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EXISTENCE OF POSITIVE SOLUTIONS OF
A SINGULAR INITIAL PROBLEM

FOR A NONLINEAR SYSTEM
OF DIFFERENTIAL EQUATIONS

JOSEF DIBLÍK AND MIROSLAVA RŮŽIČKOVÁ

ABSTRACT. A singular Cauchy problem for a system of
nonlinear differential equations is considered. It is shown that,
under certain assumptions, there exists its positive solution
with asymptotic behavior similar, in a certain sense, to asymp-
totic behavior of the solution of the identical initial problem
for implicit system of auxiliary nonlinear (and nondifferential)
equations. Solution of the mentioned implicit system serves
as the base for the construction of a “funnel,” having the ver-
tex coinciding with the initial point, in which the graph of
a solution of a given singular problem is located. The main
result gives sufficient conditions for the existence of a para-
metric family of such solutions having positive coordinates. In
the proof of the main result, we apply the topological retract
method. With this connection the character of every bound-
ary point of this “funnel” is tested and as a result, we conclude
that each of its boundary points is either the point of strict
egress or the point of strict ingress with respect to the system
considered. Corresponding computations use the properties
of implicitly defined functions. As a special case, the linear
system is considered, too. Illustrative examples show that the
assumptions of the main result can easily be verified without
the construction of any implicit function.

1. Introduction. Let us consider the system of nonlinear differen-
tial equations

(1) g(x)y′ = A(x)α(y) − ω(x)

together with the initial condition

(2) y(0+) = 0.

Here y = (y1, . . . , yn)T is the vector of unknown functions, α(y) =
(α1(y1), . . . , αn(yn))T , A(x) is an n × n matrix with elements aij(x),
i, j = 1, . . . , n, ω(x) = (ω1(x), . . . , ωn(x))T and g(x) = diag (g1(x), . . . ,
gn(x)) is a diagonal matrix with the indicated diagonal entries.
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With Rn
>0 we denote the set of all component-wise positive vectors v

in Rn, i.e., v = (v1, . . . , vn) with vi > 0 for i = 1, . . . , n. For u, v ∈ Rn,
we say u � v if v − u ∈ Rn

>0.

The symbol Is, used throughout this paper, indicates an interval of
the form (0, s] with a fixed s > 0. The system (1) is considered under
the following main assumptions: Let there be intervals Ix0 , Iy0 such
that

(C1) gi ∈ C(Ix0 ,R
+), i = 1, . . . , n, with R+ = (0,∞);

(C2) α ∈ C1(Iy0 ,R
n), α(y) � 0 on Iy0 , α

′(y) � 0 on Iy0 and
α(0+) = 0;

(C3) ω ∈ C1(Ix0 ,R
n);

(C4) aij ∈ C1(Ix0 ,R), aii(x) �= 0, i, j = 1, . . . , n and detA(x) �= 0
on Ix0 ;

(C5) αi(y) ≤ Mα′
i(y), i = 1, . . . , n, on Iy0 with a constant M ∈ R+;

(C6) Ω(x) ≡ A−1(x)ω(x) � 0, Ω′(x) � 0 on Ix0 and Ω(0+) = 0.

Let us define the notion of a positive solution of the problem (1), (2):

Definition 1. A function y = y(x) ∈ C1(Ix∗ ,Rn) with 0 < x∗ ≤ x0

is said to be a solution of the singular problem (1), (2) on interval Ix∗

if y satisfies (1) on Ix∗ and y(0+) = 0. If, except this, y(x) � 0 on Ix∗ ,
we say that the solution of (1), (2) is positive.

The system (1) can be written in its normal form as

y′ = f(x, y) ≡ g−1(x) · [A(x)α(y) − ω(x)].

The problem (1), (2) will be a singular problem if the vector f(0+, 0+)
is undefined. This condition is not involved in the group of conditions
above and will hold (under the supposition that the ith equation of
the system cannot be canceled by gi(x) for x ∈ Ix0) if, in addition,
gi(0+) = 0 for an i ∈ {1, . . . , n}. The latter condition is implicitly
contained in the conditions of results formulated below. The advantage
of using the form (1) consists of an easy application of the results
concerning implicit functions.

With this one exception, the condition g(0+) = 0 (null matrix) will
help us to explain the motivation of our investigation. Let us put
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g(x) ≡ 0 in (1). Then

(3) 0 = A(x)α(y) − ω(x)

or

(4) y = ϕ(x) ≡ α−1[Ω(x)]

where α−1 is the inverse function with respect to α. If

lim
x→0+

α−1[Ω(x)] = 0,

the solution (4) of system (3) satisfies the initial condition (2). We can
expect that, in the case when g(x) → 0 sufficiently quickly if x → 0+,
the curve (4) can serve, in a certain sense, as an approximation of
solution of the problem (1), (2).

Many books and articles are devoted to the investigation of various
singular initial problems. Let us cite at least the pioneering work by
Chechyk [6], the monograph of Kiguradze [8] and the papers by Balla
[1], Dibĺık [3, 4], Konyukhova [9], Nowak [10] and O’Regan [11].

Problem (1), (2) under the conditions formulated has not been
considered yet. The main progress in the investigation of this problem
consists of employing the function y = ϕ, defined by (3), (4), in building
an (n + 1)-dimensional funnel, i.e., the domain Ω0 in the proof of the
main result, which contains the graph of the solution of considered
problem (1), (2). An additional advantage of our approach lies in the
fact that the conditions of the main result can be verified without the
concrete construction of the implicitly given function ϕ itself. Only
its existence and some of its properties (which are a consequence of
the theory of implicit functions) are necessary. Except the implicitly
defined functions, known qualitative properties for the solutions of
differential equations and the topological method of Ważewski are also
used in the proof of the main result.

The main result (Theorem 2 in Section 3 below) indicates sufficient
conditions for the existence of a family of positive solutions of the
problem (1), (2). This result is then generalized to a larger class
of systems (Theorem 3 in Section 4). Except the system (1) the
corresponding linear system is considered in the paper under weaker
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conditions (Theorem 4, Section 5). Illustrative examples are considered
in Section 6.

2. Preliminaries.

2.1 Implicit functions. In this section we give a summary of
properties of implicitly defined functions that are used in the proof
of the main result. Consider an implicit equation

(5) α̃(y) = ω̃(x).

Lemma 1. Let the following assumptions be valid:

1. α̃ ∈ C1(Iy0 ,R), α̃ > 0 on Iy0 , α̃′ > 0 on Iy0 and α̃(0+) = 0;

2. ω̃ ∈ C1(Ix0 ,R), ω̃ > 0 on Ix0 , ω̃′ > 0 on Ix0 and ω̃(0+) = 0.

Then there exists the unique solution

y = ϕ̃(x) ≡ α̃−1[ω̃(x)]

of equation (5), defined on an interval Iδ0 ⊂ Ix0 , with properties
ϕ̃ ∈ C1(Iδ0 ,R), ϕ̃(0+) = 0, ϕ̃ ∈ Iy0 and ϕ̃′ > 0 on Iδ0 .

Proof. The proof is elementary and is therefore omitted.

Remark 1. From Lemma 1 the next property immediately follows
which will be used in the sequel: let ε1, ε2 be two positive constants
and ε1 < ε2. Then there exists an interval Iδ1 ⊂ Iδ0 such that the
inequality ϕ̃(ε1x) < ϕ̃(ε2x) holds on Iδ1 .

Lemma 2. Let all assumptions of Lemma 1 be valid and, moreover,
let there exist a constant M ∈ R+ such that

α̃(y) ≤ Mα̃′(y), y ∈ Iy0 .

Then the unique solution y = ϕ̃(x) of equation (5), defined on an
interval Iδ0 ⊂ Ix0 , satisfies the inequality

ϕ̃′(x) ≤ M · ω̃′(x)
ω̃(x)

, x ∈ Iδ0 .
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Proof. In view of (5) and affirmation of Lemma 1,

ϕ̃′(x) =
ω̃′(x)

α̃′[ϕ̃(x)]
=

ω̃′(x)
ω̃(x)

· α̃[ϕ̃(x)]
α̃′[ϕ̃(x)]

≤ M · ω̃′(x)
ω̃(x)

, x ∈ Iδ0 .

Lemma 3. Let the assumptions (C2) (C6) be valid. Then the system
of implicit equations

(6) α(z) = Ω(x)

defines the implicit vector function

(7) z = ϕ(x) ≡ α−1[Ω(x)]

uniquely on an interval Iδ2 satisfying there the properties:

ϕ ∈ C1(Iδ2 ,R
n), ϕ(0+) = 0, ϕi ∈ Iy0 , i = 1, . . . , n,

and

(8) 0 < ϕ′
i(x) ≤ M · Ω′

i(x)
Ωi(x)

.

Proof. The proof follows from Lemmas 1 and 2 if we put α̃ ≡ αi and
ω̃ ≡ Ωi, i = 1, . . . , n, in their formulations.

2.2 Topological principle. In the proof of the main result the
topological method of Ważewski [5, 16] is used. Therefore we give a
short summary of it. Let us consider the system of differential equations

(9) y′ = f(x, y),

with y ∈ Rn. Below it will be assumed that the righthand side of the
system (9) is a continuous function defined on the open (x, y)-set Ω.

Definition 2 [5, p. 281]. An open subset Ω0 of the set Ω is called
a (u, v)-subset of Ω with respect to the system (9) if the following
conditions are satisfied:
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(1) There exist functions vi(x, y) ∈ C1(Ω), i = 1, . . . , l and uj(x, y) ∈
C1(Ω), j = 1, . . . , m, such that

Ω0 = {(x, y) : vi(x, y) < 0, uj(x, y) < 0 for all i, j}.

(2) v̇α(x, y) < 0 holds for the derivatives of the functions vα(x, y),
α = 1, . . . , l, along the trajectories of (9) on the set

Vα = {(x, y) : vα(x, y) = 0, vi(x, y) ≤ 0, uj(x, y) ≤ 0 for all i, j

and α, i �= α}.

(3) u̇β(x, y) > 0 holds for the derivatives of the functions uβ(x, y),
β = 1, . . . , m, along the trajectories of (9) on the set

Uβ = {(x, y) : uβ(x, y) = 0, vi(x, y) ≤ 0, uj(x, y) ≤ 0 for all i, j

and β, j �= β}.

The number l or the number m in this definition can be zero.

Definition 3. The point (x0, y0) ∈ Ω ∩ δΩ0 is called an egress point
(or ingress point) of Ω0 with respect to the system (9) if, for every
solution of the problem y(x0) = y0, there exists an ε > 0 such that
(x, y(x)) ∈ Ω0 for x0 − ε ≤ x < x0(x0 < x ≤ x0 + ε). An egress
point (ingress point) (x0, y0) of Ω0 is called a strict egress point (strict
ingress point) of Ω0 if (x, y(x)) /∈ Ω

0
on the interval x0 < x ≤ x0 + ε1

(x0 − ε1 ≤ x < x0) for a small ε1 > 0. The set of all points of egress
(strict egress) is denoted by Ω0

e (Ω0
se).

Lemma 4 [5, p. 281]. Let Ω0 be a (u, v)-subset of Ω with respect to
the system (9). Then

Ω0
se = Ω0

e =
( m⋃

β=1

Uβ

)∖( l⋃
α=1

Vα

)
.

The following theorem formulates sufficient conditions for the exis-
tence of at least one solution, having its graph in Ω0, see [5, p. 282].
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Theorem 1. Let Ω0 be some (u, v)-subset of Ω with respect to the
system (9). Let S be a nonempty compact subset of Ω0 ∪ Ω0

e such that
the set S ∩Ω0

e is not a retract of S but is a retract of Ω0
e. Then there is

at least one point (x0, y0) ∈ S∩Ω0 such that the graph of a solution y(x)
of the Cauchy problem y(x0) = y0 lies in Ω0 on its righthand maximal
interval of existence.

3. Main result.

Theorem 2 (Main result). Suppose that the conditions (C1) (C6)
are satisfied. Let, moreover, there exist two constants δ ∈ (0, 1) and
K > 1 such that on an interval Ix∗∗ ⊂ Ix0 :

A) for i = 1, . . . , p ≤ n:

(10) aij(x) ≥ 0

with j �= i, j = 1, . . . , n,

(11)
aii(x)
aii(δx)

aij(δx) ≤ aij(x) ≤ aii(x)
aii(Kx)

aij(Kx)

with j �= i, j = 1, . . . , n,

(12)
aii(x)
aii(δx)

ωi(δx) > ωi(x) + δMgi(x)
Ω′

i(δx)
Ωi(δx)

,

and

(13)
aii(x)

aii(Kx)
ωi(Kx) − ωi(x) ≤ 0.

B) For i = p + 1, . . . , n:

(14) aij(x) ≤ 0

with j �= i, j = 1, . . . , n,

(15)
aii(x)

aii(Kx)
aij(Kx) ≤ aij(x) ≤ aij(x)

aii(δx)
aij(δx)
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with j �= i, j = 1, . . . , n,

(16)
aii(x)

aii(Kx)
ωi(Kx) > ωi(x) + KMgi(x)

Ω′
i(Kx)

Ωi(Kx)

and

(17)
aii(x)
aii(δx)

ωi(δx) − ωi(x) ≤ 0.

Then there exists an (n− p)-parametric family of solutions of the
problem (1), (2) having positive coordinates on an interval Ix∗ ⊂ Ix∗∗ .

Remark 2. It is easy to see that, in the special case of constant matrix,
i.e., in the case A(x) ≡ A = const, the conditions of Theorem 2 are
significantly reduced. Namely, the conditions (11) and (15) are omitted
and the rest of the conditions are simplified.

Remark 3. In the proof of Theorem 2 the topological principle
mentioned in Part 2.2 is used. Successful application of it needs the
construction of an appropriate (u, v)-subset. This construction is very
technical since it is necessary to verify that every part of the boundary
of such a (u, v)-subset is transversal to integral curves of the system
(1). This leads, except others, to the conclusion that Ω0

se = Ω0
e for

the below-defined set Ω0. Note in this connection that the notion of a
(u, v)-subset in the (x, y)-space is similar to the notion of an isolating
block (which is often used, e.g., for computation of the Conley index)
and that in this way there is an analogy with constructions of (u, v)-
subsets and isolating blocks by Liapunov functions. Let us refer, e.g.,
to the works [2, 7, 12 15, 17] (and to the references therein).

Proof of Theorem 2.

3.1 The case p ∈ {1, . . . , n−1}. Suppose at first p ∈ {1, . . . , n−1}.
Let ϕ be the implicit function defined on the interval Iδ2 by means of
relation (7). Define a domain Ω0 of the form

Ω0 = {(x, y) ∈ R × Rn : x ∈ (0, δ3), ϕ(δx) � y � ϕ(Kx)},
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supposing, without loss of generality, that δ3 ≤ min{δ2, x
∗∗} is suf-

ficiently small. (Obviously, in accordance with Remark 1, ϕ(δx) �
ϕ(x) � ϕ(Kx), x ∈ Iδ3 .)

3.1.1 Construction of a (u, v)-subset of R × Rn. Let us construct a
(u, v)-subset of R × Rn. Define auxiliary functions

vj(x, y) ≡ vj(x, yj) ≡ (yj − ϕj(δx))(yj − ϕj(Kx)),
j = 1, . . . , p,

uk(x, y) ≡ uk(x, yk) ≡ (yk − ϕk(δx))(yk − ϕk(Kx)),
k = p + 1, . . . , n,

and
un+1(x, y) ≡ un+1(x) ≡ x − δ3.

Then

Ω0 = {(x, y) ∈ R × Rn : vj(x, y) < 0, uk(x, y) < 0,

j = 1, . . . , p; k = p + 1, . . . , n + 1}.

In the next we will show that all points of the sets

Vβ = {(x, y) ∈ R × Rn : vβ(x, y) = 0, vj(x, y) ≤ 0, uk(x, y) ≤ 0,

j �= β; j = 1, . . . , p; k = p + 1, . . . , n + 1}, β = 1, . . . , p,

are the points of strict ingress of the set Ω0 with respect to the system
(1) and that all points of the sets

Uγ = {(x, y) ∈ R × Rn : uγ(x, y) = 0, uk(x, y) ≤ 0, vj(x, y) ≤ 0,

k �= γ; k = p + 1, . . . , n + 1; j = 1, . . . , p},
γ = p + 1, . . . , n + 1,

are the points of strict egress of the set Ω0 with respect to the system
(1). (For the corresponding definitions of notions ingress and egress
point, etc., see Section 2, Definition 3. For more details, the reader is
referred to the book [5]. This technique is also explained in detail, e.g.,
in the papers [3, 4].)
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For verifying this, compute the full derivatives of the functions
vβ(x, y), β = 1, . . . , p, along the trajectories of the system (1) on
corresponding sets Vβ at first. We get

dvβ(x, y)
dx

= (y′
β − δϕ′

β(δx))(yβ − ϕβ(Kx))

+ (yβ − ϕβ(δx))(y′
β − Kϕ′

β(Kx))

=
[∑n

j=1 aβj(x)αj(yj) − ωβ(x)
gβ(x)

− δϕ′
β(δx)

]
(yβ − ϕβ(Kx))

+(yβ−ϕβ(δx))
[∑n

j=1 aβj(x)αj(yj)−ωβ(x)
gβ(x)

−Kϕ′
β(Kx)

]
.

If (x, y) ∈ Vβ for a fixed β, then either yβ = ϕβ(δx) and ϕj(δx) ≤
yj ≤ ϕj(Kx), j = 1, . . . , n, j �= β or yβ = ϕβ(Kx) and ϕj(δx) ≤ yj ≤
ϕj(Kx), j = 1, . . . , n, j �= β.

In the first case, i.e., if

(18)
(x, y) ∈ Vβ , yβ = ϕβ(δx), ϕj(δx) ≤ yj ≤ ϕj(Kx),

j = 1, . . . , n and j �= β,

we have

dvβ(x, y)
dx

∣∣∣∣
(x,y)∈Vβ ,yβ=ϕβ(δx)

=
[
αββ(x)αβ(ϕβ(δx))+

∑n
j=1,j �=β aβj(x)αj(yj)−ωβ(x)
gβ(x)

− δϕ′
β(δx)

]

× (ϕβ(δx) − ϕβ(Kx)) in view of (3), (4) and (C4)

=
[ aββ(x)

αββ(δx)

(
ωβ(δx) − ∑n

j=1,j �=β aβj(δx)αj(ϕj(δx))
)

gβ(x)

+

∑n
j=1,j �=β aβj(x)αj(yj) − ωβ(x)

gβ(x)
− δϕ′

β(δx)
]
(ϕβ(δx) − ϕβ(Kx))

in view of (10), (C2) and (18)
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≤
[ aββ(x)

aββ(δx)ωβ(δx) − ωβ(x)+
∑n

j=1,j �=β[aβj(x)− aββ(x)
aββ(δx)aβj(δx)]αj(ϕj(δx))

gβ(x)

− δϕ′
β(δx)

]
(ϕβ(δx)−ϕβ(Kx)) in view of (8), (C2) and (11)

≤
( aββ(x)

aββ(δx)ωβ(δx)−ωβ(x)

gβ(x)
− δM · Ω′

β(δx)
Ωβ(δx)

)
(ϕβ(δx) − ϕβ(Kx))

in view of (12)
< 0.

Thus, all the points (x, y) ∈ Vβ if yβ = ϕβ(δx) are points of strict
ingress.

In the second case, i.e., if

(19)
(x, y) ∈ Vβ, yβ = ϕβ(Kx), ϕj(δx) ≤ yj ≤ ϕj(Kx),

j = 1, . . . , n and j �= β,

we get

dvβ(x, y)
dx

∣∣∣∣
(x,y)∈Vβ ,yβ=ϕβ(Kx)

= (ϕβ(Kx) − ϕβ(δx))

×
[
aββ(x)αβ(ϕβ(Kx))+

∑n
j=1,j �=β aβj(x)αj(yj)−ωβ(x)
gβ(x)

−Kϕ′
β(Kx)

]

in view of (3), (4) and (C4)

=
[ aββ(x)

aββ(Kx) (ωβ(Kx) − ∑n
j=1,j �=β aβj(Kx)αj(ϕj(Kx)))

gβ(x)

+

∑n
j=1,j �=β aβj(x)αj(yj) − ωβ(x)

gβ(x)
− Kϕ′

β(Kx)
]
(ϕβ(Kx) − ϕβ(δx))

in view of (10), (C2) and (19)



934 J. DIBLÍK AND M. RŮŽIČKOVÁ

≤ (ϕβ(Kx) − ϕβ(δx))
[ aββ(x)

aββ(Kx)ωβ(Kx) − ωβ(x)

gβ(x)

+

∑n
j=1,j �=β [aβj(x) − aββ(x)

aββ(Kx)aβj(Kx)]αj(ϕj(Kx))

gβ(x)
− Kϕ′

β(Kx)
]

in view of (8), (11) and (13)
< 0.

This means that all the points (x, y) ∈ Vβ if yβ = ϕβ(Kx) are also
points of strict ingress and, in both of the cases considered,

(20)
dvβ(x, y)

dx

∣∣∣∣
(x,y)∈Vβ

< 0, β = 1, . . . , p.

Now let us compute the full derivative of the functions uγ(x, y), γ =
p + 1, . . . , n, along the trajectories of the system (1) on corresponding
sets Uγ . As above,

duγ(x, y)
dx

= (y′
γ − δϕ′

γ(δx))(yγ − ϕγ(Kx))

+ (yγ − ϕγ(δx))(y′
γ − Kϕ′

γ(Kx))

=
[∑n

j=1 aγj(x)αj(yj) − ωγ(x)
gγ(x)

− δϕ′
γ(δx)

]
(yγ − ϕγ(Kx))

+ (yγ−ϕγ(δx))
[∑n

j=1 aγj(x)αj(yj)−ωγ(x)
gγ(x)

−Kϕ′
γ(Kx)

]
.

If (x, y) ∈ Uγ for a fixed γ, then either yγ = ϕγ(δx) and ϕj(δx) ≤
yj ≤ ϕj(Kx), j = 1, . . . , n, j �= γ or yγ = ϕγ(Kx) and ϕj(δx) ≤ yj ≤
ϕj(Kx), j = 1, . . . , n, j �= γ.

In the first case, i.e., if

(21)
(x, y) ∈ Uγ , yγ = ϕγ(δx), ϕj(δx) ≤ yj ≤ ϕj(Kx),

j = 1, . . . , n and j �= γ,
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we have

duγ(x, y)
dx

∣∣∣∣
(x,y)∈Uγ ,yγ=ϕγ(δx)

=
[
aγγ(x)αγ(ϕγ(δx)) +

∑n
j=1,j �=γ aγj(x)αj(yj) − ωγ(x)
gγ(x)

− δϕ′
γ(δx)

]

× (ϕγ(δx) − ϕγ(Kx)) in view of (3), (4) and (C4)

=
[ aγγ(x)

aγγ(δx)

(
ωγ(δx) − ∑n

j=1,j �=γ aγj(δx)αj(ϕj(δx))
)

gγ(x)

+

∑n
j=1,j �=γ aγj(x)αj(yj) − ωγ(x)

gγ(x)
− δϕ′

γ(δx)
]
(ϕγ(δx) − ϕγ(Kx))

in view of (14), (C2) and (21)

≥
[ aγγ(x)

aγγ(δx)ωγ(δx)−ωγ(x)+
∑n

j=1,j �=γ [aγj(x)− aγγ(x)
aγγ(δx)aγj(δx)]αj(ϕj(δx))

gγ(x)

]

× (ϕγ(δx) − ϕγ(Kx)) − δϕ′
γ(δx)(ϕγ(δx) − ϕγ(Kx))

in view of (8), (15) and (17)
> 0.

Thus, all the points (x, y) ∈ Uγ if yγ = ϕγ(δx) are points of strict
egress.

In the second case, i.e., if

(22)
(x, y) ∈ Uγ , yγ = ϕγ(Kx), ϕj(δx) ≤ yj ≤ ϕj(Kx),

j = 1, . . . , n and j �= γ,
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we get

duγ(x, y)
dx

∣∣∣∣
(x,y)∈Uγ ,yγ=ϕγ(Kx)

=
(
ϕγ(Kx) − ϕγ(δx)

)

×
[
aγγ(x)αγ(ϕγ(Kx))+

∑n
j=1,j �=γ aγj(x)αj(yj)−ωγ(x)
gγ(x)

−Kϕ′
γ(Kx)

]

in view of (3), (4) and (C4)

=
(
ϕγ(Kx)−ϕγ(δx)

)[ aγγ(x)
aγγ(Kx)

(
ωγ(Kx)−∑n

j=1,j �=γ aγj(Kx)αj(ϕj(Kx))
)

gγ(x)

+

∑n
j=1,j �=γ aγj(x)αj(yj) − ωγ(x)

gγ(x)
− Kϕ′

γ(Kx)
]

in view of (14), (C2) and (22)

≥ (
ϕγ(Kx)−ϕγ(δx)

)[ aγγ(x)
aγγ(Kx)ωγ(Kx) − ωγ(x)

gγ(x)

+

∑n
j=1,j �=γ [aγj(x)− aγγ(x)

αγγ(Kx)aγj(Kx)]αj(ϕj(Kx))

gγ(x)
−Kϕ′

γ(Kx)
]

in view of (8), (C2) and (15)

≥ (
ϕγ(Kx) − ϕγ(δx)

)[ aγγ(x)
aγγ(Kx)ωγ(Kx) − ωγ(x)

gγ(x)
− KM

Ω′
γ(Kx)

Ωγ(Kx)

]

in view of (16)
> 0.

This means that the points (x, y) ∈ Uγ if yγ = ϕγ(Kx) are also points
of strict egress and, in both of the cases considered,

(23)
duγ(x, y)

dx

∣∣∣∣
(x,y)∈Uγ

> 0, γ = p + 1, . . . , n.

Finally, the relation

(24)
dun+1

dx
> 0,
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obviously holds. So the set Ω0 is the (u, v)-set.

3.1.2 Application of Theorem 1. The goal of this part of the proof
is to show that, in the closure of the (u, v)-subset Ω0 it is possible to
find a compact and connected set S such that its boundary ∂S is a
retract of all strict egress points Ω0

se of Ω0, but ∂S is not a retract
of the set S itself (let us refer to Remark 3 and to Part 2.2). This
no-retraction statement will be proved explicitly, with the aid of an
appropriate analytical construction.

The above inequalities (20), (23) and (24) simultaneously say that,
if orientation of the x-axis is changed into reverse orientation, points
(x, y) ∈ Vβ, β = 1, . . . , p will be the points of strict egress of the
set Ω0 with respect to the system (1) and points (x, y) ∈ Uγ , γ =
p + 1, . . . , n + 1, will be the points of strict ingress of the set Ω0 with
respect to the system (1). For all points of egress Ω0

e and all points
of strict egress Ω0

se of the set Ω0 with respect to the system (1), the
relation

Ω0
e = Ω0

se =
( p⋃

β=1

Vβ

)∖( n+1⋃
γ=p+1

Uγ

)

holds, see Lemma 4.

Let us recall that δ3 is a fixed positive number. For every fixed
y0

p+1, . . . , y0
n satisfying the inequalities uk(δ3, y

0
k) < 0, k = p+1, . . . , n,

we define a compact set

S = Sy0
p+1,... ,y0

n
⊂ Ω0 ∪ Ω0

se

as

S = {(δ3, y1, . . . , yp, y
0
p+1, . . . , y0

n) : vj(δ3, yj) ≤ 0, j = 1, . . . , p}.

Its boundary can be written as ∂S = ∪p
β=1Vβ with

Vβ{(δ3, y1, . . . , yp, y
0
p+1, . . . , y0

n) : vβ(δ3, yβ) = 0,

vj(δ3, yj) ≤ 0, j �= β, j = 1, . . . , p}.

It is easy to verify that S ∩Ω0
se = ∪p

β=1Vβ, i.e., S ∩Ω0
se = ∂S. Since δ3

and y0
p+1, . . . , y0

n are fixed, we can in the space of variables (y1, . . . , yp)
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rewrite the set S in a simpler way. It has the form of the product of p
closed intervals

S = {(y1, . . . , yp) : aj ≤ yj ≤ Aj , j = 1, . . . , p}

with constants aj = ϕj(δδ3), Aj = ϕj(Kδ3), aj < Aj , j = 1, . . . , p. It
becomes clear that S is homeomorphic to a p-dimensional closed ball
and that ∂S is not a retract of S (since the boundary of a p-dimensional
ball is not its retract). Let us show that S ∩ Ω0

se is a retract of Ω0
se.

Define, for (x, y) ∈ Ω0
se, a map

π : (x, y) −→ (δ3, ỹ1, . . . , ỹp, y
0
p+1, . . . , y0

n) ∈ S ∩ Ω0
se

with

ỹi = ϕi(δδ3) + (yi − ϕi(δx)) · ϕi(Kδ3) − ϕi(δδ3)
ϕi(Kx) − ϕi(δx)

and i = 1, . . . , p. The map π is continuous and maps the set Ω0
se

into S ∩ Ω0
se. The points of the set S ∩ Ω0

se are stationary points and,
consequently, S ∩ Ω0

se is a retract of Ω0
se. Now we are in a position to

apply Theorem 1. So there exists a solution y = y(x) of (1) having its
initial data in S ∩ Ω0 such that (x, y(x)) ∈ Ω0 on interval (0, δ3). This
solution, due to the form of Ω0, clearly satisfies the initial condition
(2). Since we can vary the constants y0

p+1, . . . , y0
n within the intervals

indicated in the definition of S, we conclude that the set of initial data
for solutions having the same property generate an (n−p)-dimensional
set. Put x∗ ∈ (0, min{x∗∗, δ3}). The theorem is proved for the case
p ∈ {1, . . . , n − 1}.

3.2 The case p = n. For p = n the proof remains the same as above.
In this case we have no possibility to vary any constant. So there exists
(at least) one solution with the properties indicated.

3.3 The case p = 0. If p = 0, then Ω0
se = ∅, and we can vary all

constants. This case needs no application of topological principle since
every point (x, y) ∈ ∂Ω0 with x �= 0 is the strict ingress point of the
set Ω0 with respect to the system (1) (if the orientation of x-axis is
reversed). In this case the set of initial data for solutions, having the
properties indicated, is n-dimensional. This completes the proof.
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From the proof of Theorem 2, we get the following:

Corollary 1. If Theorem 2 holds, then there exists an (n − p)-
parametric family of solutions y = y∗(x) of the problem (1), (2), each
of which satisfies on interval Ix∗ the inequalities

ϕ(δx) � y∗(x) � ϕ(Kx).

Remark 4. Let us consider the initial problem (25), (2) where

(25) gi(x)y′
i = (−1)si

[ n∑
j=1

aij(x)αj(yj) − ωi(x)
]
, i = 1, . . . , n,

and si ∈ {0, 1}. Suppose that conditions (C1) (C6) are satisfied. Let,
except this, in the case when si = 0, conditions (14) (17) hold, and
in the case when si = 1, conditions (10) (13) hold (with aij and ωi

changed to −aij and −ωi, j = 1, . . . , n, consequently). It is easy
to see that, after an appropriate renumbering of dependent variables,
Theorem 2 (with a suitable p) can be applied to the problem (25), (2)
and therefore this problem is equivalent with the problem (1), (2).

4. Generalization. Let us point out that the condition (C5)
permits us to get the inequalities (8) for coordinates of implicitly given,
by relation (6) (or by (3), (4)), function ϕ. Condition (C5) is easily
verifiable. Nevertheless, the change of this condition by a general one:

(C∗
5) There exist functions fi(y) ∈ C1(Iy00 ,R) with

y00 = max
j=1,... ,n

{αj(y0)}

and fi > 0 on Iy00 , i = 1, . . . , n, such that inequalities

αi(y) ≤ fi(αi(y))α′
i(y)

hold on interval Iy0 ,

leads to an improvement of inequalities (8) by the inequalities

(26) 0 < ϕ′
i(x) ≤ fi(Ωi(x))

Ω′
i(x)

Ωi(x)
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with i = 1, . . . , n on interval Iδ2 (see the proof of Lemma 2) and,
consequently, leads to an improvement of affirmation of the main result.
Namely, the following holds.

Theorem 3. Suppose that conditions of Theorem 2 are satisfied if:

a) Condition (C5) is exchanged for condition (C∗
5);

b) Inequality (12) is exchanged for inequality

(27)
aii(x)
aii(δx)

ωi(δx) > ωi(x) + δgi(x)fi(Ωi(δx))
Ω′

i(δx)
Ωi(δx)

with a constant δ ∈ (0, 1) on interval Ix∗∗ ;

c) Inequality (16) is exchanged for the inequality

(28)
aii(x)

aii(Kx)
ωi(Kx) > ωi(x) + Kgi(x)fi(Ωi(Kx))

Ω′
i(Kx)

Ωi(Kx)

with a constant K > 1 on interval Ix∗∗ . Then the conclusion of
Theorem 2 remains valid.

The proof is omitted since it is a variant of the proof of Theorem 2.

5. The linear case. The corresponding result for the linear case
can be obtained as a straightforward consequence of Theorem 3 and
Corollary 1 if

fi(αi(yi)) ≡ αi(yi) ≡ yi, i = 1, . . . , n.

Then, as it follows from (3), (4), ϕ(x) ≡ Ω(x); (26) obviously holds and
the inequalities (27), (28) turn into the inequalities (30), (31) indicated
below. Let us put α(y) ≡ y in (1) and consider the linear system

(29) g(x)y′ = A(x)y − ω(x).

Theorem 4. Suppose that conditions (C1), (C3), (C4), (C6), (10),
(11), (13) (15) and (17) are satisfied. Let, moreover, for x ∈ Ix∗∗ ,

(30)
aii(x)
aii(δx)

ωi(δx) > ωi(x) + δgi(x)Ω′
i(δx)
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with i = 1, . . . , p ≤ n and a constant δ ∈ (0, 1), and

(31)
aii(x)

aii(Kx)
ωi(Kx) > ωi(x) + Kgi(x)Ω′

i(Kx)

with i = p + 1, . . . , n, and a constant K > 1. Then there exists an
(n − p)-parametric family of solutions of y = y∗(x) of the problem
(29), (2), having positive coordinates on an interval Ix∗ , each of which
satisfies the inequalities

Ω(δx) � y∗(x) � Ω(Kx).

6. Examples.

Example 1. Let us consider a linear singular problem of the type (29),
(2):

(32)

⎧⎨
⎩

x2y′
1 = −5y1 + y2 + y3 + x + x2,

x2y′
2 = y1 − 5y2 + y3 + x + x2,

x2y′
3 = −2y1 − 3y2 + 2y3 − x + 3x2,

(33) y1(0+) = y2(0+) = y3(0+) = 0.

Here g1(x) = g2(x) = g3(x) = x2, a11 = a22 = −5, a12 = a13 =
a21 = a23 = 1, a31 = −2, a32 = −3, a33 = 2, αi(yi) = yi, i = 1, 2, 3,
ω1(x) = ω2(x) = −x − x2, ω3(x) = x − 3x2, Ω(x) = (x − x2/3, x −
x2/3, 3x−7x2/3)T , p = 2 and n = 3. This problem has, by Theorem 4,
a one-parametric family of positive solutions. Indeed, the general
solution of the system considered is expressed by means of relations

(34)

⎧⎨
⎩

y1 = x + 11C1 exp(6/x) + C2 exp(3/x) + C3 exp(−1/x),
y2 = x − 10C1 exp(6/x) + C2 exp(3/x) + C3 exp(−1/x),
y3 = 3x − C1 exp(6/x) + C2 exp(3/x) + 5C3 exp(−1/x)

with arbitrary constants C1, C2 and C3. We get this one-parametric
family by setting C1 = C2 = 0 in (34).
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By the same theorem there exists a one-parametric family of positive
solutions of linear singular problem (35), (33) (the general solution of
which cannot be expressed analytically in a closed form), where

(35)

⎧⎨
⎩

x3y′
1 = −5y1 + y2 + y3 + x + x2,

x4y′
2 = y1 − 5y2 + y3 + x + x2,

x5y′
3 = −2y1 − 3y2 + 2y3 − x + 3x2

(here, unlike in the previous system (32), g1(x) = x3, g2(x) = x4

and g3(x) = x5 is put). Moreover, by Theorem 2, there exists a one-
parametric family of positive solutions of nonlinear problem (36), (33),
where

(36)

⎧⎨
⎩

x3y′
1 = −5y2

1 + y5
2 + y3

3 + x + x2,

x4y′
2 = y2

1 − 5y5
2 + y3

3 + x + x2,

x5y′
3 = −2y2

1 − 3y5
2 + 2y3

3 − x + 3x2,

(here, unlike in the previous system (35), α1(y1) = y2
1 , α2(y2) = y5

2 and
α3(y3) = y3

3 is put).

Example 2. The following example shows that conditions of Theo-
rem 2 are in some sense sharp. Let us consider the problem

x4y′ =
y

y + ε
− x, y(0+) = 0,

where ε ∈ (0, 1] is a parameter. Here n = 1, g(x) = x4, α(y) = y/(y+ε),
a11 = 1 and ω(x) = Ω(x) = x. By Theorem 2, with p = 0, this
problem has a one-parametric family of positive solutions for every
fixed constant ε on a corresponding interval. Nevertheless, for ε = 0,
the problem has no solution since the general solution of the equation
obtained (define y/y := 1):

x4y′ = 1 − x

has the form y(x) = −1/(3x3) + 1/(2x2) + C, C = const.
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