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ON THE IMPROVEMENT OF LINEAR DISCRETE
SYSTEM STABILITY: THE MAXIMAL SET OF

THE F -ADMISSIBLE INITIAL STATES

M. RACHIK, M. LHOUS AND A. TRIDANE

ABSTRACT. The linear controlled discrete system{
x(i + 1) = Ax(i) + Bu(i) i ≥ 0,

x(0) = x0,

u(i) = Fx(i), i ≥ 0,

y(i) = Cx(i), i ≥ 0,

is supposed to be output stabilizable, i.e., limi→+∞ y(i) = 0.
To improve the stability of the system we propose in this
paper a theoretical and algorithmic characterization of all the
initial states x0 for which y(i) ∈ B(0, αi), for all i ≥ 0, where
B(0, αi) is the ball of center 0 and radius αi, the sequence
(αi)i is appropriately chosen “(αi)i can be interpreted as
a desired degree of stability.” The case of discrete delayed
systems is also considered.

1. Introduction. Nowadays it is not more to justify the important
role of the stability and the stabilizability in the theory of systems.
Many works that have been dedicated to this topic are very varied;
we mention as examples [1 3, 6, 13, 14, 19, 20, 22] and [23]. The
central problem in this work will be the output stabilization of the
discrete linear system described by

(1)
{

x(i + 1) = Ax(i) + Bu(i), i ≥ 0,
x(0) = x0,

where x(i) ∈ Rn, u(i) ∈ Rm are respectively the state variable and the
control variable, while A, B are matrices of appropriate dimensions.
The associated output is

(2) y(i) = Cx(i), i ≥ 0,
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where C ∈ L(Rn,Rp). More precisely, we suppose the existence of a
feedback

(3) u(i) = Fx(i), i ≥ 0, F ∈ L(Rn,Rm),

stabilizing the output of a system, that means

lim
i→+∞

yi = 0, ∀x0 ∈ Rn.

Given a real positive sequence (αi)i≥0, αi = (1/i), (1/i2), e−i, . . . , for
a better stabilizability of the system it will be very interesting to
construct feedback controls whose role is not only to stabilize the system
but to achieve a predefined mode of stabilization. Motivated by the
difficulty that presents the realization of such controls, we propose in
this paper a partial answer to the question, i.e., we consider the control
law (ui)i≥0 defined by (3) whose role is only to stabilize the system and
we determine, under certain hypotheses, all initial states for whose

‖y(i)‖ ≤ αi, i ≥ 0.

That means we focus our interest to determine the set

S(F ) = {x0 ∈ Rn/‖y(i)‖ ≤ αi, i ≥ 0}.

Inspired by what was done in the area of the maximal set, see [7,
15 17], and [26], we call S(F ) the maximal set of the F -admissible
initial states, and we propose a theoretic and algorithmic characteri-
zation of the set S(F ). The case of discrete delayed systems is also
considered and some examples are given.

2. Preliminary results. Consider the linear controlled system
described by the difference-equation

(4)
{

x(i + 1) = Ax(i) + Bu(i), i ≥ 0,
x(0) = x0 ∈ Rn;

the corresponding output is

(5) y(i) = Cx(i), i ≥ 0,
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where x(i) ∈ Rn is the state variable, u(i) ∈ Rm is the input variable
and y(i) ∈ Rp. A, B and C are constant matrices of appropriate
dimensions.

We suppose that the system (4) is stabilizable by a state-feedback
control law

(6) u(i) = Fx(i), ∀ i ≥ 0.

Note that the closed-loop system (4) and (6) is given by
{

x(i + 1) = Âx(i), ∀ i ≥ 0,
Â = A + BF.

Let (αi)i≥0 be a positive decreasing sequence which verifies

(7)
αi

αi+1
≤ αi−1

αi
, ∀ i ≥ 1.

As examples of such sequences we cite

αi =
1

i + 1
; αi =

1
(i + 1)s

, s ∈ [1, +∞[ ; αi = ρi, ρ < 1.

In this paper, we propose, under some conditions on the matrix F , to
determine the set of all initial states for which the resulting output
function satisfies the pointwise-in-time conditions

y(i) ∈ B(0, αi), ∀ i ∈ N,

where B(0, αi) is the ball with center 0 and radius αi. More precisely
we investigate the set

S(F ) = {x0 ∈ Rn, y(i) ∈ B(0, αi), i ≥ 0}.

We call S(F ) the maximal set of F -admissible initial states. Since
y(i) = CÂix0, this set can also be represented by

S(F ) = {x0 ∈ Rn, CÂix0 ∈ B(0, αi), i ≥ 0}.

In the following proposition, we propose some properties of the set
S(F ).
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Proposition 1. i) For every F ∈ L(Rn,Rm), S(F ) is a closed,
convex and symmetric set.

ii) If we suppose that lim supk→+∞ ‖Âk‖/αk < ε, where ε ≥ 0, then
0 ∈ intS(F ).

Proof. The results in i) are easily checked from the definition of
S(F ). The assumption in ii) implies that there exists a constant
γ > 0 such that, for all x ∈ Rn and i ∈ N, ‖CÂix‖ ≤ γαi‖x‖.
Then, x ∈ B(0, (1/γ)) implies CÂix ∈ B(0, αi) for all i ∈ N. Hence
B(0, (1/γ)) ∈ S(F ) and consequently 0 ∈ intS(F ).

Remark 1. The condition lim supk→+∞ ‖Âk‖/αk < ε in the previous
proposition is equivalent to ‖CÂi‖ ≤ βαi, for all i ≥ 0, where β is a
positive constant.

3. Algorithmic characterization of the set S(F ). In order
to give a simple structure of the set S(F ), we propose in this section
sufficient conditions on F which allow us to characterize the set S(F )
by a finite number of inequations. For this, let Sk(F ) be the family of
sets defined by

Sk(F ) = {x0 ∈ Rn, CÂix0 ∈ B(0, αi), 0 ≤ i ≤ k}.
We have the following result

Proposition 2. Suppose that Sk(F ) = Sk+1(F ) for some integer
k. Then the set S(F ) given by (8) is described by a finite number
of equations; more precisely, we have S(F ) = Sk(F ). Conversely, if
S(F ) = Sk(F ) for some integer k, then Sk(F ) = Sk+1(F ) = Sj(F ), for
all j ≥ k.

Proof. Suppose the existence of an integer k such that Sk(F ) =
Sk+1(F ). Then x ∈ Sk(F ) implies that

CÂk+1x ∈ B(0, αk+1);

thus,

(9) CÂk

(
αk

αk+1
Âx

)
∈ B(0, αk)
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and, for i ∈ {0, . . . , k − 1}, we have

CÂi

(
αk

αk+1
Âx

)
=

αk

αk+1
CÂi+1x ∈ B

(
0,

αkαi+1

αk+1

)
.

Since (αj)j≥0 verifies (αj/αj+1) ≤ (αj−1/αj), for all j ≥ 1, then

αk

αk+1
≤ αi

αi+1
, ∀ i ∈ {0, . . . , k − 1},

which implies that

(10) CÂi

(
αk

αk+1
Âx

)
∈ B(0, αi), ∀ i ∈ {0, . . . , k − 1}.

Consequently, from (9) and (10) we deduce that

αk

αk+1
Âx ∈ Sk(F )

and, by iteration, (αk/αk+1)jÂjx ∈ Sk(F ), for all j ≥ 0, then

CÂi+jx ∈ B

(
0,

αj
k+1αi

αj
k

)
, ∀ i ∈ {0, . . . , k}, ∀ j ≥ 0.

So, for i = k, we have

CÂk+jx ∈ B

(
0,

αj
k+1

αj−1
k

)
, ∀ j ≥ 1,

as (αi)i≥0 verify (7), then we easily establish that

αj
k+1

αj−1
k

≤ αk+j , ∀ j ≥ 1;

thus,
CÂk+jx ∈ B(0, αk+j), ∀ j ≥ 1.

Therefore x ∈ S(F ), hence Sk(F ) ⊂ S(F ). But S(F ) is a subset of
Sk(F ), consequently S(F ) = Sk(F ). Conversely, if Sk(F ) = S(F ) for
some integer k, then we deduce that Sk(F ) ⊂ Sk+1(F ) which implies
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that Sk(F ) = Sk+1(F ) (because S(F ) ⊂ Sj1(F ) ⊂ Sj2(F ), j1 ≥ j2).

In order to determine the smallest integer k∗, if there exists, such
that S(F ) = S∗

k(F ), we suggest an algorithm stated as follows:

Let Rp be endowed with the following norm

‖x‖ = max
1≤i≤p

|xi| ∀x = (x1, . . . , xp) ∈ Rp.

The set Sk(F ) is then described as follows

Sk(F ) =
{
x ∈ Rn/hj

( 1
αi

CÂix
)
≤ 0

for j = 1, 2, . . . , 2p and i = 0, 1, . . . , k},

where hj : Rp → R, are defined for every x = (x1, . . . , xp) ∈ Rp by

h2m−1(x) = xm − 1, for m ∈ {1, 2, . . . p},
h2m(x) = −xm − 1, for m ∈ {1, 2, . . . p}.

It follows from Sk+1(F ) ⊂ Sk(F ), for all k ≥ 0, that

Sk+1(F ) = Sk(F ) ⇐⇒ Sk(F ) ⊂ Sk+1(F ),

so
Sk+1(F ) = Sk(F ) ⇐⇒ ∀x ∈ Sk(F ),

hj

( 1
αk+1

CÂk+1x
)
≤ 0, ∀ j ∈ {1, 2, . . . , 2p},

or equivalently,

sup
x∈Sk(F )

hj

( 1
αk+1

CÂk+1x
)
≤ 0, ∀ j ∈ {1, 2, . . . , 2p}.

Finally, we deduce the algorithm

Algorithm.

Step 1 : Let k = 0;
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Step 2 : For i = 1, . . . , 2p, do:

Maximize Ji(x) = hi[(1/αk+1)CÂk+1x]
{

hi[(1/αl)CÂlx] ≤ 0,

i = 1, . . . , 2p l = 0, . . . , k.

Let J∗
i be the maximum value of Ji(x).

If J∗
i ≤ 0, for i = 1, . . . , 2p then set k∗ := k and stop.

Else continue.

Step 3 : Replace k by k + 1 and return to Step 2.

The optimization problem cited in Step 2 is a mathematical program-
ming problem and can be solved by standard methods.

4. Conditions for finite characterization of S(F ). It is clear
that the above algorithm converges if and only if there exists an integer
k such that Sk+1(F ) = Sk(F ). So it is desirable to establish simple
conditions which allows us to characterize the set S(F ) by a finite
number of equations. Our main result in this direction is the following

Theorem 1. Suppose the following assumptions hold

i) the pair (C, Â) is observable, i.e., [C�|Â�C�| · · · |(Â�)n−1C�]
has rank n.

ii) lim supk→+∞ ‖Âk‖/αk < λ0/(‖C‖‖H‖α0), where

λ0 = inf
λ∈σ(H�H)

λ and H =

⎡
⎢⎢⎣

C
CÂ
...

CÂn−1

⎤
⎥⎥⎦ .

Then there exists an integer k such that S(F ) = Sk(F ).

Proof. It follows from the definition of Sn−1(F ) that

(11) x ∈ Sn−1(F ) =⇒ Hx ∈
n-times︷ ︸︸ ︷

B(0, α0) × · · · × B(0, αn−1) .
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On the other hand the observability of (C, Â) implies that the ma-
trix H�H is invertible, consequently there exists a constant c =
infλ∈σ(H�H)λ > 0 such that

c‖x‖2 ≤ 〈H�Hx, x〉, ∀x ∈ Rn, see [24],

which implies that

c‖x‖2 ≤ ‖H�‖, ‖Hx‖ ‖x‖, ∀x ∈ Rn,

then it follows from (11) that

c‖x‖2 ≤ α0‖H�‖ ‖x‖, ∀x ∈ Sn−1(F )

(because ‖Hx‖ ≤ max0≤i≤n−1(αi) = α0 and ‖x‖ = max1≤i≤p|xi|, ∀x ∈
Rp). So

‖x‖ ≤ γ =
‖H�‖α0

c
, ∀x ∈ Sn−1(F ).

Hence
Sn−1(F ) ⊂ B(0, γ) = {x ∈ Rn/‖x‖ ≤ γ}.

The fact that lim supk→+∞‖Âk‖/αk = ε implies that

∀β > 0 ∃k0 ∀ k ≥ k0 : sup
i≥k

‖Âi‖
αi

≤ β + ε,

then for β = 1/γ‖C‖ − ε > 0 there exists an integer k0 ≥ n − 1 such
that

‖CÂk0+1‖ ≤ αk0+1

γ
.

For every x ∈ Sk0(F ) we have

‖CÂk0+1x‖ ≤ ‖CÂk0+1‖‖x‖,

but Sk0(F ) ⊂ Sn−1(F ) ⊂ B(0, γ), so we deduce that

‖CÂk0+1x‖ ≤ αk0+1, ∀x ∈ Sk0(F );

consequently, CÂk0+1x ∈ B(0, αk0+1), for all x ∈ Sk0(F ). Thus,
Sk0(F ) ⊂ Sk0+1(F ), which implies that Sk0(F ) = Sk0+1(F ) = S(F ).
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Figure 1. The dotted region is the set S(F ) corresponding to
Example 1.

5. Examples.

Example 1. Consider systems (4) and (5) with data

A =
(

0.8 −1
0 2

)
, B =

(
−4 0.5
0.6 −0.2

)
and C =

(
1 0
1 −1

)
.

Let (αi) be the sequence defined by αi = 1/2i and consider the feedback
u(i) = Fx(i) where

F =
(

0.2 0.7
0.6 10.

)

Using the algorithm defined in Section II.3, we establish k∗ = 4. Figure
1 gives the representation of the maximal set of F -admissible initial
states S(F ).

Example 2. For

A =
(

1.4 −0.6
−2.2 1.5

)
, B =

(
−1
2

)
,

C = (−1, 0.2), u(i) = (1, −0.5)x(i)
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Figure 2. The dotted region is the set S(F ) corresponding to
Example 2.

and αi = 1/(i + 1), we use the algorithm of Section II.3 to establish
that k∗ = 3. Figure 2 gives a representation of the maximal set of
F -admissible initial states S(F ) corresponding to Example 2.

6. Discrete-time controlled delayed system. In this section we
consider the discrete controlled delayed system given by

(12)

⎧⎪⎨
⎪⎩

x(i + 1) =
∑d

j=0Ajx(i − j) + Bu(i) i ≥ 0,
x(0) = x0,

x(k) = θk for k ∈ {−d,−d + 1, . . . ,−1},

the corresponding delayed output function is

(13) y(i) =
t∑

j=0

Cjx(i − j), i ≥ 0,

where Aj ∈ L(Rn), B ∈ L(Rm,Rn) and Cj ∈ L(Rn,Rp). d and t are
integers such that t ≤ d. x(i) ∈ Rn is the state variable, u(i) ∈ Rm

the input variable and the observation y(i) ∈ Rp satisfies the output
constraints

(14) y(i) ∈ B(0, αi), ∀ i ∈ N,
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where (αi)i≥0 is a positive decreasing sequence which verifies equation
(7).

We suppose that the system (15) is stabilizable by a state-feedback
control law

u(i) = F(x(i), x(i − 1), . . . , x(i − d)), ∀ i ∈ N.

The initial condition (x0, θ−1, . . . , θ−d+1, θ−d) ∈ Rn(d+1) is said to be
an F-admissible condition if the resulting output function (13) satisfies
the constraints (14). The set of all such initial conditions is the maximal
set of F-admissible initial states T (F). In order to characterize the set
T (F), we define the new state variable e(i) ∈ Rn(d+1) for i ∈ N by

e(i) = (x(i), x(i − 1), . . . , x(i − d))�, i ≥ 0

and the matrices A ∈ L(Rn(d+1)) and B ∈ L(Rn,Rn(d+1)) by

A =

⎛
⎜⎜⎜⎜⎜⎝

A0 A1 · · · · · · Ad

In 0n · · · · · · 0n

0n
. . . . . .

...
...

. . . . . . . . .
...

0n · · · 0n In 0n

⎞
⎟⎟⎟⎟⎟⎠ and B =

⎛
⎜⎜⎜⎜⎜⎝

B
0n×m

...

...
0n×m

⎞
⎟⎟⎟⎟⎟⎠ ,

where In is the n×n-unit matrix, On is the n×n-zero matrix and 0n×m

is the n × m-zero matrix. Then the system (12) can be equivalently
rewritten in the form

(15)
{

e(i + 1) = Ae(i) + Bu(i), i ≥ 0,

e(0) = (x0, θ−1, . . . , θ−d+1, θ−d).

If we define the p × [n(d + 1)]-matrix C by

C = (C0|C1| · · · |Ct|Op×n| · · · |Op×n︸ ︷︷ ︸
d−t-times

) ∈ L(Rn(d+1),Rp).

The observation (13) can be expressed as follows

(16) y(i) = Ce(i) = C(A + BF)ie(0), for all i ∈ N.
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FIGURE 3. The representation of the maximal set of F-admissible initial
states T (F) corresponding to Example 3.

Thus, the set of all F-admissible initial states is formally given by

T (F) = {e ∈ Rn(d+1)/C(A + BF)ie ∈ B(0, αi), ∀ i ∈ N}.

So it is obvious that Theorem 1 gives sufficient conditions to charac-
terize the set T (F) by a finite number of functional inequalities.

Example 3. Consider the discrete-time delayed system described by⎧⎨
⎩

x(i + 1) = 1.2x(i) − 0.5x(i − 1) + u(i), i ≥ 0,

x(0) = x0,

x(−1) = θ−1.

The corresponding output is

y(i) = x(i), i ≥ 0.

If we take αi = (4/5)i and u(i) = F(x(i), x(i − 1))� where F =(
−0.8 0.78

0 0.08

)
, then we use the algorithm described in Section II.3 to

establish that k∗ = 1. Figure 3 gives the representation of the maximal
set of F-admissible initial states T (F).

6.1 Other sufficient conditions for discrete delayed systems.
We assume that (αi)i≥0 is a positive decreasing sequence which verifies



F -ADMISSIBLE INITIAL STATES 1115

equation (7); the linear control law is a delayed feedback control given
by

(17) u(i) =
d∑

j=0

Fjx(i − j), i ≥ 0,

where Fj ∈ L(Rn,Rm), for all j ∈ {0, . . . , d}, and we establish other
sufficient conditions to characterize the maximal set T (F) of all ad-
missible states (x0, θ−1, . . . , θ−d+1, θ−d) for which the resulting output
function (13) satisfies the constraints (14) and which are adapted to
delayed discrete systems. This set can be formally rewritten by

T (F) = {(x0, θ−1, . . . , θ−d+1, θ−d) ∈ Rn(d+1)/y(i) ∈ B(0, αi),
∀ i ∈ N}.

To solve the problem, we consider the two following situations

a) In the first case we suppose that p = n, i.e., the observation space
and the state space have the same dimension.

b) In the second case we suppose that p < n.

First case, p = n. In this case every Ci is an n × n matrix

Proposition 3. Suppose the following assumptions hold

i) Ci commute with Aj + BFj for every i ∈ {0, . . . , t} and for every
k ∈ {0, . . . , d}.

ii) ‖
∑d

i=0(Ai + BFi)zi‖ ≤ αd+1 for every zi ∈ B(0, αd−i).

Then

T (F)={(x0, θ−1, . . . , θ−d)∈Rn(d+1)/y(i)∈B(0, αi), ∀ i ∈ {0, . . . , d}},

where d is the number of delays in the state variable of system (12).

Proof. If every Ci commutes with every Aj + BFj for every i ∈
{0, . . . , t} and for every k ∈ {0, . . . , d}, then it follows for every i ≥ d+1
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that

y(i) =
t∑

k=0

Ckxi−k =
t∑

k=0

Ck

d∑
j=0

(Aj + BFj)xi−k−j−1

=
d∑

j=0

(Aj + BFj)
t∑

k=0

Ckxi−k−j−1

=
d∑

j=0

(Aj + BFj)y(i − j − 1).

Now, let e ∈ Td(F) = {(x0, θ−1, . . . , θ−d) ∈ Rn(d+1)/y(i) ∈ B(0, αi),
for all i ∈ {0, . . . , d}} then

y(i) ∈ B(0, αi), ∀ i ∈ {0, . . . , d}.

From hypothesis ii) of Proposition 3, it follows that

y(d + 1) =
d∑

j=0

(Aj + BFj)y(d − j) ∈ B(0, αd+1),

which implies that e ∈ Td+1(F) where

Td+1(F) = {(x0, θ−1, . . . , θ−d) ∈ Rn(d+1)/‖y(i)‖αi, ∀ i ∈ {0, . . . , d+1}},

hence
Td(F) ⊂ Td+1(F).

Consequently, from Proposition 2, we deduce that

Td(F) = Td+1(F) = T (F).

Second case, p < n. Since every Ci is a p× n matrix, we define Ĉi

by

Ĉi =
(

Ci

0

)
,

if we introduce the new observation ŷ(i) by

ŷ(i) =
(

y(i)
0

)
,
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then clearly we have ŷ(i) =
∑t

k=0Ĉkxi−k and we easily verify that

‖ŷ(i)‖ ≤ αi ⇐⇒ ‖y(i)‖ ≤ αi.

So the set T (F) is given by

T (F) = {(x0, θ−1, . . . , θ−d+1, θ−d) ∈ Rn(d+1)/ŷ(i) ∈ B(0, αi),
∀ i ∈ N},

since Ĉi are n × n-matrices, then results of case a) can be applied to
deduce the following proposition.

Proposition 4. Suppose the following hypotheses hold:

i) Ĉi commute with Aj + BFj for every i ∈ {0, . . . , t} and for every
k ∈ {0, . . . , d}.

ii) ‖
∑d

i=0(Ai + BFi)zi‖ ≤ αd+1 for every zi ∈ B(0, αd−i).

Then T (F) is characterized by a finite number of equations; more
precisely, we have

T (F) = {(x0, θ−1, . . . , θ−d) ∈ Rn(d+1)/y(i) ∈ B(0, αi),
∀ i ∈ {0, . . . , d}}.

Example 4. Consider the system

(18)

⎧⎪⎨
⎪⎩

x(i + 1) =
∑d

j=0Ajx(i − j) + Bu(i) i ≥ 0,
x(0) = x0 is given,

x(k) = θk, −d ≤ k ≤ −1,

with the output function

y(i) = x(i), i ≥ 0.

We suppose that the input is a delayed feedback control u(i) =∑d
j=0Fjx(i − j) and the output satisfies the constraints

‖y(i)‖ ≤ αi, i ≥ 0,
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where (αi)i≥0 is a positive decreasing sequence which verifies equation
(7). Then we have the following result

Proposition 5. If
∑d

j=0 ‖Ai + BFi‖2 ≤ (α2
d+1/

∑d
j=0 α2

i ), then
the maximal set of F-admissible initial states T (F) is characterized
by T (F) = {(x0, θ−1, . . . , θ−d) ∈ Rn(d+1)/‖y(i)‖ ≤ αi, for all i ∈
{0, . . . , d}}.

Proof. We show that the hypotheses of Proposition 3 are verified.
Indeed, for every zi ∈ B(0, αd−i), i = 0, . . . , d, we have

‖
d∑

j=0

‖(Ai + BFi)zi‖ ≤
(
‖

d∑
j=0

‖Ai + BFi‖2
)1/2(

‖
d∑

j=0

‖zi‖2
)1/2

≤
(
‖

d∑
j=0

‖Ai + BFi‖2|
)1/2(

‖
d∑

j=0

α2
i

)1/2

≤ αd+1.

7. Conclusion. In this paper, we consider a discrete system
output-stabilizable by a feedback (ui)i, and we focus our interest in this
work to characterize the set of all initial states for which the output
function satisfies the constraints ‖y(i)‖ ≤ αi, for all i ≥ 0, where αi is
appropriately chosen. An efficient algorithm for constructing the set of
such initial states is given and numerical simulations have been done for
some examples. The case of controlled discrete time-delayed systems
has also been investigated.
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Ben M’sik, Casablanca, Morocco
E-mail address: rachik@math.net
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