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OSCILLATION CRITERIA FOR
SYSTEMS OF PARABOLIC EQUATIONS

WITH FUNCTIONAL ARGUMENTS

WEI NIAN LI AND FAN WEI MENG

ABSTRACT. Sufficient conditions are established for the
oscillations of systems of parabolic equations with functional
arguments of the form

∂

∂t
ui(x, t) = ai(t)∆ui(x, t) +

m∑
k=1

s∑
j=1

aikj(t)∆uk(x, ρj(t))

−
m∑

k=1

l∑
h=1

qikh(x, t)uk(x, σh(t)),

(x, t) ∈ Ω × [0,∞) ≡ G, i = 1, 2, . . . , m,

under boundary conditions of Dirichlet and Neumann type,
where Ω is a bounded domain in Rn with a piecewise smooth
boundary ∂Ω, and ∆ is the Laplacian in Euclidean n-space
Rn. These results are illustrated by some examples.

1. Introduction. Recently, the oscillation theory for systems of
partial functional differential equations has been studied extensively
[3 7]. In this paper, we study the oscillation of systems of parabolic
differential equations with functional arguments of the form

(1)

∂

∂t
ui(x, t) = ai(t)∆ui(x, t) +

m∑
k=1

s∑
j=1

aikj(t)∆uk(x, ρj(t))

−
m∑

k=1

l∑
h=1

qikh(x, t)uk(x, σh(t)),

(x, t) ∈ Ω × [0,∞) ≡ G, i = 1, 2, . . . , m,
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where Ω is a bounded domain in Rn with a piecewise smooth boundary
∂Ω, and ∆ui(x, t) =

∑n
r=1(∂

2ui(x, t)/∂x2
r), i = 1, 2, . . . , m.

Suppose that the following conditions hold:

(C1) ai ∈ C([0,∞); [0,∞)), aikj ∈ C([0,∞); R), aiij(t) > 0 and

Aj(t) = min
1≤i≤m

{
aiij(t) −

m∑
k=1,k �=i

|akij(t)
∣∣∣
}

≥ 0,

i, k ∈ Im = {1, 2, . . . , m}, j ∈ Is = {1, 2, . . . , s};

(C2) qikh ∈ C(G; R), and qiih(x, t) > 0; qiih(t) = minx∈Ω qiih(x, t),

q̄ikh(t) = max
x∈Ω

| qikh(x, t) |, and

Qh(t) = min
1≤i≤m

{
qiih(t) −

m∑
k=1,k �=i

q̄kih(t)
}

≥ 0,

i, k ∈ Im, h ∈ Il = {1, 2, . . . , l};

(C3) ρj , σh ∈ C([0,∞); [0,∞)), limt→∞ ρj(t) = limt→∞ σh(t) = ∞,
j ∈ Is, h ∈ Il.

Consider the following boundary conditions:

(2)
∂ui(x, t)

∂N
+ gi(x, t)ui(x, t) = 0, (x, t) ∈ ∂Ω × [0,∞), i ∈ Im,

where N is the unit exterior normal vector to ∂Ω and gi(x, t) is a
nonnegative continuous function on ∂Ω × [0,∞), i ∈ Im, and

(3) ui(x, t) = 0, (x, t) ∈ ∂Ω × [0,∞), i ∈ Im.

Definition 1.1. The vector function u(x, t) = {u1(x, t), u2(x, t), . . . ,
um(x, t)}T is said to be a solution of the problem (1),(2) (or (1), (3)) if
it satisfies (1) in G = Ω × [0,∞) and boundary condition (2) (or (3)).

Definition 1.2. The vector solution u(x, t) = {u1(x, t), u2(x, t), . . . ,
um(x, t)}T of the problem (1), (2) (or (1), (3)) is said to be oscillatory
in the domain G = Ω×[0,∞) if at least one of its nontrivial components
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is oscillatory in G. Otherwise, the vector solution u(x, t) is said to be
nonoscillatory.

2. Oscillation of the problem (1), (2).

Theorem 2.1. If the differential inequality

(4) V ′(t) +
l∑

h=1

Qh(t)V (σh(t)) ≤ 0, t ≥ 0,

has no eventually positive solution, then every solution u(x, t) of the
problem (1),(2) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution
u(x, t) = {u1(x, t), u2(x, t), . . . , um(x, t)}T of the problem (1), (2).
We assume that |ui(x, t)| > 0 for t ≥ t0 ≥ 0, i ∈ Im. Let δi =
sgn ui(x, t), Zi(x, t) = δiui(x, t). Then Zi(x, t) > 0, (x, t) ∈ Ω× [t0,∞),
i ∈ Im. From (C3) there exists a number t1 ≥ t0 such that Zi(x, t) > 0,
Zk(x, ρj(t)) > 0 and Zi(x, σh(t)) > 0 in Ω × [t1,∞), i, k ∈ Im,
j ∈ Is, h ∈ Il.

Integrating (1) with respect to x over the domain Ω, we have

(5)

d

dt

∫
Ω

ui(x, t) dx = ai(t)
∫

Ω

∆ui(x, t) dx

+
m∑

k=1

s∑
j=1

aikj(t)
∫

Ω

∆uk(x, ρj(t)) dx

−
m∑

k=1

l∑
h=1

∫
Ω

qikh(x, t)uk(x, σh(t)) dx,

t ≥ t1, i ∈ Im.
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Hence, we have

(6)

d

dt

∫
Ω

Zi(x, t) dx = ai(t)
∫

Ω

∆Zi(x, t) dx

+
m∑

k=1

s∑
j=1

aikj(t)
δi

δk

∫
Ω

∆Zk(x, ρj(t)) dx

− δi

δk

m∑
k=1

l∑
h=1

∫
Ω

qikh(x, t)Zk(x, σh(t)) dx,

t ≥ t1, i ∈ Im.

Green’s formula and boundary condition (2) yield

(7)

∫
Ω

∆Zi(x, t) dx =
∫

∂Ω

∂Zi(x, t)
∂N

dS

= −
∫

∂Ω

gi(x, t)Zi(x, t) dS ≤ 0,

and

(8)

∫
Ω

∆Zk(x, ρj(t)) dx =
∫

∂Ω

∂Zk(x, ρj(t))
∂N

dS

= −
∫

∂Ω

gk(x, ρj(t))Zk(x, ρj(t)) dS,

t ≥ t1, i, k ∈ Im, j ∈ Is,

where dS is the surface element on ∂Ω.

Now combining (6) (8), we obtain

(9)
d

dt

∫
Ω

Zi(x, t) dx +
m∑

k=1

s∑
j=1

aikj(t)
δi

δk

∫
∂Ω

gk(x, ρj(t))Zk(x, ρj(t)) dS

+
l∑

h=1

qiih(t)
∫

Ω

Zi(x, σh(t)) dx

−
l∑

h=1

m∑
k=1,k �=i

qikh(t)
∫

Ω

Zk(x, σh(t)) dx ≤ 0,

t ≥ t1, i ∈ Im.
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Therefore,

(10)

d

dt

∫
Ω

Zi(x, t) dx +
s∑

j=1

aiij(t)
∫

∂Ω

gi(x, ρj(t))Zi(x, ρj(t)) dS

−
m∑

k=1
k �=i

s∑
j=1

|aikj(t)|
∫

∂Ω

gk(x, ρj(t))Zk(x, ρj(t)) dS

+
l∑

h=1

qiih(t)
∫

Ω

Zi(x, σh(t)) dx

−
l∑

h=1

m∑
k=1,k �=i

q̄ikh(t)
∫

Ω

Zk(x, σh(t)) dx ≤ 0,

t ≥ t1, i ∈ Im.

Set

Vi(t) =
∫

Ω

Zi(x, t) dx, Ui(t) =
∫

∂Ω

gi(x, t)Zi(x, t) dS, t ≥ t1, i ∈ Im.

From (10) we have

(11)

V ′
i (t) +

s∑
j=1

[aiij(t)Ui(ρj(t)) −
m∑

k=1
k �=i

|aikj(t)|Uk(ρj(t))]

+
l∑

h=1

[
qiih(t)Vi(σh(t)) −

m∑
k=1,k �=i

q̄ikh(t)Vk(σh(t))
]
≤ 0,

t ≥ t1, i ∈ Im.

Let

V (t) =
m∑

i=1

Vi(t), U(t) =
m∑

i=1

Ui(t), t ≥ t1.
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From (11) we have

(12)

V ′(t) +
s∑

j=1

{ m∑
i=1

[aiij(t)Ui(ρj(t)) −
m∑

k=1
k �=i

|aikj(t)|Uk(ρj(t))]
}

+
l∑

h=1

{ m∑
i=1

[qiih(t)Vi(σh(t)) −
m∑

k=1
k �=i

q̄ikh(t)Vk(σh(t))]
}

≤ 0, t ≥ t1.

Noting that

m∑
i=1

[
qiih(t)Vi(σh(t)) −

m∑
k=1
k �=i

q̄ikh(t)Vk(σh(t))
]

=
[
q11h(t)V1(σh(t)) −

m∑
k=1
k �=1

q̄1kh(t)Vk(σh(t))
]

+
[
q22h(t)V2(σh(t)) −

m∑
k=1
k �=2

q̄2kh(t)Vk(σh(t))
]

+ · · · · · ·

+
[
qmmh(t)Vm(σh(t)) −

m∑
k=1
k �=m

q̄mkh(t)Vk(σh(t))
]

=
[
q11h(t) −

m∑
k=1
k �=1

q̄k1h(t)
]
V1(σh(t)) +

[
q22h(t) −

m∑
k=1
k �=2

q̄k2h(t)
]
V2(σh(t))

+ · · · · · ·

+
[
qmmh(t) −

m∑
k=1
k �=m

q̄kmh(t)
]
Vm(σh(t))

≥ min
1≤i≤m

{
qiih(t) −

m∑
k=1
k �=i

q̄kih(t)
} m∑

i=1

Vi(σh(t))

= Qh(t)V (σh(t)), t ≥ t1, h ∈ Il.
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Similarly we have

m∑
i=1

[
aiij(t)Ui(ρj(t)) −

m∑
k=1
k �=i

|aikj(t)|Uk(ρj(t))
]

≥ min
1≤i≤m

{
aiij(t) −

m∑
k=1

|akij(t)|
} m∑

i=1

Ui(ρj(t))

= Aj(t)U(ρj(t)), t ≥ t1, j ∈ Is.

Then from (12), we get

(13) V ′(t) +
s∑

j=1

Aj(t)U(ρj(t)) +
l∑

h=1

Qh(t)V (σh(t)) ≤ 0, t ≥ t1.

It is easy to see that

U(ρj(t)) =
m∑

i=1

Ui(ρj(t)) ≥ 0, t ≥ t1, j ∈ Is.

Therefore,

V ′(t) +
l∑

h=1

Qh(t)V (σh(t)) ≤ 0, t ≥ t1,

which contradicts the assumption that (4) has no eventually positive
solutions. This completes the proof.

We now give two lemmas which are useful for the proof of the
following results.

Lemma 2.1 [7]. Consider the differential inequality

(14) x′(t) + p(t)x(g(t)) ≤ 0.

Assume that p ∈ C(R; [0,∞)), g ∈ C(R; R), g(t) ≤ t and g(t) is
nondecreasing, limt→∞ g(t) = ∞ and suppose that

(15) lim inf
t→∞

∫ t

g(t)

p(s) ds >
1
e
.
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Then the inequality (14) has no eventually positive solutions.

Lemma 2.2 [4]. Consider the differential inequality (14). Assume
that p, g ∈ C([0,∞); [0,∞)), g(t) ≤ t, t ≥ 0 and g(t) is nondecreasing,
limt→∞ g(t) = ∞, and suppose that when L < 1 and 0 < K ≤ 1/e the
following conditions hold

(16) L >
ln µ1 + 1

µ1
− 1 − K −√

1 − 2K − K2

2
,

where

K = lim inf
t→∞

∫ t

g(t)

p(s) ds, L = lim sup
t→∞

∫ t

g(t)

p(s) ds,

and µ1 is the smaller root of the equation

µ = eKµ.

Then the inequality (14) has no eventually positive solutions.

Theorem 2.2. If there exists h0 ∈ Il such that σh0(t) ≤ t, σh0(t) is
nondecreasing in [0,∞) and

(17) lim inf
t→∞

∫ t

σh0 (t)

Qh0(s) ds >
1
e
,

then every solution u(x, t) of the problem (1), (2) is oscillatory in G.

Proof. We prove that the inequality (4) has no eventually positive
solution if the conditions of Theorem 2.2 hold. Suppose V (t) is an
eventually positive solution of the inequality (4). Then there exists a
number t1 ≥ t0 such that V (σh(t)) > 0, t ≥ t1, h ∈ Il. Therefore, we
have

(18) V ′(t) + Qh0(t)V (σh0(t)) ≤ 0, t ≥ t1.

By Lemma 2.1 we obtain that the inequality (18) has no eventually
positive solutions, which contradicts the fact that V (t) > 0 is a solution
of the inequality (18).
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By using Lemma 2.2, the proof of the following theorem is similar to
that of Theorem 2.2 and we omit it.

Theorem 2.3. If there exists h0 ∈ Il such that σh0(t) ≤ t, σh0(t) is
nondecreasing in [0,∞) and suppose that when L < 1 and 0 < K ≤ 1/e
the following conditions hold

(19) L >
ln λ1 + 1

λ1
− 1 − K −

√
1 − 2K − K

2

2
,

where

K = lim inf
t→∞

∫ t

σh0 (t)

Qh0(s) ds, L = lim sup
t→∞

∫ t

σh0 (t)

Qh0(s) ds,

and λ1 is the smaller root of the equation

λ = eKλ.

Then every solution u(x, t) of the problem (1), (2) is oscillatory in G.

Theorem 2.4. If there exists h0 ∈ Il such that σh0(t) ≤ t, σh0(t) is
nondecreasing in [0,∞) and

(20) lim sup
t→∞

∫ t

σh0 (t)

Qh0(s) ds > 1,

then every solution u(x, t) of the problem (1), (2) is oscillatory in G.

Proof. As in the proof of Theorem 2.2 we obtain (18). Integrating
the inequality (18) from σh0(t) to t we have

(21) V (t) − V (σh0(t)) +
∫ t

σh0 (t)

Qh0(s)V (σh0(s)) ds ≤ 0, t ≥ t1.

Noting that V ′(t) ≤ 0, σh0(t) ≤ t, σh0(t) is nondecreasing in [t1,∞),
from (21) we have

(22) V (t) − V (σh0(t)) + V (σh0(t))
∫ t

σh0(t)

Qh0(s) ds ≤ 0, t ≥ t1.
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Therefore, ∫ t

σh0(t)

Qh0(s) ds ≤ 1 − V (t)
V (σh0(t))

< 1.

And, hence,

lim sup
t→∞

∫ t

σh0 (t)

Qh0(s) ds ≤ 1,

which violates the condition (20). This completes the proof of Theo-
rem 2.4.

3. Oscillation of the problem (1), (3). It is known that the
smallest eigenvalue α0 of the Dirichlet problem

{
∆ω(x) + αω(x) = 0 in Ω,
ω(x) = 0 on ∂Ω,

where α is a constant, is positive and the corresponding eigenfunction
ϕ(x) is positive in Ω.

Theorem 3.1. If the differential inequality

(23) V ′(t) + α0

s∑
j=1

Aj(t)V (ρj(t)) +
l∑

h=1

Qh(t)V (σh(t)) ≤ 0, t ≥ t1

has no eventually positive solutions, then every solution of the problem
(1), (3) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution
u(x, t) = {u1(x, t), u2(x, t), . . . , um(x, t)}T of the problem (1), (3).
We assume that |ui(x, t)| > 0 for t ≥ t0 ≥ 0, i ∈ Im. Let δi =
sgn ui(x, t), Zi(x, t) = δiui(x, t). Then Zi(x, t) > 0, (x, t) ∈ Ω× [t0,∞),
i ∈ Im. From (C3) there exists a number t1 ≥ t0 such that Zi(x, t) > 0,
Zk(x, ρj(t)) > 0 and Zi(x, σh(t)) > 0 in Ω × [t1,∞), i, k ∈ Im, j ∈ Is,
h ∈ Il.
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Multiplying both sides of (1) by ϕ(x) > 0 and integrating with respect
to x over the domain Ω, we have
(24)

d

dt

∫
Ω

ui(x, t)ϕ(x) dx = ai(t)
∫

Ω

∆ui(x, t)ϕ(x) dx

+
m∑

k=1

s∑
j=1

aikj(t)
∫

Ω

∆uk(x, ρj(t))ϕ(x) dx

−
m∑

k=1

l∑
h=1

∫
Ω

qikh(x, t)uk(x, σh(t))ϕ(x) dx,

t ≥ t1, i ∈ Im.

Therefore,

d

dt

∫
Ω

Zi(x, t)ϕ(x) dx = ai(t)
∫

Ω

∆Zi(x, t)ϕ(x) dx

+
s∑

j=1

aiij(t)
∫

Ω

∆Zi(x, ρj(t))ϕ(x) dx

+
m∑

k=1
k �=i

s∑
j=1

aikj(t)
∫

Ω

∆Zk(x, ρj(t))ϕ(x) dx(25)

−
l∑

h=1

∫
Ω

qiih(x, t)Zi(x, σh(t))ϕ(x) dx

− δi

δk

m∑
k=1
k �=i

l∑
h=1

∫
Ω

qikh(x, t)Zk(x, σh(t))ϕ(x) dx,

t ≥ t1, i ∈ Im.

Green’s formula and boundary (3) yield

(26)

∫
Ω

∆Zi(x, t)ϕ(x) dx =
∫

Ω

Zi(x, t)∆ϕ(x) dx

= −α0

∫
Ω

Zi(x, t)ϕ(x) dx ≤ 0,
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and

(27)

∫
Ω

∆Zk(x, ρj(t))ϕ(x) dx =
∫

Ω

Zk(x, ρj(t))∆ϕ(x) dx

= −α0

∫
Ω

Zk(x, ρj(t))ϕ(x) dx,

t ≥ t1, i, k ∈ Im, j ∈ Is.

Now from (25), (26) and (27), we have

(28)
d

dt

∫
Ω

Zi(x, t)ϕ(x) dx ≤ −α0

s∑
j=1

aiij(t)
∫

Ω

Zi(x, ρj(t))ϕ(x) dx

+ α0

m∑
k=1
k �=i

s∑
j=1

|aikj(t)|
∫

Ω

Zk(x, ρj(t))ϕ(x) dx

−
l∑

h=1

qiih(t)
∫

Ω

Zi(x, σh(t))ϕ(x) dx

+
m∑

k=1
k �=i

l∑
h=1

q̄ikh(t)
∫

Ω

Zk(x, σh(t))ϕ(x) dx,

t ≥ t1, i ∈ Im.

Setting

Vi(t) =
∫

Ω

Zi(x, t)ϕ(x) dx, t ≥ t1, i ∈ Im,

we have

(29)

V ′
i (t) + α0

s∑
j=1

[aiij(t)Vi(ρj(t)) −
m∑

k=1
k �=i

|aikj(t)|Vk(ρj(t))]

+
l∑

h=1

[
qiih(t)Vi(σh(t)) −

m∑
k=1
k �=i

qikh(t)Vk(σh(t))
]
≤ 0,

t ≥ t1, i ∈ Im.
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Let

V (t) =
m∑

i=1

Vi(t), t ≥ t1.

From (29) we have

(30)

V ′(t) + α0

s∑
j=1

{ m∑
i=1

[
aiij(t)Vi(ρj(t)) −

m∑
k=1,k �=i

|aikj(t)|Vk(ρj(t))
]}

+
l∑

h=1

{ m∑
i=1

[
qiih(t)Vi(σh(t)) −

m∑
k=1
k �=i

q̄ikh(t)Vk(σh(t))
]}

≤ 0,

t ≥ t1.

As in the proof of Theorem 2.1, from (30) we obtain

V ′(t) + α0

s∑
j=1

Aj(t)V (ρj(t)) +
l∑

h=1

Qh(t)V (σh(t)) ≤ 0, t ≥ t1.

The above inequality shows that V (t) =
∑m

i=1 Vi(t) > 0 is an
eventually positive solution of the inequality (23), which contradicts
the assumption that (23) has no eventually positive solutions. This
completes the proof of Theorem 3.1.

The proofs of the following theorems are similar to that of Theo-
rem 2.2, Theorem 2.3 and Theorem 2.4.

Theorem 3.2. If there exists j0 ∈ Is such that ρj0(t) ≤ t, ρj0(t) is
nondecreasing in [0,∞) and

(31) lim inf
t→∞ α0

∫ t

ρj0 (t)

Aj0(s) ds >
1
e
.

Then every solution u(x, t) of the problem (1), (3) is oscillatory in G.

Theorem 3.3. If there exists j0 ∈ Is such that ρj0(t) ≤ t,
ρj0(t) is nondecreasing in [0,∞) and suppose that when L1 < 1 and



1044 W.N. LI AND F.W. MENG

0 < K1 ≤ 1/e the following conditions hold

(32) L1 >
ln γ1 + 1

γ1
− 1 − K1 −

√
1 − 2K1 − K1

2

2
,

where

K1 = lim inf
t→∞ α0

∫ t

ρj0 (t)

Aj0(s) ds, L1 = lim sup
t→∞

α0

∫ t

ρj0 (t)

Aj0(s) ds,

and γ1 is the smaller root of the equation

γ = eK1γ ;

then every solution u(x, t) of the problem (1), (3) is oscillatory in G.

Theorem 3.4. If there exists j0 ∈ Is such that ρj0(t) ≤ t, ρj0(t) is
nondecreasing in [0,∞) and

(33) lim sup
t→∞

α0

∫ t

ρj0 (t)

Aj0(s) ds > 1,

then every solution u(x, t) of the problem (1), (3) is oscillatory in G.

Theorem 3.5. If the conditions of Theorem 2.2 hold, then every
solution u(x, t) of the problem (1), (3) is oscillatory in G.

Theorem 3.6. If the conditions of Theorem 2.3 hold, then every
solution u(x, t) of the problem (1), (3) is oscillatory in G.

Theorem 3.7. If the conditions of Theorem 2.4 hold, then every
solution u(x, t) of the problem (1), (3) is oscillatory in G.
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4. Examples.

Example 4.1. Consider the system of parabolic equations
(34)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u1(x, t) = ∆u1(x, t) + (1 + e−t)∆u1(x, t − π

2
)

+e−π/2∆u2(x, t − π

2
) − (1 + e−t)u1(x, t − π)

−e−πu2(x, t − π),
∂

∂t
u2(x, t) = (1 + eπ)∆u2(x, t) +

1
3
e−t∆u1(x, t − π

2
)

+
4
3
e−π/2∆u2(x, t − π

2
) − e−tu1(x, t − π)

−(1 + e−π)u2(x, t − π), (x, t) ∈ (0, π) × [0,∞),

with boundary condition

(35)
∂

∂x
ui(0, t) =

∂

∂x
ui(π, t) = 0, t ≥ 0, i = 1, 2.

Here n = 1, m = 2, s = 1, l = 1, a1(t) = 1, a111(t) = 1 + e−t,
a121(t) = e−π/2, ρ1(t) = t−(π/2), q111(x, t) = 1+e−t, q121(x, t) = e−π,
σ1(t) = t − π, a2(t) = 1 + eπ, a211(t) = (1/3)e−ta221 = (4/3)e−te−π/2,
q211(x, t) = e−t, q221(x, t) = 1 + e−π, Ω = (0, π). It is easy to see
that the conditions of Theorem 2.2 are verified. Thus all solutions
of the problem (34), (35) are oscillatory in (0, π) × [0,∞). In fact,
u1(x, t) = cos x sin t, u2(x, t) = −e−t cos x sin t is such a solution.

Example 4.2. Consider the system of parabolic equations

(36)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u1(x, t) = 3∆u1(x, t) + ∆u1(x, t − 3π

2
) + ∆u2(x, t − 3π

2
)

−4u1(x, t − π) − (−2)u2(x, t − π),
∂

∂t
u2(x, t) =

9
2
∆u2(x, t) +

1
2
∆u1(x, t − 3π

2
)

+2∆u2(x, t − 3π

2
) − 3u1(x, t − π) − 4u2(x, t − π),

(x, t) ∈ (0, π) × [0,∞),
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with boundary condition

(37) ui(0, t) = ui(π, t) = 0, t ≥ 0, i = 1, 2.

It is easy to see that all conditions of Theorem 3.7 are fulfilled. Then
every solution of the problem (36), (37) oscillates in (0, π)× [0,∞). In
fact, u1(x, t) = sin x cos t, u2(x, t) = sin x sin t is such a solution.
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