-regular sequence, (x1, x2, . . . , xr)M = 0, and any
R/(x1, x2, . . . , xr)-regular sequence is also M -regular, then TdRM ≤ r.

Proof. Put N = R and n = depthR/(x1, x2, . . . , xr)R in Theo-
rem 3.7(a) and use 3.6.

Theorem 3.9. Let ϕ : R → S be a local homomorphism, S a
finite R-module. Let R be a Cohen-Macaulay ring. Then S is Cohen-
Macaulay if and only if TdRX = TdSX + TdRS for all X ∈ Df

b (S).

Proof. Assume that S is a Cohen-Macaulay ring. Then from
Theorem 3.2 we have the following equalities:

(a) TdSX + depthSX = depthS;

(b) TdRX + depthRX = depthR; and

(c) TdRS + depthRS = depthR.

Thus the “only if” part follows from the equality depthRX =
depthSX, cf. [1, Corollary 2].

Now assume that TdRX = TdSX + TdRS for all X ∈ Df
b (S). Using

Theorem 3.2 we have TdRS = depthR−depthRS. Therefore, TdRX =
TdSX +depthR−depthRS and, hence, TdRX = TdSX +(depthRX +
TdRX)−depthS, since R is Cohen-Macaulay. Thus, TdSX = depthS−
depthSX. Now the assertion holds from Theorem 3.2.
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The small Tor-dimension of X ∈ D+(R), tdRX, is defined as follows,
cf. [7, Definition 4.1]:

tdRX = sup
{

sup
(
T ⊗L

R X
) | for some finitely generated

R-module T with pd T < ∞}
.

From the definition it is easy to see that sup X ≤ tdRX ≤ TdRX ≤
sup X + dimR.

Corollary 3.10. The following hold:

(a) If X ∈ Db(S) and Y ∈ F(R), then

tdR(X ⊗L
R Y ) ≤ TdSX + TdRS + fdRY.

(b) If X ∈ Db(S), Y ∈ F(R), fd ϕ < ∞ and cmd S ≤ 1, then

tdR

(
X ⊗L

R Y
)
≤ tdSX + tdRS + fdRY.

(c) If Y ∈ Db(R), X ∈ F(S) and fd ϕ < ∞, then

tdS(X ⊗L
R Y ) ≤ fdSX + TdRY.

(d) If Y ∈ Db(R), X ∈ F(S), fd ϕ < ∞ and cmd S ≤ 1, then

tdS

(
X ⊗L

R Y
)
≤ fdSX + tdRY.

Proof. Since tdRZ ≤ TdRZ for any Z ∈ D+(R), the statements (a)
and (c) hold by Theorem 3.3.

If fdϕ < ∞, then cmd R ≤ cmd S ≤ 1, cf. [3, Corollary 4.3]. Now
the assertions (b) and (d) follow from [7, Corollary 5.3] and Theorem
3.3.

4. Covariant Ext-dimension. The restricted covariant Ext-
dimension, that is, a dual notion of the restricted Tor-dimension of
X ∈ D−(R) is denoted by EdRX and is defined by

EdRX = sup{−inf (RHomR(T, X)) | for some R-module T of
finite projective dimension}.
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From the definition it is easy to see that −inf X ≤ EdRX ≤
dimR − inf X.

Remark 4.1. Let X ∈ D−(R), and let E be a faithfully injective
R-module. Choose the R-module T with finite projective dimension
such that tdRX∨ = sup(RHomR(X, E) ⊗L

R T ). Using Theorem 1.3(b)
and the property of faithfully injective modules we have

tdRX∨ = sup(RHomR(RHom R(T, X), E))
= −inf (RHom R(T, X)) ≤ EdRX.

Now if X ∈ Df
b (R) and T = R/(x1, x2, . . . , xr)R where x1, x2, . . . , xr

∈ m is a maximal R-regular sequence, then tdRX∨ ≥ sup(T ⊗L
R X∨)

and hence, using Theorem 2.2, we have tdRX∨ ≥ depthR − depthT −
depthX∨ = depthR − inf X. Therefore, for any X ∈ Df

b (R);

depthR − inf X ≤ tdRX∨ ≤ EdRX.

Proposition 4.2. Let ϕ : R → S be a ring homomorphism and let
X ∈ Db(S). Then the following hold:

(a) If X ∈ I(S) and Y ∈ Db(S), then

EdR(RHom S(Y, X)) ≤ idSX + TdRY.

(b) If S admits a dualizing complex, then

EdRX ≤ TdRS + dimS − inf X.

In particular, if X ∈ Df
b (S) and S is a local ring with a dualizing

module, then EdRX ≤ TdRS + EdSX.

Proof. (a) Choose the R-module T with finite projective dimension
such that

EdR(RHom S(Y, X)) = −inf (RHom R(T,RHom S(Y, X))).
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Then

EdR(RHom S(Y, X)) = −inf (RHom R(T ⊗L
R Y, X)) (by Theorem 1.3(a))

≤ idSX + sup(Y ⊗L
R T ) (by Theorem 1.5(b))

≤ idSX + TdRY.

(b) Choose the R-module T with finite projective dimension such
that

EdRX = −inf (RHom R(T, X)).

We have

RHom R(T, X) = RHom R(T, (RHom S(S, X)) = RHom S(T⊗L
RS, X).

On the other hand, T ∈ P0(R) ⊂ F0(R), thus S ⊗L
R T ∈ F(S).

Now since S has dualizing complex we have pdS(S ⊗L
R T ) ≤ dimS

+ sup(S ⊗L
R T ), cf. [8, Theorem 21.8]. Furthermore, EdRX ≤ pdS

(S ⊗L
R T ) − inf X. Thus,

EdRX ≤ dimS − inf X + sup(S ⊗L
R T )

≤ dimS − inf X + TdRS.

Since S has a canonical module, S is a Cohen-Macaulay ring. Now the
assertion follows from Remark 4.1.

Corollary 4.3. Let R be a complex local ring, X ∈ Df
b (R). Then

depthR − inf X = tdRX∨ = EdRX.

Proof. Choose the R-module T with finite projective dimension such
that

EdRX = −inf (RHom R(T, X)).

Since T has finite flat dimension, by Theorem 2.5 we have
−inf (RHom R(T, X)) = depthR− inf X − depthRT ≤ depthR− infX.
Now the assertion follows from Remark 4.1.
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