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A NOTE ON THE TANGENTIAL ENVELOPES
OF VERONESE VARIETIES

JAYDEEP V. CHIPALKATTI

ABSTRACT. If X ⊆ Pm is a projective variety, then its
tangential envelope has expected dimension min{2 dim X, m}.
We calculate the dimensions of some higher tangential en-
velopes of the Veronese varieties and show that they violate
this expectation.

The classical Veronese varieties are known to exhibit various kinds of
pathological behavior from the point of view of differential geometry. It
is known that many of them have deficient secant varieties, the Veronese
surface in P5 being perhaps the most widely known example. (See [2,
Corollary 7.5], where the dimension of the secant variety is listed in each
possible case.) In this paper, we discuss a similar pathology, namely,
the deficiency of their tangential envelopes.

Consider the d-fold Veronese imbedding

vd : Pn −→ PN , N =
(

n + d

d

)
− 1

given by the complete linear system of degree d hypersurfaces in Pn.
Let T (0) denote its image and recursively define T (r) as the tangential
envelope of T (r−1). Now if X ⊆ Pm is a projective variety, then
the expected dimension of its tangential envelope is min{2 dimX, m}.
Here we calculate dim T (r) for r ≤ 4 and all but a handful of pairs
(n, d). It will turn out that almost always we have a strict inequality
dimT (r) < 2 dimT (r−1). The calculations are summarized in Theorem
4.3 at the end of the paper.

In the first section we establish notation and describe a calculus
to represent a general element of T (r). This will be the basis of all
subsequent dimension computations.
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1. Preliminaries. The base field k will be algebraically closed
of characteristic zero. For an irreducible variety X ⊆ PN we define
the tangential envelope (or developable) TX to be the closure of the
union of tangent spaces to smooth points of X. It is an irreducible
projective subvariety of PN and dim TX ≤ min{2 dimX, N}. We say
that X has a deficient tangential envelope if strict inequality holds;
this happens if and only if a general point of a general tangent space
to X lies on at least ∞1 tangent spaces. The numerical difference
min{2 dimX, N} − dimTX is the tangential deficiency of X.

Let S =
⊕

d≥0 Sd = k[x0, . . . , xn] denote the polynomial ring with the
usual grading. Identify the Veronese variety T (0) with the subset of PSd

consisting of all forms Ld (modulo scalars), where L is a nonzero linear
form. To avoid trivialities assume d ≥ 2. We define T (r) = T (T (r−1))
and give a concrete description of a general point of T (r) as an element
of PSd. We begin by clarifying the connection between the Zariski and
projective tangent space of a variety, cf. [4, Section 14].

For a k-vector space V , let

AV = Spec (Sym •V ∗) and PV = Proj (Sym •V ∗).

Let X ⊆ PV be a projective variety and CX ⊆ AV the cone over
X. For a (closed) point x ∈ X, let λx ⊆ V be the corresponding
one-dimensional space. The Zariski tangent space TX,x is canonically
a subspace of TP,x = Hom(λx, V/λx). Consider the space {image (τ ) :
τ ∈ TX,x} ⊆ V/λx ; it lifts to a (dimTX,x + 1)-dimensional space
WX,x ⊆ V . The projectivization PWX,x ⊆ PV is the projective
tangent space TX,x.

Now for a nonzero v ∈ λx, the Zariski tangent space TCX,v is
canonically isomorphic to WX,x as a subspace of TAV,v = V . If TCX
denotes the closure of ∪x smoothWX,x in AV ,

CTX = TCX, hence dim TX = dimTCX − 1.

Now let X be the Veronese variety T (0) and consider the morphism
φ0 : S1 → Sd

1 , L0 → L0
d. A tangent vector to S1 at L0 may be written

L0 + εL1, and its image (L0 + εL1)d = Ld
0 + εdLd−1

0 L1, since ε2 = 0.
Hence we have a morphism

φ1 : (S1)2 −→ Sd, (L0, L1) −→ Ld−1
0 L1,
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such that the closure of the image of φ1 is CT (1).

Letting L0 → L0 + εL2, L1 → L1 + εL3,

(L0 + εL2)d−1(L1 + εL3) = Ld−1
0 L1 + ε((d − 1)Ld−2

0 L1L2 + Ld−1
0 L3);

hence a morphism

φ2 : (S1)4 −→ Sd, (L0, L1, L2, L3) −→ Ld−2
0 (L0L3 + L1L2).

The closure of the image of φ2 is CT (2). To recapitulate, we have a
morphism of affine spaces

(1) φr : (S1)2
r −→ Sd, (L0, . . . , L2r−1) −→ Fr(Li)

with Fr a homogeneous degree d form. The closure of its image is CT (r).
By generic smoothness ([5, Chapter III]), the corresponding morphism
on tangent spaces is surjective over a general point of CT (r). Hence we
take a tangent vector (L0 + εL2r , . . . , L2r−1 + εL2r+1−1) at a general
point of (S1)2

r

and follow its image via φr. A moment’s reflection will
show that this is nothing more than the classical polarization process,
i.e., letting

(2) Fr+1 =
2r−1∑
j=0

∂Fr

∂Lj
L(j+2r),

we get φr+1. This gives an inductive procedure to represent a gen-
eral point of CT (r). The map dφr on tangent spaces at the point
(L0, . . . , L2r−1) is given by

(3) dφr : (S1)2
r −→ Sd, (M0, . . . , M2r−1) −→

2r−1∑
j=0

∂Fr

∂Lj
Mj .

and dimCT (r) = rank dφr at a general point of (S1)2
r

. To forestall
any confusion, note that φr is a morphism of affine varieties whereas
dφr is a linear map of vector spaces. The image of φr may not be a
variety, although we know it to be a constructible subset of Sd.
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We list the Fr to be used in the sequel:
(4)
F1 =Ld−1

0 L1, F2 =Ld−2
0 (L0L3 + L1L2),

F3 =Ld−3
0 (L2

0L7 + L0(L1L6 + L2L5 + L3L4) + L1L2L4) for d ≥ 3,

F4 =Ld−4
0 (L3

0L15 + 2L2
0(L1L14 + L2L13 + L3L12 + L4L11 + L5L10

+ L6L9 + L7L8)+L0(L1L6L8+L2L5L8+L3L4L8+L1L2L12

+ L1L4L10 + L2L4L9) + L1L2L4L8) for d ≥ 4,

F4 =L2
0L15 + L0(L1L14 + L2L13 + L3L12 + L4L11 + L5L10 + L6L9

+ L7L8)+(L1L6L8+L2L5L8+L3L4L8+L1L2L12+L1L4L10

+ L2L4L9) for d = 3, and

Fr =
2r−1−1∑

j=0

LjL(2r−j−1) for d = 2.

The last formula follows from (2) by a simple induction.

Wherever possible, we have absorbed purely numerical factors such
as d − 1, d − 2 etc. by rescaling the Li. For this and for the generic
smoothness argument, we need the characteristic to be zero.

2. Low dimensional cases. In this section we treat a medley of
cases, all distinguished by the fact that one of the numbers n, d or r is
small enough to make a direct geometric argument feasible.

Proposition 2.1. For n arbitrary, dimT (1) = 2n.

Proof. The morphism φ1 : (L0, L1) → Ld−1
0 L1 has one-dimensional

fibers, hence dim CT (1) = 2n + 1.

Consequently T (0) has no tangential deficiency.

Proposition 2.2.

1. For d ≥ 3 and n arbitrary, dim T (2) = 4n − 1.

2. For d = 2, n ≥ 2, dim T (2) = 4n − 3.

In particular, T (1) is always tangentially deficient.
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Proof.

1. Here we assume n ≥ 2; the case n = 1 is covered by Theorem 2.4.
Write F2 = Ld−2

0 (L0L3 + L1L2) = Ld−2
0 Q.

Firstly assume n = 2. By a change of variables, we may let L0 = x0.
Any quadratic form in x0, x1, x2 may be written as x0L3 + L1L2,
where the Li are linear forms. We have shown that for a fixed L0

the expression Q can be made to represent a general plane conic. Since
projectively L0 depends on two parameters and Q on five, dimT (2) = 7.

Now assume n ≥ 3. By choosing the Li generally, we may assume
that rank (Q) = 4. Firstly assume n = 3, this implies that Q is smooth.
Since the plane L0 = 0 intersects Q in the pair of lines L0 = L1 = 0
and L0 = L2 = 0, it must be tangent to Q. Alternately if Q′ is any
smooth quadric tangent to L0, then its equation can be written in the
form L0M3 + M1M2. Define an incidence correspondence

Σ ⊆ PS1 × PS2, Σ = {(L, Q) : Q is smooth and L is tangent to Q}.

The general fiber of the projection Σ → PS2 is two-dimensional, so
dim Σ = 11. Hence the general fiber of the projection Σ → PS1

is eight-dimensional. We have shown that, for a fixed L0, the factor
L0L3 + L1L2 projectively depends upon eight parameters. Since L0

projectively depends on 3 parameters, dim T (2) = 11.

Now let n ≥ 4. Then Q is a cone over a smooth quadric Q̃ ⊆ P3

with vertex Λ ∼= Pn−4. (The geometry of Q determines Λ uniquely
but not Q̃.) It follows that each of the (n − 2)-dimensional linear
spaces L0 = L1 = 0 and L0 = L2 = 0 is the linear span of Λ
and a line on Q̃. Moreover these two lines must intersect, since
the space L0 = L1 = L2 = 0 is strictly larger than Λ. Hence
L0 = 0 is the span of Λ and the plane in P3 containing the two
lines. Alternately, given complementary spaces Λ, Λ′ of dimensions
n − 4 and 3 respectively and a smooth quadric Q′ in Λ′ such that L0

is the linear span of one of its tangent planes and Λ, the equation of
Q′ can be brought into the form L0M3 + M1M2. (Choose coordinates
such that Λ′ : x0 = x1 = · · · = xn−4 = 0, Λ : xn−3 = · · · = xn = 0
and L0 = xn. Then Q′ is defined by a homogeneous quadratic form
f2(xn−3, xn−2, . . . , xn), which must factor when xn is set to zero. Now
the assertion is clear.)
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Let Y be the space of rank 4 quadrics in Pn and set up an incidence
correspondence Σ ⊆ PS1 × Y ,

Σ = {(L, Q) : L is the linear span of a tangent plane to Q̃ and the
vertex of Q}.

(Although Q̃ is not uniquely determined by Q, the condition on L is
independent of this choice.) We have dim Y = 4n− 3 (see [4, Example
22.31]) and the general fiber of Σ → Y is two-dimensional. Hence
dim Σ = 4n−1 and the general fiber of Σ → PS1 is (3n−1)-dimensional.
It follows that projectively the factor L0L3 + L1L2 depends on 3n − 1
moduli and L0 on n. Hence dimT (2) = 4n − 1.

2. This will be a special case of the next proposition.

Proposition 2.3. Let d = 2 and n ≥ 2. Then

dim T (r) = 2rn − (22r−1 − 3.2r−1 + 1) for n > 2r − 1,

and N otherwise.

For r = 2, this reduces to 4n − 3 for n ≥ 2.

Proof. From the last expression in (4) it is immediate that the cone
over T (r) is exactly the set of quadratic forms in n+1 variables of rank
at most 2r. Their codimension in S2 is [(n + 2− 2r)(n + 1− 2r)]/2, [4,
Example 22.31], hence the assertion.

The case n = 1, i.e., that of a rational normal curve, can be analyzed
completely.

Theorem 2.4. For n = 1 and r < d, dimT (r) = r + 1 and
deg T (r) = (d − r)(r + 1).

Proof. We may write a typical element of T (r) as Ld−r
0 Gr, where Gr

is a degree r homogeneous form in two variables. Hence projectively
Gr depends on at most r moduli and L0 on one, so dimT (r) ≤ r + 1.

We claim that T (r−1) � T (r). If not, then T (r−1) would be a proper
linear space containing T (0), contradicting the nondegeneracy of the
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rational normal curve. Now it follows by descending induction on r
that dimT (r) = r + 1.

For the second part, we identify Pd with PH0(P1,OP1(d)). Said
differently, we will regard the points of Pd as members of the canonical
gd

d on P1, and the rational normal curve with divisors of the form
dP, P ∈ P1.

Now intersect T (r) with a general (d−r−1)-dimensional linear space Λ
in Pd. The points on Λ correspond to members of a general subsystem
gd−r−1

d ⊆ gd
d . By the argument above, the points of Λ∩T (r) correspond

to divisors of the form (d− r)P + Pd−r+1 + · · ·+ Pd in this gd−r−1
d . By

De Jonquières’s formula (see [1, p. 359]) the number of such divisors is
the coefficient of t1t

r
2 in (1 + (d− r)t1 + t2)r+1, which is (d− r)(r + 1).

Hence the claim.

Thus for n = 1 the variety T (r) is better described as the set of
univariate degree d polynomials having a root of multiplicity at least
d − r. The hypersurface T (d−2) has degree 2(d− 1), as it should, since
it is defined by the discriminant.

We turn to the cases r = 3, 4. The method used is resolutely more
algebraic. In each case the problem reduces to calculating the minimal
resolution of a certain ideal in a polynomial ring; this is done using
Macaulay-2. It would be of some interest to know if the machine
computations can be circumvented by more conceptual arguments.

3. Case r = 3. We record the following technical lemma for use in
Theorems 3.2 and 4.1.

Lemma 3.1 (Change of rings). Let A = k[x0, . . . , xn] and I < A a
homogeneous ideal such that proj-dimA(A/I) = m < n + 1. Let

E• : 0 −→ E−m −→ · · · −→ E0(
 A) −→ A/I −→ 0

be its graded minimal resolution. For an integer p ≥ m − 1, let
B = k[y0, . . . , yp]. Choose general linear forms l0, . . . , ln ∈ B1 and
define a ring map

f : A −→ B, xi −→ li.

Then E• ⊗A B is a minimal resolution of B/f(I).
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Proof.

Case p < n. Since the li are general, f is surjective and J = ker f
is generated by linear forms z1, . . . , zn−p ∈ A1. Define a free module
M = ⊕n−p

i=1 Aei, and set z = Σziei. We have a Koszul resolution

Kz : 0 −→ A −→ · · · −→ ∧jM
∧z−→ ∧j+1M

−→ · · · −→ ∧n−pM −→ A/J −→ 0.

By the Auslander-Buchsbaum, depthA(A/I) = n+1−m ≥ n−p ; and
by genericity we may assume that the (zi) are an A/I-regular sequence.
Hence Hj(Kz ⊗ A/I) = Tor j(A/I, A/J) = 0 for −(n − p) ≤ j ≤ −1.
So E• ⊗A B is a resolution of A/(I + J). Since all differentials vanish
modulo the irrelevant maximal ideal of B, it is minimal.

Case p ≥ n. In this case f is injective and B is a polynomial algebra
over f(A), so the claim is obvious.

Theorem 3.2. Let n, d ≥ 3. Then dim T (3) = 8n − 5.

Proof. From (4),

F3 = Ld−3
0 (L2

0L7 + L0(L1L6 + L2L5 + L3L4) + L1L2L4︸ ︷︷ ︸
(�)

).

The calculation splits into two cases.

Case d ≥ 4. We claim that a general point in im (φ3) determines
L0 uniquely up to a scalar. It suffices to show that the polynomial
(�) is irreducible for general choices of Li. Since irreducibility is an
open condition, exhibiting one choice would do. Take L0 = L7 = x0,
L1 = x1, L2 = x2, L4 = x3 and L3 = L5 = L6 = 0, then
(�) = x3

0 + x1x2x3.

Now fix an L0 and consider the map (S1)7
φL0−→ S3, (Li) −→ (�). By

virtue of the claim, dim T (3) = dim im(φL0) + n − 1. To calculate the
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dimension of im(φL0) it suffices to calculate the rank of the map dφL0

on tangent spaces at a general point of (S1)7. Polarizing the expression
(�), one sees that dφL0 is given by

(M1, . . . , M7) −→ M1(L0L6 + L2L4) + M2(L0L5 + L1L4)
+ M3(L0L4) + M4(L0L3 + L1L2)
+ M5(L0L2) + M6(L0L1) + M7(L2

0).

An element of ker dφL0 corresponds to a linear syzygy between the
multipliers of the Mi terms. Hence the rank of dφL0 is 7(n + 1) minus
the number of such linearly independent syzygies.

Now tentatively assume n = 6; then we may as well assume L0, . . . , L6

to be the indeterminates x0, . . . x6, respectively. (Note that L7 does not
appear in the expression for dφL0 .)

Consider the ideal in S manufactured out of the multipliers of the Mi

terms:

I = (x0x6 + x2x4, x0x5 + x1x4, x0x4, x0x3 + x1x2, x0x2, x0x1, x
2
0).

In the sequel, this will be called the deformation ideal. We have a
minimal resolution of S/I:

(5)
0 −→ S(−5) −→ S(−4)6 −→ S(−3)11

−→ S(−2)7 −→ S −→ S/I −→ 0.

The number of linear syzygies is 11 and proj-dimS(S/I) = 4.

Now let n ≥ 3, and L0, . . . , L7 be general linear forms in S′ =
k[y0, . . . , yn]. Define S

f−→ S′ by xi → Li. By the lemma on change of
rings, the resolution above tensored with S′ is a resolution of S′/f(I).
This is to say that, as long as the Li are general, although we may
no longer assume them to be variables, the number of linear syzygies
between the multipliers of the Mi is still 11.

Hence generically dim dφL0 has rank 7(n+1)−11 = 7n−4. Since L0

projectively depends on n parameters, dim CT (3) = 7n−4+n = 8n−4.
So dim T (3) = 8n − 5.

Case d = 3. The argument is parallel to the previous case, except
that L0 no longer has any privileged status.
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Start with the map

φ3 : (S1)8 −→ S3, (L0, . . . , L7) −→ F3(Li).

The map on tangent spaces is given by

(M0, . . . , M7)
dφ3−→ M0(L0L7 + L1L6 + L2L5 + L3L4) + M1(L0L6 +

L2L4)+M2(L0L5+L1L4)+M3(L0L4)+M4(L0L3+L1L2)+M5(L0L2)+
M6(L0L1) + M7(L2

0).

Assume n = 7 and (L0, . . . , L7) = (x0, . . . , x7). The deformation
ideal is

I = (x0x7 + x1x6 + x3x4 + x2x5, x0x6 + x2x4, x0x5 + x1x4, x0x4,

x0x3 + x1x2, x0x2, x0x1, x
2
0) < S,

with minimal resolution

0 −→ S(−6)2 ⊕ S(−5) −→ S(−5)5 ⊕ S(−4)6

−→ S(−4)3 ⊕ S(−3)12 −→ S(−2)8 −→ S −→ S/I −→ 0.

There are 12 linear syzygies and proj-dim S/I = 4. By the lemma
on change of rings, the number of syzygies is still 12 for all n ≥ 3.
Generically dφ3 has rank 8(n + 1)− 12 = 8n− 4, so dim T (3) = 8n− 5.
The proof of Theorem 3.2 is complete.

We will redo the case d = 4, n = 3 where the geometry is most visible.
We have an imbedding P3 −→ P34 given by the complete linear system
of quartic hypersurfaces. From the expression for F3 it is clear that a
general element of im(φ3) is of the form H ∪ X, where the hyperplane
H intersects the cubic surface X in three lines.

Claim. The expression L2
0L7 + L0(L1L6 + L2L5 + L3L4) + L1L2L4

represents a general cubic surface.

Indeed, let X be a smooth cubic surface in P3. Choose a set of three
noncoincident intersecting lines on X; such always exist (see e.g. [3]),
and we may assume that they lie in the plane x0 = 0. Now write
the equation of X as x2

0h1 + x0h2 + h3; here h2, h3 are respectively
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quadratic and cubic forms in x1, x2, x3. By hypothesis, h3 factors as
say L1L2L4. Since the lines are not coincident, {L1, L2, L4} is a basis of
the linear forms in x1, x2, x3; hence one can choose L3, L5, L6 so that
L1L6 + L2L5 + L3L4 = h2. Finally choose L0 = x0, L7 = h1. This
proves the claim.

Hence X depends on 19 moduli, and it determines H up to a finite
ambiguity (since X contains only 27 lines). Thus dimT (3) = 19.

Proposition 3.3. Let n = 2. Then dimT (3) = 9 for d = 3 and 11
for d ≥ 4.

Write F3 = Ld−3
0 G3. We claim that for a fixed L0, G3 represents a

general plane cubic.

We may assume L0 = x0, and let f be a general cubic form in
x0, x1, x2. Write f = x2

0h1 + x0h2 + h3 where hi is a degree i form
in x1, x2. Now h3 factors completely as say, L1L2L4. Then we can
write h2 = (aL1 + bL2)(cL1 + dL2) for constants a, . . . , d. Now choose
L6 = a(cL1 + dL2), L5 = b(cL1 + dL2), L3 = 0, L7 = h1. The claim is
proved.

For d = 3 we have an imbedding P2 −→ P9, hence in any case dim
T (3) ≤ 9. Since φ3 is dominant, equality must hold.

If d ≥ 4, then a general plane cubic being irreducible, L0 is uniquely
determined for a general point of im(φ3). Since L0 depends on two
parameters and G3 on nine, so dim T (3) = 11.

Case r = 4. The calculations are similar to the case r = 3, although
rather more tedious.

Theorem 4.1. If n, d ≥ 3, then dimT (4) = 16n−17, except possibly
in the cases d = 3 and 4 ≤ n ≤ 9.

For d = n = 3, we have an imbedding P3 v3−→ P19. Since already dim
T (3) = 19, dim T (4) = 19 as well. The case n = 2 will be dealt with in
Proposition 4.2. I have been unable to settle the cited exceptions.
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Proof. We have a morphism

φ4 : (S1)16 −→ Sd, (L0, . . . , L15) −→ F4(Li),

where F4 is as in (4).

Case d ≥ 5. Write F4 = Ld−4
0 G4. A general point of im(φ4)

determines L0 up to a scalar, for this it is enough to show that G4

is irreducible for general choices of the Li. Put L0 = L15 = x0,
L1 = L2 = L4 = x1, L8 = x2 and the remaining Li = 0. Then
G4 = x4

0 + x3
1x2 is irreducible, and hence it will remain so for small

deformations of the Li.

So then fix L0 and consider the map

(S1)15
φL0−→ S4, (L1, . . . , L15) −→ G4(Li).

Since L0 projectively depends on n parameters,

dimT (4) = dimCT (4) − 1 = dim im(φL0) + n − 1.

As before dφL0 is found out by polarization. Assume n = 15 and
(L0, . . . , L15) = (x0, . . . , x15). The deformation ideal is

(6)

I = x2
0x14 + x0x6x8 + x0x2x12 + x0x4x10 + x2x4x8, x

2
0x13 + x0x5x8

+ x0x1x12 + x0x4x9 + x1x4x8, x
2
0x12 + x0x4x8, x

2
0x11 + x0x3x8

+ x0x1x10+x0x2x9 + x1x2x8, x
2
0x10+x0x2x8, x

2
0x9+x0x1x8, x

2
0x8,

+ x2
0x7 + x0x1x6 + x0x3x4 + x0x2x5 + x1x2x4, x

2
0x6 + x0x2x4,

+ x2
0x5 + x0x1x4, x

2
0x4, x

2
0x3 + x0x1x2, x

2
0x2, x

2
0x1, x

3
0),

with minimal resolution

(7) 0 −→ S(−7) −→ S(−6)8 −→ S(−5)24 −→ S(−4)31

−→ S(−3)15 −→ S −→ S/I −→ 0.

Hence there are 31 linear syzygies and proj-dim S/I = 5. Arguing as
in the case r = 3, we deduce that dim T (4) = 16n − 17 for n ≥ 4.
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Case d ≥ 4, n = 3. We will resort to a direct geometric argument.
The quartic surface defined by G4 evidently contains the four coplanar
lines L0 = Lj = 0, j = 1, 2, 4, 8.

Tentatively define a quartet to be a configuration of four coplanar
lines in P3, and let Y be the space of quartic surfaces containing a
quartet. As seen previously, G4 is uniquely determined up to scalar for
a general point of T (4), hence we have a rational map T (4)− f−→ Y .

Claim. The equation of a general surface in Y can be written as
G4(Li) = 0 for some forms Li. That is to say, f is dominant.

Proof. Take a quartet in the surface, we may assume that the four
lines lie in the plane x0 = 0. Write the equation of the surface as x3

0g
′
1+

x2
0g

′
2 +x0g

′
3 +g′4 = 0, where g′i are degree i polynomials in x1, x2, x3 for

i = 2, 3, 4. By hypothesis g′4 factors as say L1L2L4L8. By genericity,
the sets {L1L2, L1L4, L1L8, L2L4, L2L8, L4L8} and {L1, L2, L4, L8} re-
spectively span the vector spaces of all quadratic and linear forms in
x1, x2, x3. By the former we can choose L12, L10, L6, L9, L5 and L3 so
that g′3 = g3(Li). Then by the latter we choose L14, L13, L11, L7 so
that g′2 = g2(Li). Finally let L0 = x0, L15 = g′1. The claim is proved.

Let Q be the 11-dimensional parameter space for quartets and con-
sider the incidence correspondence Σ ⊆ Q×PS4, Σ = {( , X) : ⊆ X}.
Then Y is the image of the projection Σ p2−→ PS4.

Claim. The general fiber of the projection Σ
p1−→ Q has dimension

20. Hence dim Σ = 31.

Proof. A general quartet is a complete intersection of a plane and a
degenerate quartic surface (consisting of four planes). So its ideal has
a resolution

0 −→ OP3(−5) −→ OP3(−1) ⊕OP3(−4) −→ I −→ 0.

Hence h0(I (4)) = h0(OP3) + h0(OP3(3)) = 21. This proves the
claim.
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Now it is the case that any smooth quartic hypersurface contains at
most 64 lines (see [6]) and a fortiori contains finitely many quartets.
Hence the fiber of p2 over a general point of Y is finite.

Since f is dominant and generically finite, dim T (4) = dimY = 31.
The proof for the case d ≥ 5 is complete.

Case d = 4.

Proof. The argument parallels the one for the case r = 3, d = 3. For
the map φ4 : (S1)16

φ4−→ Sd, we calculate the dφ4. The deformation
ideal is

I ′ = I + (x2
0x15 + 2x0(x1x14 + x2x13 + x3x12 + x4x11 + x5x10 + x6x9

+ x7x8) + x1x6x8 + x2x5x8 + x3x4x8 + x1x2x12 + x1x4x10

+ x2x4x9),

where I is the ideal in (6).

From its minimal resolution

(8) 0 −→ S(−7) −→ S(−8)3 ⊕ S(−6)8 −→ S(−7)7 ⊕ S(−5)24

−→ S(−6)4 ⊕ S(−4)32 −→ S(−3)16 −→ S −→ S/I ′ −→ 0,

there are 32 linear syzygies and proj-dim S/I = 5. By the change of
rings lemma, generically dφ4 has rank 16(n + 1) − 32 = 16n − 16 for
n ≥ 4. This implies that dim CT (4) = 16n−16, so dim T (4) = 16n−17
for n ≥ 4.

Case d = 3. We will be brief since there is nothing new to the
argument. The deformation ideal is

I = (x0x15 + x1x14 + x2x13 + x3x12 + x4x11 + x5x10 + x6x9 + x7x8,

x0x14 + x6x8 + x2x12 + x4x10, x0x13 + x5x8 + x1x12 + x4x9,

x0x12 + x4x8, x0x11 + x3x8 + x1x10 + x2x9, x0x10 + x2x8,

x0x9 + x1x8, x0x8, x0x7 + x1x6 + x2x5 + x3x4, x0x6 + x2x4,

x0x5 + x1x4, x0x4, x0x3 + x1x2, x0x2, x0x1, x
2
0).
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Its minimal resolution begins as

· · · −→ S(−6)8⊕S(−4)32⊕S(−3)32 −→ S(−2)16 −→ S −→ S/I −→ 0.

and has length 11. Hence dim T (4) = 16n − 17 for n ≥ 10.

This completes the proof of Theorem 4.1.

Proposition 4.2. Let n = 2. Then dimT (4) = 9 for d = 3, 14 for
d = 4; and 16 for d ≥ 5.

The argument is very similar to Proposition 3.3.

Proof. The claim for d = 3 is clear from Proposition 3.3, so assume
d ≥ 4.

Write F4 = Ld−4
0 G4. We claim that with L0 fixed, G4 represents a

general plane quartic f . So assume L0 = x0 and let f = x3
0h1 +x2

0h2 +
x0h3 + h4, where hi is a form in x1, x2. Now h4 factors completely,
as say, L1L2L4L8. By genericity, we can assume that {L1, L2} are
linearly independent, so we can find L13, L14 such that L1L14+L2L13 =
h2. Assuming the set {L1L2, L1L4, L2L4} to be independent, find
L9, L10, L12 such that L1L2L12 + L1L4L10 + L2L4L9 = h3. Finally
let L15 = h1, L3,5,6,7,11 = 0. This proves the claim.

For d = 4 we have an imbedding P2 −→ P14. Since φ4 is dominant,
T (4) = P14.

If d ≥ 5, then a general plane quartic being irreducible, L0 is unique
up to scalars for a general point in φ4. So dim T (4) = 16.

In conclusion, we have the following theorem.

Theorem 4.3 Let vd : Pn −→ PN be the Veronese imbedding and
let τ (n, d, r) denote the dimension of T (r). Then

(i) τ (n, d, 1) = 2n.

(ii) τ (n, d ≥ 3, 2) = 4n − 1.

(iii) τ (n ≥ 2, 2, 2) = 4n − 3.

(iv) τ (n ≥ 2, 2, r) = 2r.n − (22r−1 − 3.2r−1 + 1) for n > 2r − 1 and
N otherwise.
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(v) τ (n ≥ 2, 2, 2) = 4n − 3.

(vi) τ (1, d, r < d) = r + 1.

(vii) τ (n ≥ 3, d ≥ 3, 3) = 8n − 5.

(viii) τ (2, 3, 3) = 9 and τ (2, d ≥ 4, 3) = 11.

(ix) τ (n ≥ 3, d ≥ 3, 4) = 16n − 17, except possibly when d = 3 and
4 ≤ n ≤ 9.

The interest lies in cases (ii), (vii) and (ix). It appears from the
calculations that for d large, T (r) has tangential deficiency 1, 3, 7,
respectively, for r = 1, 2, 3. One would like to see the following
conjecture settled one way or the other:

Conjecture. For n ≥ 3 and d � 0, the variety T (r) has tangential
deficiency 2r − 1.

The deformation ideals considered here have no immediate geometric
significance. It is curious however that their resolutions (5) and (7) are
linear. It would be of interest to know if these are instances of a general
pattern. It is probable that the question is tied up with the conjecture
above.
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