A NOTE ON THE TANGENTIAL ENVELOPES OF VERONESE VARIETIES

JAYDEEP V. CHIPALKATTI

Abstract

If $X \subseteq \mathbf{P}^{m}$ is a projective variety, then its tangential envelope has expected dimension $\min \{2 \operatorname{dim} X, m\}$. We calculate the dimensions of some higher tangential envelopes of the Veronese varieties and show that they violate this expectation.

The classical Veronese varieties are known to exhibit various kinds of pathological behavior from the point of view of differential geometry. It is known that many of them have deficient secant varieties, the Veronese surface in \mathbf{P}^{5} being perhaps the most widely known example. (See [2, Corollary 7.5], where the dimension of the secant variety is listed in each possible case.) In this paper, we discuss a similar pathology, namely, the deficiency of their tangential envelopes.

Consider the d-fold Veronese imbedding

$$
v_{d}: \mathbf{P}^{n} \longrightarrow \mathbf{P}^{N}, \quad N=\binom{n+d}{d}-1
$$

given by the complete linear system of degree d hypersurfaces in \mathbf{P}^{n}. Let $T^{(0)}$ denote its image and recursively define $T^{(r)}$ as the tangential envelope of $T^{(r-1)}$. Now if $X \subseteq \mathbf{P}^{m}$ is a projective variety, then the expected dimension of its tangential envelope is $\min \{2 \operatorname{dim} X, m\}$. Here we calculate $\operatorname{dim} T^{(r)}$ for $r \leq 4$ and all but a handful of pairs (n, d). It will turn out that almost always we have a strict inequality $\operatorname{dim} T^{(r)}<2 \operatorname{dim} T^{(r-1)}$. The calculations are summarized in Theorem 4.3 at the end of the paper.

In the first section we establish notation and describe a calculus to represent a general element of $T^{(r)}$. This will be the basis of all subsequent dimension computations.

[^0]1. Preliminaries. The base field k will be algebraically closed of characteristic zero. For an irreducible variety $X \subseteq \mathbf{P}^{N}$ we define the tangential envelope (or developable) $T X$ to be the closure of the union of tangent spaces to smooth points of X. It is an irreducible projective subvariety of \mathbf{P}^{N} and $\operatorname{dim} T X \leq \min \{2 \operatorname{dim} X, N\}$. We say that X has a deficient tangential envelope if strict inequality holds; this happens if and only if a general point of a general tangent space to X lies on at least ∞^{1} tangent spaces. The numerical difference $\min \{2 \operatorname{dim} X, N\}-\operatorname{dim} T X$ is the tangential deficiency of X.

Let $S=\bigoplus_{d \geq 0} S_{d}=k\left[x_{0}, \ldots, x_{n}\right]$ denote the polynomial ring with the usual grading. Identify the Veronese variety $T^{(0)}$ with the subset of $\mathbf{P} S_{d}$ consisting of all forms L^{d} (modulo scalars), where L is a nonzero linear form. To avoid trivialities assume $d \geq 2$. We define $T^{(r)}=T\left(T^{(r-1)}\right)$ and give a concrete description of a general point of $T^{(r)}$ as an element of $\mathbf{P} S_{d}$. We begin by clarifying the connection between the Zariski and projective tangent space of a variety, cf. [4, Section 14].

For a k-vector space V, let

$$
\mathbf{A} V=\operatorname{Spec}\left(\operatorname{Sym}^{\bullet} V^{*}\right) \quad \text { and } \quad \mathbf{P} V=\operatorname{Proj}\left(\operatorname{Sym}^{\bullet} V^{*}\right)
$$

Let $X \subseteq \mathbf{P} V$ be a projective variety and $C X \subseteq \mathbf{A} V$ the cone over X. For a (closed) point $x \in X$, let $\lambda_{x} \subseteq V$ be the corresponding one-dimensional space. The Zariski tangent space $T_{X, x}$ is canonically a subspace of $T_{\mathbf{P}, x}=\operatorname{Hom}\left(\lambda_{x}, V / \lambda_{x}\right)$. Consider the space $\{\operatorname{image}(\tau)$: $\left.\tau \in T_{X, x}\right\} \subseteq V / \lambda_{x}$; it lifts to a ($\operatorname{dim} T_{X, x}+1$)-dimensional space $W_{X, x} \subseteq V$. The projectivization $\mathbf{P} W_{X, x} \subseteq \mathbf{P} V$ is the projective tangent space $\mathbf{T}_{X, x}$.

Now for a nonzero $v \in \lambda_{x}$, the Zariski tangent space $T_{C X, v}$ is canonically isomorphic to $W_{X, x}$ as a subspace of $T_{\mathbf{A} V, v}=V$. If $T C X$ denotes the closure of $\cup_{x \text { smooth }} W_{X, x}$ in $\mathbf{A} V$,

$$
C T X=T C X, \quad \text { hence } \operatorname{dim} T X=\operatorname{dim} T C X-1
$$

Now let X be the Veronese variety $T^{(0)}$ and consider the morphism $\phi_{0}: S_{1} \rightarrow S_{1}^{d}, L_{0} \rightarrow L_{0}{ }^{d}$. A tangent vector to S_{1} at L_{0} may be written $L_{0}+\varepsilon L_{1}$, and its image $\left(L_{0}+\varepsilon L_{1}\right)^{d}=L_{0}^{d}+\varepsilon d L_{0}^{d-1} L_{1}$, since $\varepsilon^{2}=0$. Hence we have a morphism

$$
\phi_{1}:\left(S_{1}\right)^{2} \longrightarrow S_{d}, \quad\left(L_{0}, L_{1}\right) \longrightarrow L_{0}^{d-1} L_{1}
$$

such that the closure of the image of ϕ_{1} is $C T^{(1)}$.
Letting $L_{0} \rightarrow L_{0}+\varepsilon L_{2}, L_{1} \rightarrow L_{1}+\varepsilon L_{3}$,

$$
\left(L_{0}+\varepsilon L_{2}\right)^{d-1}\left(L_{1}+\varepsilon L_{3}\right)=L_{0}^{d-1} L_{1}+\varepsilon\left((d-1) L_{0}^{d-2} L_{1} L_{2}+L_{0}^{d-1} L_{3}\right)
$$

hence a morphism

$$
\phi_{2}:\left(S_{1}\right)^{4} \longrightarrow S_{d}, \quad\left(L_{0}, L_{1}, L_{2}, L_{3}\right) \longrightarrow L_{0}^{d-2}\left(L_{0} L_{3}+L_{1} L_{2}\right)
$$

The closure of the image of ϕ_{2} is $C T^{(2)}$. To recapitulate, we have a morphism of affine spaces

$$
\begin{equation*}
\phi_{r}:\left(S_{1}\right)^{2^{r}} \longrightarrow S_{d}, \quad\left(L_{0}, \ldots, L_{2^{r}-1}\right) \longrightarrow F_{r}\left(L_{i}\right) \tag{1}
\end{equation*}
$$

with F_{r} a homogeneous degree d form. The closure of its image is $C T^{(r)}$. By generic smoothness ($[\mathbf{5}$, Chapter III $]$), the corresponding morphism on tangent spaces is surjective over a general point of $C T^{(r)}$. Hence we take a tangent vector $\left(L_{0}+\varepsilon L_{2^{r}}, \ldots, L_{2^{r}-1}+\varepsilon L_{2^{r+1}-1}\right)$ at a general point of $\left(S_{1}\right)^{2^{r}}$ and follow its image via ϕ_{r}. A moment's reflection will show that this is nothing more than the classical polarization process, i.e., letting

$$
\begin{equation*}
F_{r+1}=\sum_{j=0}^{2^{r}-1} \frac{\partial F_{r}}{\partial L_{j}} L_{\left(j+2^{r}\right)} \tag{2}
\end{equation*}
$$

we get ϕ_{r+1}. This gives an inductive procedure to represent a general point of $C T^{(r)}$. The map $d \phi_{r}$ on tangent spaces at the point $\left(L_{0}, \ldots, L_{2^{r}-1}\right)$ is given by

$$
\begin{equation*}
d \phi_{r}:\left(S_{1}\right)^{2^{r}} \longrightarrow S_{d}, \quad\left(M_{0}, \ldots, M_{2^{r}-1}\right) \longrightarrow \sum_{j=0}^{2^{r}-1} \frac{\partial F_{r}}{\partial L_{j}} M_{j} \tag{3}
\end{equation*}
$$

and $\operatorname{dim} C T^{(r)}=$ rank $d \phi_{r}$ at a general point of $\left(S_{1}\right)^{2^{r}}$. To forestall any confusion, note that ϕ_{r} is a morphism of affine varieties whereas $d \phi_{r}$ is a linear map of vector spaces. The image of ϕ_{r} may not be a variety, although we know it to be a constructible subset of S_{d}.

We list the F_{r} to be used in the sequel:

$$
\begin{align*}
& F_{1}=L_{0}^{d-1} L_{1}, \quad F_{2}=L_{0}^{d-2}\left(L_{0} L_{3}+L_{1} L_{2}\right), \tag{4}\\
& F_{3}=L_{0}^{d-3}\left(L_{0}^{2} L_{7}+L_{0}\left(L_{1} L_{6}+L_{2} L_{5}+L_{3} L_{4}\right)+L_{1} L_{2} L_{4}\right) \quad \text { for } d \geq 3 \text {, } \\
& F_{4}=L_{0}^{d-4}\left(L_{0}^{3} L_{15}+2 L_{0}^{2}\left(L_{1} L_{14}+L_{2} L_{13}+L_{3} L_{12}+L_{4} L_{11}+L_{5} L_{10}\right.\right. \\
& \left.+L_{6} L_{9}+L_{7} L_{8}\right)+L_{0}\left(L_{1} L_{6} L_{8}+L_{2} L_{5} L_{8}+L_{3} L_{4} L_{8}+L_{1} L_{2} L_{12}\right. \\
& \left.\left.+L_{1} L_{4} L_{10}+L_{2} L_{4} L_{9}\right)+L_{1} L_{2} L_{4} L_{8}\right) \text { for } d \geq 4 \text {, } \\
& F_{4}=L_{0}^{2} L_{15}+L_{0}\left(L_{1} L_{14}+L_{2} L_{13}+L_{3} L_{12}+L_{4} L_{11}+L_{5} L_{10}+L_{6} L_{9}\right. \\
& \left.+L_{7} L_{8}\right)+\left(L_{1} L_{6} L_{8}+L_{2} L_{5} L_{8}+L_{3} L_{4} L_{8}+L_{1} L_{2} L_{12}+L_{1} L_{4} L_{10}\right. \\
& \left.+L_{2} L_{4} L_{9}\right) \quad \text { for } d=3, \quad \text { and } \\
& F_{r}=\sum_{j=0}^{2^{r-1}-1} L_{j} L_{\left(2^{r}-j-1\right)} \quad \text { for } d=2 \text {. }
\end{align*}
$$

The last formula follows from (2) by a simple induction.
Wherever possible, we have absorbed purely numerical factors such as $d-1, d-2$ etc. by rescaling the L_{i}. For this and for the generic smoothness argument, we need the characteristic to be zero.
2. Low dimensional cases. In this section we treat a medley of cases, all distinguished by the fact that one of the numbers n, d or r is small enough to make a direct geometric argument feasible.

Proposition 2.1. For n arbitrary, $\operatorname{dim} T^{(1)}=2 n$.
Proof. The morphism $\phi_{1}:\left(L_{0}, L_{1}\right) \rightarrow L_{0}^{d-1} L_{1}$ has one-dimensional fibers, hence $\operatorname{dim} C T^{(1)}=2 n+1$.

Consequently $T^{(0)}$ has no tangential deficiency.

Proposition 2.2.

1. For $d \geq 3$ and n arbitrary, $\operatorname{dim} T^{(2)}=4 n-1$.
2. For $d=2, n \geq 2, \operatorname{dim} T^{(2)}=4 n-3$.

In particular, $T^{(1)}$ is always tangentially deficient.

Proof.

1. Here we assume $n \geq 2$; the case $n=1$ is covered by Theorem 2.4. Write $F_{2}=L_{0}^{d-2}\left(L_{0} L_{3}+L_{1} L_{2}\right)=L_{0}^{d-2} Q$.

Firstly assume $n=2$. By a change of variables, we may let $L_{0}=x_{0}$. Any quadratic form in x_{0}, x_{1}, x_{2} may be written as $x_{0} L_{3}+L_{1} L_{2}$, where the L_{i} are linear forms. We have shown that for a fixed L_{0} the expression Q can be made to represent a general plane conic. Since projectively L_{0} depends on two parameters and Q on five, $\operatorname{dim} T^{(2)}=7$.

Now assume $n \geq 3$. By choosing the L_{i} generally, we may assume that $\operatorname{rank}(Q)=4$. Firstly assume $n=3$, this implies that Q is smooth. Since the plane $L_{0}=0$ intersects Q in the pair of lines $L_{0}=L_{1}=0$ and $L_{0}=L_{2}=0$, it must be tangent to Q. Alternately if Q^{\prime} is any smooth quadric tangent to L_{0}, then its equation can be written in the form $L_{0} M_{3}+M_{1} M_{2}$. Define an incidence correspondence
$\Sigma \subseteq \mathbf{P} S_{1} \times \mathbf{P} S_{2}, \quad \Sigma=\{(L, Q): Q$ is smooth and L is tangent to $Q\}$.

The general fiber of the projection $\Sigma \rightarrow \mathbf{P} S_{2}$ is two-dimensional, so $\operatorname{dim} \Sigma=11$. Hence the general fiber of the projection $\Sigma \rightarrow \mathbf{P} S_{1}$ is eight-dimensional. We have shown that, for a fixed L_{0}, the factor $L_{0} L_{3}+L_{1} L_{2}$ projectively depends upon eight parameters. Since L_{0} projectively depends on 3 parameters, $\operatorname{dim} T^{(2)}=11$.

Now let $n \geq 4$. Then Q is a cone over a smooth quadric $\widetilde{Q} \subseteq \mathbf{P}^{3}$ with vertex $\Lambda \cong \mathbf{P}^{n-4}$. (The geometry of Q determines Λ uniquely but not \widetilde{Q}.) It follows that each of the $(n-2)$-dimensional linear spaces $L_{0}=L_{1}=0$ and $L_{0}=L_{2}=0$ is the linear span of Λ and a line on \widetilde{Q}. Moreover these two lines must intersect, since the space $L_{0}=L_{1}=L_{2}=0$ is strictly larger than Λ. Hence $L_{0}=0$ is the span of Λ and the plane in \mathbf{P}^{3} containing the two lines. Alternately, given complementary spaces $\Lambda, \Lambda^{\prime}$ of dimensions $n-4$ and 3 respectively and a smooth quadric Q^{\prime} in Λ^{\prime} such that L_{0} is the linear span of one of its tangent planes and Λ, the equation of Q^{\prime} can be brought into the form $L_{0} M_{3}+M_{1} M_{2}$. (Choose coordinates such that $\Lambda^{\prime}: x_{0}=x_{1}=\cdots=x_{n-4}=0, \Lambda: x_{n-3}=\cdots=x_{n}=0$ and $L_{0}=x_{n}$. Then Q^{\prime} is defined by a homogeneous quadratic form $f_{2}\left(x_{n-3}, x_{n-2}, \ldots, x_{n}\right)$, which must factor when x_{n} is set to zero. Now the assertion is clear.)

Let Y be the space of rank 4 quadrics in \mathbf{P}^{n} and set up an incidence correspondence $\Sigma \subseteq \mathbf{P} S_{1} \times Y$,
$\Sigma=\{(L, Q): L$ is the linear span of a tangent plane to \widetilde{Q} and the vertex of $Q\}$.
(Although \widetilde{Q} is not uniquely determined by Q, the condition on L is independent of this choice.) We have $\operatorname{dim} Y=4 n-3$ (see [4, Example 22.31]) and the general fiber of $\Sigma \rightarrow Y$ is two-dimensional. Hence $\operatorname{dim} \Sigma=4 n-1$ and the general fiber of $\Sigma \rightarrow \mathbf{P} S_{1}$ is (3n-1)-dimensional. It follows that projectively the factor $L_{0} L_{3}+L_{1} L_{2}$ depends on $3 n-1$ moduli and L_{0} on n. Hence $\operatorname{dim} T^{(2)}=4 n-1$.
2. This will be a special case of the next proposition.

Proposition 2.3. Let $d=2$ and $n \geq 2$. Then

$$
\operatorname{dim} T^{(r)}=2^{r} n-\left(2^{2 r-1}-3.2^{r-1}+1\right) \quad \text { for } n>2^{r}-1
$$

and N otherwise.
For $r=2$, this reduces to $4 n-3$ for $n \geq 2$.

Proof. From the last expression in (4) it is immediate that the cone over $T^{(r)}$ is exactly the set of quadratic forms in $n+1$ variables of rank at most 2^{r}. Their codimension in S_{2} is $\left[\left(n+2-2^{r}\right)\left(n+1-2^{r}\right)\right] / 2,[4$, Example 22.31], hence the assertion.

The case $n=1$, i.e., that of a rational normal curve, can be analyzed completely.

Theorem 2.4. For $n=1$ and $r<d$, $\operatorname{dim} T^{(r)}=r+1$ and $\operatorname{deg} T^{(r)}=(d-r)(r+1)$.

Proof. We may write a typical element of $T^{(r)}$ as $L_{0}^{d-r} G_{r}$, where G_{r} is a degree r homogeneous form in two variables. Hence projectively G_{r} depends on at most r moduli and L_{0} on one, so $\operatorname{dim} T^{(r)} \leq r+1$.
We claim that $T^{(r-1)} \subsetneq T^{(r)}$. If not, then $T^{(r-1)}$ would be a proper linear space containing $\stackrel{\rightharpoonup}{T}^{(0)}$, contradicting the nondegeneracy of the
rational normal curve. Now it follows by descending induction on r that $\operatorname{dim} T^{(r)}=r+1$.

For the second part, we identify \mathbf{P}^{d} with $\mathbf{P} H^{0}\left(\mathbf{P}^{1}, \mathcal{O}_{\mathbf{P}^{1}}(d)\right)$. Said differently, we will regard the points of \mathbf{P}^{d} as members of the canonical g_{d}^{d} on \mathbf{P}^{1}, and the rational normal curve with divisors of the form $d P, P \in \mathbf{P}^{1}$.

Now intersect $T^{(r)}$ with a general $(d-r-1)$-dimensional linear space Λ in \mathbf{P}^{d}. The points on Λ correspond to members of a general subsystem $g_{d}^{d-r-1} \subseteq g_{d}^{d}$. By the argument above, the points of $\Lambda \cap T^{(r)}$ correspond to divisors of the form $(d-r) P+P_{d-r+1}+\cdots+P_{d}$ in this g_{d}^{d-r-1}. By De Jonquières's formula (see [1, p. 359]) the number of such divisors is the coefficient of $t_{1} t_{2}^{r}$ in $\left(1+(d-r) t_{1}+t_{2}\right)^{r+1}$, which is $(d-r)(r+1)$. Hence the claim.

Thus for $n=1$ the variety $T^{(r)}$ is better described as the set of univariate degree d polynomials having a root of multiplicity at least $d-r$. The hypersurface $T^{(d-2)}$ has degree $2(d-1)$, as it should, since it is defined by the discriminant.

We turn to the cases $r=3,4$. The method used is resolutely more algebraic. In each case the problem reduces to calculating the minimal resolution of a certain ideal in a polynomial ring; this is done using Macaulay-2. It would be of some interest to know if the machine computations can be circumvented by more conceptual arguments.
3. Case $r=3$. We record the following technical lemma for use in Theorems 3.2 and 4.1.

Lemma 3.1 (Change of rings). Let $A=k\left[x_{0}, \ldots, x_{n}\right]$ and $I<A$ a homogeneous ideal such that $\operatorname{proj}-\operatorname{dim}_{A}(A / I)=m<n+1$. Let

$$
E^{\bullet}: 0 \longrightarrow E^{-m} \longrightarrow \cdots \longrightarrow E^{0}(\simeq A) \longrightarrow A / I \longrightarrow 0
$$

be its graded minimal resolution. For an integer $p \geq m-1$, let $B=k\left[y_{0}, \ldots, y_{p}\right]$. Choose general linear forms $l_{0}, \ldots, l_{n} \in B_{1}$ and define a ring map

$$
f: A \longrightarrow B, \quad x_{i} \longrightarrow l_{i}
$$

Then $E^{\bullet} \otimes_{A} B$ is a minimal resolution of $B / f(I)$.

Proof.

Case $p<n$. Since the l_{i} are general, f is surjective and $J=\operatorname{ker} f$ is generated by linear forms $z_{1}, \ldots, z_{n-p} \in A_{1}$. Define a free module $M=\oplus_{i=1}^{n-p} A e_{i}$, and set $z=\Sigma z_{i} e_{i}$. We have a Koszul resolution

$$
\begin{aligned}
K_{z}: 0 & \longrightarrow A \longrightarrow \cdots \longrightarrow \wedge^{j} M \xrightarrow{\wedge z} \wedge^{j+1} M \\
& \longrightarrow \cdots \longrightarrow \wedge^{n-p} M \longrightarrow A / J \longrightarrow 0
\end{aligned}
$$

By the Auslander-Buchsbaum, $\operatorname{depth}_{A}(A / I)=n+1-m \geq n-p$; and by genericity we may assume that the $\left(z_{i}\right)$ are an A / I-regular sequence. Hence $H^{j}\left(K_{z} \otimes A / I\right)=\operatorname{Tor}_{j}(A / I, A / J)=0$ for $-(n-p) \leq j \leq-1$. So $E^{\bullet} \otimes_{A} B$ is a resolution of $A /(I+J)$. Since all differentials vanish modulo the irrelevant maximal ideal of B, it is minimal.

Case $p \geq n$. In this case f is injective and B is a polynomial algebra over $f(A)$, so the claim is obvious.

Theorem 3.2. Let $n, d \geq 3$. Then $\operatorname{dim} T^{(3)}=8 n-5$.

Proof. From (4),

$$
F_{3}=L_{0}^{d-3}(\underbrace{L_{0}^{2} L_{7}+L_{0}\left(L_{1} L_{6}+L_{2} L_{5}+L_{3} L_{4}\right)+L_{1} L_{2} L_{4}}_{(\star)})
$$

The calculation splits into two cases.

Case $d \geq 4$. We claim that a general point in $\operatorname{im}\left(\phi_{3}\right)$ determines L_{0} uniquely up to a scalar. It suffices to show that the polynomial (\star) is irreducible for general choices of L_{i}. Since irreducibility is an open condition, exhibiting one choice would do. Take $L_{0}=L_{7}=x_{0}$, $L_{1}=x_{1}, L_{2}=x_{2}, L_{4}=x_{3}$ and $L_{3}=L_{5}=L_{6}=0$, then $(\star)=x_{0}^{3}+x_{1} x_{2} x_{3}$.

Now fix an L_{0} and consider the map $\left(S_{1}\right)^{7} \xrightarrow{\phi_{L_{0}}} S_{3},\left(L_{i}\right) \longrightarrow(\star)$. By virtue of the claim, $\operatorname{dim} T^{(3)}=\operatorname{dim} \operatorname{im}\left(\phi_{L_{0}}\right)+n-1$. To calculate the
dimension of $\operatorname{im}\left(\phi_{L_{0}}\right)$ it suffices to calculate the rank of the map $d \phi_{L_{0}}$ on tangent spaces at a general point of $\left(S_{1}\right)^{7}$. Polarizing the expression (\star), one sees that $d \phi_{L_{0}}$ is given by

$$
\begin{aligned}
\left(M_{1}, \ldots, M_{7}\right) \longrightarrow & M_{1}\left(L_{0} L_{6}+L_{2} L_{4}\right)+M_{2}\left(L_{0} L_{5}+L_{1} L_{4}\right) \\
& +M_{3}\left(L_{0} L_{4}\right)+M_{4}\left(L_{0} L_{3}+L_{1} L_{2}\right) \\
& +M_{5}\left(L_{0} L_{2}\right)+M_{6}\left(L_{0} L_{1}\right)+M_{7}\left(L_{0}^{2}\right)
\end{aligned}
$$

An element of ker $d \phi_{L_{0}}$ corresponds to a linear syzygy between the multipliers of the M_{i} terms. Hence the rank of $d \phi_{L_{0}}$ is $7(n+1)$ minus the number of such linearly independent syzygies.

Now tentatively assume $n=6$; then we may as well assume L_{0}, \ldots, L_{6} to be the indeterminates $x_{0}, \ldots x_{6}$, respectively. (Note that L_{7} does not appear in the expression for $d \phi_{L_{0}}$.)

Consider the ideal in S manufactured out of the multipliers of the M_{i} terms:

$$
I=\left(x_{0} x_{6}+x_{2} x_{4}, x_{0} x_{5}+x_{1} x_{4}, x_{0} x_{4}, x_{0} x_{3}+x_{1} x_{2}, x_{0} x_{2}, x_{0} x_{1}, x_{0}^{2}\right)
$$

In the sequel, this will be called the deformation ideal. We have a minimal resolution of S / I :

$$
\begin{align*}
0 & \longrightarrow S(-5) \longrightarrow S(-4)^{6} \longrightarrow S(-3)^{11} \\
& \longrightarrow S(-2)^{7} \longrightarrow S \longrightarrow S / I \longrightarrow 0 \tag{5}
\end{align*}
$$

The number of linear syzygies is 11 and $\operatorname{proj}^{-\operatorname{dim}_{S}}(S / I)=4$.
Now let $n \geq 3$, and L_{0}, \ldots, L_{7} be general linear forms in $S^{\prime}=$ $k\left[y_{0}, \ldots, y_{n}\right]$. Define $S \xrightarrow{f} S^{\prime}$ by $x_{i} \rightarrow L_{i}$. By the lemma on change of rings, the resolution above tensored with S^{\prime} is a resolution of $S^{\prime} / f(I)$. This is to say that, as long as the L_{i} are general, although we may no longer assume them to be variables, the number of linear syzygies between the multipliers of the M_{i} is still 11 .

Hence generically $\operatorname{dim} d \phi_{L_{0}}$ has rank $7(n+1)-11=7 n-4$. Since L_{0} projectively depends on n parameters, $\operatorname{dim} C T^{(3)}=7 n-4+n=8 n-4$. So $\operatorname{dim} T^{(3)}=8 n-5$.

Case $d=3$. The argument is parallel to the previous case, except that L_{0} no longer has any privileged status.

Start with the map

$$
\phi_{3}:\left(S_{1}\right)^{8} \longrightarrow S_{3}, \quad\left(L_{0}, \ldots, L_{7}\right) \longrightarrow F_{3}\left(L_{i}\right)
$$

The map on tangent spaces is given by
$\left(M_{0}, \ldots, M_{7}\right) \xrightarrow{d \phi_{3}} M_{0}\left(L_{0} L_{7}+L_{1} L_{6}+L_{2} L_{5}+L_{3} L_{4}\right)+M_{1}\left(L_{0} L_{6}+\right.$ $\left.L_{2} L_{4}\right)+M_{2}\left(L_{0} L_{5}+L_{1} L_{4}\right)+M_{3}\left(L_{0} L_{4}\right)+M_{4}\left(L_{0} L_{3}+L_{1} L_{2}\right)+M_{5}\left(L_{0} L_{2}\right)+$ $M_{6}\left(L_{0} L_{1}\right)+M_{7}\left(L_{0}^{2}\right)$.

Assume $n=7$ and $\left(L_{0}, \ldots, L_{7}\right)=\left(x_{0}, \ldots, x_{7}\right)$. The deformation ideal is

$$
\begin{aligned}
I=\left(x_{0} x_{7}+x_{1} x_{6}+x_{3} x_{4}+x_{2} x_{5}, x_{0} x_{6}+\right. & x_{2} x_{4}, x_{0} x_{5}+x_{1} x_{4}, x_{0} x_{4} \\
& \left.x_{0} x_{3}+x_{1} x_{2}, x_{0} x_{2}, x_{0} x_{1}, x_{0}^{2}\right)<S
\end{aligned}
$$

with minimal resolution

$$
\begin{aligned}
0 & \longrightarrow S(-6)^{2} \oplus S(-5) \longrightarrow S(-5)^{5} \oplus S(-4)^{6} \\
& \longrightarrow S(-4)^{3} \oplus S(-3)^{12} \longrightarrow S(-2)^{8} \longrightarrow S \longrightarrow S / I \longrightarrow 0
\end{aligned}
$$

There are 12 linear syzygies and proj-dim $S / I=4$. By the lemma on change of rings, the number of syzygies is still 12 for all $n \geq 3$. Generically $d \phi_{3}$ has rank $8(n+1)-12=8 n-4$, so $\operatorname{dim} T^{(3)}=8 n-5$. The proof of Theorem 3.2 is complete.

We will redo the case $d=4, n=3$ where the geometry is most visible. We have an imbedding $\mathbf{P}^{3} \longrightarrow \mathbf{P}^{34}$ given by the complete linear system of quartic hypersurfaces. From the expression for F_{3} it is clear that a general element of $\operatorname{im}\left(\phi_{3}\right)$ is of the form $H \cup X$, where the hyperplane H intersects the cubic surface X in three lines.

Claim. The expression $L_{0}^{2} L_{7}+L_{0}\left(L_{1} L_{6}+L_{2} L_{5}+L_{3} L_{4}\right)+L_{1} L_{2} L_{4}$ represents a general cubic surface.

Indeed, let X be a smooth cubic surface in \mathbf{P}^{3}. Choose a set of three noncoincident intersecting lines on X; such always exist (see e.g. [3]), and we may assume that they lie in the plane $x_{0}=0$. Now write the equation of X as $x_{0}^{2} h_{1}+x_{0} h_{2}+h_{3}$; here h_{2}, h_{3} are respectively
quadratic and cubic forms in x_{1}, x_{2}, x_{3}. By hypothesis, h_{3} factors as say $L_{1} L_{2} L_{4}$. Since the lines are not coincident, $\left\{L_{1}, L_{2}, L_{4}\right\}$ is a basis of the linear forms in x_{1}, x_{2}, x_{3}; hence one can choose L_{3}, L_{5}, L_{6} so that $L_{1} L_{6}+L_{2} L_{5}+L_{3} L_{4}=h_{2}$. Finally choose $L_{0}=x_{0}, L_{7}=h_{1}$. This proves the claim.

Hence X depends on 19 moduli, and it determines H up to a finite ambiguity (since X contains only 27 lines). Thus $\operatorname{dim} T^{(3)}=19$.

Proposition 3.3. Let $n=2$. Then $\operatorname{dim} T^{(3)}=9$ for $d=3$ and 11 for $d \geq 4$.

Write $F_{3}=L_{0}^{d-3} G_{3}$. We claim that for a fixed L_{0}, G_{3} represents a general plane cubic.

We may assume $L_{0}=x_{0}$, and let f be a general cubic form in x_{0}, x_{1}, x_{2}. Write $f=x_{0}^{2} h_{1}+x_{0} h_{2}+h_{3}$ where h_{i} is a degree i form in x_{1}, x_{2}. Now h_{3} factors completely as say, $L_{1} L_{2} L_{4}$. Then we can write $h_{2}=\left(a L_{1}+b L_{2}\right)\left(c L_{1}+d L_{2}\right)$ for constants a, \ldots, d. Now choose $L_{6}=a\left(c L_{1}+d L_{2}\right), L_{5}=b\left(c L_{1}+d L_{2}\right), L_{3}=0, L_{7}=h_{1}$. The claim is proved.

For $d=3$ we have an imbedding $\mathbf{P}^{2} \longrightarrow \mathbf{P}^{9}$, hence in any case dim $T^{(3)} \leq 9$. Since ϕ_{3} is dominant, equality must hold.

If $d \geq 4$, then a general plane cubic being irreducible, L_{0} is uniquely determined for a general point of $\operatorname{im}\left(\phi_{3}\right)$. Since L_{0} depends on two parameters and G_{3} on nine, so $\operatorname{dim} T^{(3)}=11$.

Case $r=4$. The calculations are similar to the case $r=3$, although rather more tedious.

Theorem 4.1. If $n, d \geq 3$, then $\operatorname{dim} T^{(4)}=16 n-17$, except possibly in the cases $d=3$ and $4 \leq n \leq 9$.

For $d=n=3$, we have an imbedding $\mathbf{P}^{3} \xrightarrow{v_{3}} \mathbf{P}^{19}$. Since already dim $T^{(3)}=19, \operatorname{dim} T^{(4)}=19$ as well. The case $n=2$ will be dealt with in Proposition 4.2. I have been unable to settle the cited exceptions.

Proof. We have a morphism

$$
\phi_{4}:\left(S_{1}\right)^{16} \longrightarrow S_{d}, \quad\left(L_{0}, \ldots, L_{15}\right) \longrightarrow F_{4}\left(L_{i}\right)
$$

where F_{4} is as in (4).

Case $d \geq 5$. Write $F_{4}=L_{0}^{d-4} G_{4}$. A general point of $\operatorname{im}\left(\phi_{4}\right)$ determines L_{0} up to a scalar, for this it is enough to show that G_{4} is irreducible for general choices of the L_{i}. Put $L_{0}=L_{15}=x_{0}$, $L_{1}=L_{2}=L_{4}=x_{1}, L_{8}=x_{2}$ and the remaining $L_{i}=0$. Then $G_{4}=x_{0}^{4}+x_{1}^{3} x_{2}$ is irreducible, and hence it will remain so for small deformations of the L_{i}.

So then fix L_{0} and consider the map

$$
\left(S_{1}\right)^{15} \xrightarrow{\phi_{L_{0}}} S_{4}, \quad\left(L_{1}, \ldots, L_{15}\right) \longrightarrow G_{4}\left(L_{i}\right)
$$

Since L_{0} projectively depends on n parameters,

$$
\operatorname{dim} T^{(4)}=\operatorname{dim} C T^{(4)}-1=\operatorname{dim} \operatorname{im}\left(\phi_{L_{0}}\right)+n-1
$$

As before $d \phi_{L_{0}}$ is found out by polarization. Assume $n=15$ and $\left(L_{0}, \ldots, L_{15}\right)=\left(x_{0}, \ldots, x_{15}\right)$. The deformation ideal is

$$
\begin{align*}
I= & x_{0}^{2} x_{14}+x_{0} x_{6} x_{8}+x_{0} x_{2} x_{12}+x_{0} x_{4} x_{10}+x_{2} x_{4} x_{8}, x_{0}^{2} x_{13}+x_{0} x_{5} x_{8} \tag{6}\\
& +x_{0} x_{1} x_{12}+x_{0} x_{4} x_{9}+x_{1} x_{4} x_{8}, x_{0}^{2} x_{12}+x_{0} x_{4} x_{8}, x_{0}^{2} x_{11}+x_{0} x_{3} x_{8} \\
& +x_{0} x_{1} x_{10}+x_{0} x_{2} x_{9}+x_{1} x_{2} x_{8}, x_{0}^{2} x_{10}+x_{0} x_{2} x_{8}, x_{0}^{2} x_{9}+x_{0} x_{1} x_{8}, x_{0}^{2} x_{8} \\
& +x_{0}^{2} x_{7}+x_{0} x_{1} x_{6}+x_{0} x_{3} x_{4}+x_{0} x_{2} x_{5}+x_{1} x_{2} x_{4}, x_{0}^{2} x_{6}+x_{0} x_{2} x_{4} \\
& \left.+x_{0}^{2} x_{5}+x_{0} x_{1} x_{4}, x_{0}^{2} x_{4}, x_{0}^{2} x_{3}+x_{0} x_{1} x_{2}, x_{0}^{2} x_{2}, x_{0}^{2} x_{1}, x_{0}^{3}\right)
\end{align*}
$$

with minimal resolution

$$
\begin{align*}
0 \longrightarrow S(-7) \longrightarrow S(-6)^{8} & \longrightarrow S(-5)^{24} \longrightarrow S(-4)^{31} \tag{7}\\
& \longrightarrow S(-3)^{15} \longrightarrow S \longrightarrow S / I \longrightarrow 0 .
\end{align*}
$$

Hence there are 31 linear syzygies and proj- $\operatorname{dim} S / I=5$. Arguing as in the case $r=3$, we deduce that $\operatorname{dim} T^{(4)}=16 n-17$ for $n \geq 4$.

Case $d \geq 4, n=3$. We will resort to a direct geometric argument. The quartic surface defined by G_{4} evidently contains the four coplanar lines $L_{0}=L_{j}=0, j=1,2,4,8$.
Tentatively define a quartet to be a configuration of four coplanar lines in \mathbf{P}^{3}, and let Y be the space of quartic surfaces containing a quartet. As seen previously, G_{4} is uniquely determined up to scalar for a general point of $T^{(4)}$, hence we have a rational map $T^{(4)}-\xrightarrow{f} Y$.

Claim. The equation of a general surface in Y can be written as $G_{4}\left(L_{i}\right)=0$ for some forms L_{i}. That is to say, f is dominant.

Proof. Take a quartet in the surface, we may assume that the four lines lie in the plane $x_{0}=0$. Write the equation of the surface as $x_{0}^{3} g_{1}^{\prime}+$ $x_{0}^{2} g_{2}^{\prime}+x_{0} g_{3}^{\prime}+g_{4}^{\prime}=0$, where g_{i}^{\prime} are degree i polynomials in x_{1}, x_{2}, x_{3} for $i=2,3,4$. By hypothesis g_{4}^{\prime} factors as say $L_{1} L_{2} L_{4} L_{8}$. By genericity, the sets $\left\{L_{1} L_{2}, L_{1} L_{4}, L_{1} L_{8}, L_{2} L_{4}, L_{2} L_{8}, L_{4} L_{8}\right\}$ and $\left\{L_{1}, L_{2}, L_{4}, L_{8}\right\}$ respectively span the vector spaces of all quadratic and linear forms in x_{1}, x_{2}, x_{3}. By the former we can choose $L_{12}, L_{10}, L_{6}, L_{9}, L_{5}$ and L_{3} so that $g_{3}^{\prime}=g_{3}\left(L_{i}\right)$. Then by the latter we choose $L_{14}, L_{13}, L_{11}, L_{7}$ so that $g_{2}^{\prime}=g_{2}\left(L_{i}\right)$. Finally let $L_{0}=x_{0}, L_{15}=g_{1}^{\prime}$. The claim is proved. -

Let Q be the 11-dimensional parameter space for quartets and consider the incidence correspondence $\Sigma \subseteq Q \times \mathbf{P} S_{4}, \Sigma=\{(\square, X): \square \subseteq X\}$. Then Y is the image of the projection $\Sigma \xrightarrow{p_{2}} \mathbf{P} S_{4}$.

Claim. The general fiber of the projection $\Sigma \xrightarrow{p_{1}} Q$ has dimension 20. Hence $\operatorname{dim} \Sigma=31$.

Proof. A general quartet is a complete intersection of a plane and a degenerate quartic surface (consisting of four planes). So its ideal has a resolution

$$
0 \longrightarrow \mathcal{O}_{\mathbf{P}^{3}}(-5) \longrightarrow \mathcal{O}_{\mathbf{P}^{3}}(-1) \oplus \mathcal{O}_{\mathbf{P}^{3}}(-4) \longrightarrow I_{\square} \longrightarrow 0 .
$$

Hence $h^{0}\left(I_{\square}(4)\right)=h^{0}\left(\mathcal{O}_{\mathbf{P}^{3}}\right)+h^{0}\left(\mathcal{O}_{\mathbf{P}^{3}}(3)\right)=21$. This proves the claim.

Now it is the case that any smooth quartic hypersurface contains at most 64 lines (see $[\mathbf{6}]$) and a fortiori contains finitely many quartets. Hence the fiber of p_{2} over a general point of Y is finite.

Since f is dominant and generically finite, $\operatorname{dim} T^{(4)}=\operatorname{dim} Y=31$. The proof for the case $d \geq 5$ is complete.

Case $d=4$.

Proof. The argument parallels the one for the case $r=3, d=3$. For the $\operatorname{map} \phi_{4}:\left(S_{1}\right)^{16} \xrightarrow{\phi_{4}} S_{d}$, we calculate the $d \phi_{4}$. The deformation ideal is

$$
\begin{aligned}
I^{\prime}=I & +\left(x_{0}^{2} x_{15}+2 x_{0}\left(x_{1} x_{14}+x_{2} x_{13}+x_{3} x_{12}+x_{4} x_{11}+x_{5} x_{10}+x_{6} x_{9}\right.\right. \\
& \left.+x_{7} x_{8}\right)+x_{1} x_{6} x_{8}+x_{2} x_{5} x_{8}+x_{3} x_{4} x_{8}+x_{1} x_{2} x_{12}+x_{1} x_{4} x_{10} \\
& \left.+x_{2} x_{4} x_{9}\right),
\end{aligned}
$$

where I is the ideal in (6).
From its minimal resolution
(8) $0 \longrightarrow S(-7) \longrightarrow S(-8)^{3} \oplus S(-6)^{8} \longrightarrow S(-7)^{7} \oplus S(-5)^{24}$

$$
\longrightarrow S(-6)^{4} \oplus S(-4)^{32} \longrightarrow S(-3)^{16} \longrightarrow S \longrightarrow S / I^{\prime} \longrightarrow 0
$$

there are 32 linear syzygies and $\operatorname{proj}-\operatorname{dim} S / I=5$. By the change of rings lemma, generically $d \phi_{4}$ has rank $16(n+1)-32=16 n-16$ for $n \geq 4$. This implies that $\operatorname{dim} C T^{(4)}=16 n-16$, so $\operatorname{dim} T^{(4)}=16 n-17$ for $n \geq 4$.

Case $d=3$. We will be brief since there is nothing new to the argument. The deformation ideal is

$$
\begin{aligned}
I= & \left(x_{0} x_{15}+x_{1} x_{14}+x_{2} x_{13}+x_{3} x_{12}+x_{4} x_{11}+x_{5} x_{10}+x_{6} x_{9}+x_{7} x_{8},\right. \\
& x_{0} x_{14}+x_{6} x_{8}+x_{2} x_{12}+x_{4} x_{10}, x_{0} x_{13}+x_{5} x_{8}+x_{1} x_{12}+x_{4} x_{9}, \\
& x_{0} x_{12}+x_{4} x_{8}, x_{0} x_{11}+x_{3} x_{8}+x_{1} x_{10}+x_{2} x_{9}, x_{0} x_{10}+x_{2} x_{8}, \\
& x_{0} x_{9}+x_{1} x_{8}, x_{0} x_{8}, x_{0} x_{7}+x_{1} x_{6}+x_{2} x_{5}+x_{3} x_{4}, x_{0} x_{6}+x_{2} x_{4}, \\
& \left.x_{0} x_{5}+x_{1} x_{4}, x_{0} x_{4}, x_{0} x_{3}+x_{1} x_{2}, x_{0} x_{2}, x_{0} x_{1}, x_{0}^{2}\right) .
\end{aligned}
$$

Its minimal resolution begins as
$\cdots \longrightarrow S(-6)^{8} \oplus S(-4)^{32} \oplus S(-3)^{32} \longrightarrow S(-2)^{16} \longrightarrow S \longrightarrow S / I \longrightarrow 0$.
and has length 11 . Hence $\operatorname{dim} T^{(4)}=16 n-17$ for $n \geq 10$.
This completes the proof of Theorem 4.1. \quad.

Proposition 4.2. Let $n=2$. Then $\operatorname{dim} T^{(4)}=9$ for $d=3$, 14 for $d=4$; and 16 for $d \geq 5$.

The argument is very similar to Proposition 3.3.

Proof. The claim for $d=3$ is clear from Proposition 3.3, so assume $d \geq 4$.

Write $F_{4}=L_{0}^{d-4} G_{4}$. We claim that with L_{0} fixed, G_{4} represents a general plane quartic f. So assume $L_{0}=x_{0}$ and let $f=x_{0}^{3} h_{1}+x_{0}^{2} h_{2}+$ $x_{0} h_{3}+h_{4}$, where h_{i} is a form in x_{1}, x_{2}. Now h_{4} factors completely, as say, $L_{1} L_{2} L_{4} L_{8}$. By genericity, we can assume that $\left\{L_{1}, L_{2}\right\}$ are linearly independent, so we can find L_{13}, L_{14} such that $L_{1} L_{14}+L_{2} L_{13}=$ h_{2}. Assuming the set $\left\{L_{1} L_{2}, L_{1} L_{4}, L_{2} L_{4}\right\}$ to be independent, find L_{9}, L_{10}, L_{12} such that $L_{1} L_{2} L_{12}+L_{1} L_{4} L_{10}+L_{2} L_{4} L_{9}=h_{3}$. Finally let $L_{15}=h_{1}, L_{3,5,6,7,11}=0$. This proves the claim.

For $d=4$ we have an imbedding $\mathbf{P}^{2} \longrightarrow \mathbf{P}^{14}$. Since ϕ_{4} is dominant, $T^{(4)}=\mathbf{P}^{14}$.

If $d \geq 5$, then a general plane quartic being irreducible, L_{0} is unique up to scalars for a general point in ϕ_{4}. So $\operatorname{dim} T^{(4)}=16$.

In conclusion, we have the following theorem.

Theorem 4.3 Let $v_{d}: \mathbf{P}^{n} \longrightarrow \mathbf{P}^{N}$ be the Veronese imbedding and let $\tau(n, d, r)$ denote the dimension of $T^{(r)}$. Then
(i) $\tau(n, d, 1)=2 n$.
(ii) $\tau(n, d \geq 3,2)=4 n-1$.
(iii) $\tau(n \geq 2,2,2)=4 n-3$.
(iv) $\tau(n \geq 2,2, r)=2^{r} . n-\left(2^{2 r-1}-3.2^{r-1}+1\right)$ for $n>2^{r}-1$ and N otherwise.
(v) $\tau(n \geq 2,2,2)=4 n-3$.
(vi) $\tau(1, d, r<d)=r+1$.
(vii) $\tau(n \geq 3, d \geq 3,3)=8 n-5$.
(viii) $\tau(2,3,3)=9$ and $\tau(2, d \geq 4,3)=11$.
(ix) $\tau(n \geq 3, d \geq 3,4)=16 n-17$, except possibly when $d=3$ and $4 \leq n \leq 9$.

The interest lies in cases (ii), (vii) and (ix). It appears from the calculations that for d large, $T^{(r)}$ has tangential deficiency $1,3,7$, respectively, for $r=1,2,3$. One would like to see the following conjecture settled one way or the other:

Conjecture. For $n \geq 3$ and $d \gg 0$, the variety $T^{(r)}$ has tangential deficiency $2^{r}-1$.

The deformation ideals considered here have no immediate geometric significance. It is curious however that their resolutions (5) and (7) are linear. It would be of interest to know if these are instances of a general pattern. It is probable that the question is tied up with the conjecture above.

Acknowledgments. I wish to thank Prof. Anthony Geramita for many exciting discussions about the matters herein. I have benefited greatly from the insight gained from his notes [2]. The help of Macaulay-2 has been invaluable for the computations in Sections 3 and 4. I gratefully acknowledge the financial support of A.V. Geramita, L. Roberts and Queen's University during the progress of this work.

REFERENCES

1. E. Arbarello, M. Cornalba, P.A. Griffiths and J. Harris, Geometry of algebraic curves, Vol. I, Grundlehren Math. Wiss. 267, Springer-Verlag, New York, 1985.
2. A.V. Geramita, Inverse systems of fat points, Queen's Papers Pure Appl. Math. 10, Queen's University, 1995.
3. P.A. Griffiths and J. Harris, Principles of algebraic geometry, Wiley Interscience, New York, 1978.
4. J. Harris, Algebraic geometry, A first course, Graduate Texts in Math., Springer-Verlag, New York, 1992.
5. R. Hartshorne, Algebraic geometry, Graduate Texts in Math., Springer-Verlag, New York, 1977.
6. B. Segre, The maximum number of lines lying on a quartic surface, Quart. J. Math. Oxford Ser. 14 (1943), 86-96.

Department of Mathematics, University of British Columbia, VancouVER, V6T 1Z2, Canada
E-mail address: jaydeep@math.ubc.ca

[^0]: 1991 AMS Mathematics Subject Classification. Primary 14N15.
 Received by the editors on August 4, 2000, and in revised form on December 12, 2001.

