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A FIX-FINITE APPROXIMATION THEOREM

ABDELKADER STOUTI

ABSTRACT. We prove that if Ci is a nonempty convex
compact subset of a metrizable locally convex vector space for
i = 1, . . . , m such that ∩i=m

i=1 Ci �= ∅ or Ci∩Cj = ∅ for i �= j,
then for every ε > 0 and for every n-valued continuous multi-
function F : ∪i=m

i=1 Ci → ∪i=m
i=1 Ci there exists an n-valued

continuous multi-function G : ∪i=m
i=1 Ci → ∪i=m

i=1 Ci which is
ε-near to F and has only a finite number of fixed points.

1. Introduction and preliminaries. Let A be a nonempty subset
of a metrizable locally convex vector space. We say that A satisfies the
fix-finite approximation property, FFAP, for a family F of self multi-
functions, or self-maps, of A if, for every F ∈ F and all ε > 0, there
exists G ∈ F which is ε-near to F and has only a finite number of fixed
points.

In [3, 5], Hopf proved by a special construction that any finite
polyhedron which is connected and has dimension greater than one
satisfies the FFAP for the family of continuous self-maps. In [8],
Schirmer extended this result to any n-valued continuous self multi-
function. In [1], Baillon and Rallis showed that any finite union of
closed convex subsets of a Banach space satisfies the FFAP for the
family of compact self-maps.

In this paper we consider the more general case of metrizable locally
convex vector spaces. Our first key result, Theorem 2.2, is a gener-
alization of a theorem of Baillon-Rallis [1]. The main result in this
paper is Theorem 3.7: Let Ci be a nonempty convex compact subset
of a metrizable locally convex vector space for i = 1, . . . ,m such that
∩i=m

i=1 Ci �= ∅ or Ci ∩Cj = ∅ for i �= j; then ∪i=m
i=1 Ci satisfies the FFAP

for any n-valued continuous multi-function F : ∪i=m
i=1 Ci → ∪i=m

i=1 Ci.

In the sequel we recall some definitions and well-known results for
subsequent use. Let ε > 0 and let X be a topological space and (Y, d)
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a metric space. We say that f : X → Y is a map if it is a single-valued
function.

1) Two continuous maps f and g from X to Y are said to be ε-near
if

d(f(x), g(x)) < ε for all x ∈ X.

2) A homotopy ht : X → Y , 0 ≤ t ≤ 1, is said to be an ε-homotopy
if

sup{d(ht(x), ht′(x)) : t, t′ ∈ [0, 1]} < ε for all x ∈ X.

3) Two continuous maps f and g from X to Y are said to be ε-
homotopic if there exists an ε-homotopy (ht)t∈[0,1] from X to Y such
that h0 = f and h1 = g.

Let X and Y be two Hausdorff topological spaces and f : X → Y be
a map. The map f is said to be compact if it is continuous and the
closure of its range f(X) is a compact subset of Y .

Let Y be a metric space. One says that Y is an absolute neighborhood
retract (ANR) if for any nonempty closed subset A of an arbitrary
metric space X and for any continuous map f : A → Y , then there
exists an open subset U of X containing A and a continuous map
g : U → Y which is an extension of f , i.e., g(x) = f(x) for all x ∈ A.

In [4, 6], Dugundji established the homotopy extension theorem for
ANRs.

Theorem 1.1. Let X be a metrizable space and Y an ANR. For
ε > 0 there exists δ > 0 such that for any two δ-near maps f, g : X → Y
and δ-homotopy jt : A → Y , where A is a closed subspace of X and
j0 = f |A, j1 = g|A, there exists an ε-homotopy ht : X → Y such that
h0 = f , h1 = g and ht|A

= jt for all t ∈ [0, 1].

In what follows we denote by N∗ the set of all positive entire numbers.
Let E be a metrizable locally convex vector space, then its topology
can always be given by a decreasing sequence (Un)n∈N∗ of absolutely
convex neighborhoods of 0 with ∩n∈N∗Un = {0}. Let (pn)n∈N∗ be the
increasing family of semi-norms defined by setting

pn(x) = inf
{
λ > 0 :

1
λ
x ∈ Un

}
for all x ∈ E.
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Then the topology of E is defined by a translation-invariant metric d
given by

d(x, y) =
∞∑

n=1

1
2n

pn(x− y)
1 + pn(x− y)

.

For n, k ∈ N∗, we denote A(n, k) = {y ∈ E : pn(y) < 1
2

k}. For all
x ∈ E and r > 0, we set B(x, r) = {y ∈ E : d(x, y) < r}. Let C(E)
be the set of nonempty compact subsets of E. Let A and B be two
elements of C(E). We define the Hausdorff distance between A and B
by

dH(A,B) = max{ρ(A,B), ρ(B,A)}
where ρ(A,B) = sup{d(x,B) : x ∈ A}.

A multi-function F : E → E is a map from E to the set of nonempty
subsets of E. The range of F is F (E) = ∪x∈EF (x).

The multi-function F : E → E is continuous at x0 ∈ E if, for
every ε > 0, there exists β > 0 such that if d(x0, x) < β, then
dH(F (x), F (x0)) < ε. The multi-function F is called continuous on
E if it is continuous at every point of E.

The multi-function F : E → E is called compact if it is continuous
and the closure of its range F (E) is a compact subset of E.

An element x of E is said to be a fixed point of the multi-function
F : E → E if x ∈ F (x). We denote by Fix (F ) the set of fixed points
of F .

Let F and G be two compact multi-functions from E to E. We define
the Hausdorff distance between F and G by

dH(F,G) = sup{dH(F (x), G(x)) : x ∈ E}.
Let ε > 0 and F and G be two compact multi-functions. We say that
F and G are ε-near if dH(F,G) < ε.

2. Fix-finite approximation property for self-compact maps.
First we define the Schauder mapping.

Lemma 2.1. For i = 1, . . . , n, let Ci be a closed nonempty convex
subset of a metrizable locally vector space (E, d). Set C = ∪i=n

i=1Ci. Let
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ε > 0 and let K be a nonempty compact subset of C. Then there exist a
finite polyhedron P contained in C and a continuous map πε : K → P
which is 1

2 ε-near to IdK .

Proof. Let ε > 0 and let K be a nonempty compact subset of
C = ∪i=n

i=1Ci. Replacing the norm by the distance in the first part
of the proof of Baillon-Rallis’s theorem [1], then there exist q ∈ N∗

such that 1
2

q−1
< ε and a finite number of points x1, . . . , xm of C and

real numbers ηxi
∈ ]

0, 1
2

2q+3[ with i = 1, . . . ,m satisfying the following
two properties: (∗)

(i) K ⊂ ∪i=m
i=1 B(xi, ηxi

),

(ii) for all subsets {xil
, . . . , xik

} of {x1, . . . , xm} satisfying
∩j=k

j=l B(xij
, ηxij

) ∩K �= ∅, then conv {xil
, . . . , xik

} ⊂ C.

For i = 1, . . . ,m, let φi : K → R be the real continuous function
defined by setting

φi(x) = max(0, ηxi
− d(xi, x)) for all x ∈ K.

Since for every x ∈ K there exists i ∈ {1, . . . ,m} such that
x ∈ B(xi, ηxi

), then d(xi, x) < ηxi
. Hence φi(x) > 0. Therefore,∑i=m

i=1 φi(x) > 0 for all x ∈ K. Now for i = 1, . . . ,m, we can define a
continuous function by setting

ψi(x) =
φi(x)∑i=m

i=1 φi(x)
for all x ∈ K.

We define the Schauder mapping πε : K → E by

πε(x) =
i=m∑
i=1

ψi(x)xi for all x ∈ K.

Let

Q =
{
{xil

, . . . , xik
} ⊂ {x1, . . . , xm} :

j=k⋂
j=l

B(xij
, ηxij

) ∩K �= ∅

}

and
P =

⋃
{xil

,... ,xik
}∈Q

conv {xil
, . . . , xik

}.
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For each x ∈ K we set I(x) = {i ∈ {1, . . . ,m} : ψi(x) > 0}. Then
πε(x) =

∑
i∈I(x) ψi(x)xi for all x ∈ K. It follows from (∗) that

πε(K) ⊂ P ⊂ C.

If i ∈ I(x), then d(xi, x) < ηxi
< 1

2

2q+3. From [7, p. 206], we have
B(0, 1

2

2q+3) ⊂ A(q+1, q+1), hence pq+1(xi −x) < 1
2

q+1, for all x ∈ K
and i ∈ I(x). Therefore,

pq+1(πε(x) − x) ≤
∑

i∈I(x)

ψi(x)pq+1(xi − x) <
1

2q+1
for all x ∈ K.

From [7, p. 206] we have A(q + 1, q + 1) ⊂ B(0, 1
2

q), then

d(πε(x), x) <
1
2q

<
1
2
ε for all x ∈ K.

Thus πε is 1
2 ε-near to IdK .

Now we are in a position to state our generalization of Baillon-Rallis’s
theorem [1].

Theorem 2.2. For i = 1, . . . , n, let Ci be a nonempty closed
convex subset of a metrizable locally convex vector space (E, d). Set
C = ∪i=n

i=1Ci. Let ε > 0 and D be a compact subset of E containing C.
Then for every continuous map f : D → C there exists a continuous
map g : D → C which is ε-near to f and has only a finite number of
fixed points. In particular, any finite union of nonempty closed convex
sets in a metrizable locally convex vector space satisfies the FFAP for
the family of compact self-maps.

Proof. Let f : D → C be a continuous map and ε > 0 be given. Since
K = f(D) is a compact set, then by Lemma 2.1 there exist a finite
polyhedron P contained in C and a continuous map πε : K → P which
is 1

2 ε-near to IdK . Set fε = πε ◦ f : D → C. Then fε is a continuous
map 1

2 ε-near to f . Since P is a finite polyhedron, then it is a compact
ANR [2]. By Theorem 1.1, for 1

2 ε > 0, there exists ε > 0 such that
for any two continuous maps h, u : P → P δ-near and a δ-homotopy
jt : P → P with j0 = h|P and j1 = u|P , there exists a 1

2 ε-homotopy
gt : D→P such that g0 =h and g1 =u and gt|P

=jt for all t ∈ [0, 1].
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From [3, p. 40] for 1
2 δ > 0, there exists λ > 0 such that if

φ, ψ : P → P are two continuous maps λ-near, then φ and ψ are
1
2 δ-homotopic.

Since fε|P is a continuous self-map, then by Hopf’s construction [3,
5] there exists a continuous map h : P → P which is λ-near to fε|P and
has only a finite number of fixed points. Hence, from [3, p. 40] h and
fε|P are 1

2 δ-homotopic. Let (ht)(t∈[0,1]) be this 1
2 δ-homotopy between

h and fε|P and define a new homotopy (jt)t∈[0,1] by setting

jt =

⎧⎪⎨
⎪⎩
h2t if 0 ≤ t <

1
2
,

h2t−2 if
1
2
≤ t ≤ 1.

Therefore, (jt)t∈[0,1] is a δ-homotopy satisfying j0 = j1 = fε|P
and j1/2 = h. Hence, by Theorem 1.1 there exists a 1

2 ε-homotopy
gt : D → P such that g0 = g1 = fε and gt|P = jt for all t ∈ [0, 1]. We
set g1/2 = g. Then g : D → P is a compact map and Fix (g) = Fix (h).
Indeed, if g(x) = x, hence x ∈ P and g(x) = h(x) = x. So
Fix (g) ⊂ Fix (h). On the other hand, h = g|P . Then Fix (h) ⊂ Fix (g).
Thus g is 1

2 ε-near to fε and has only a finite number of fixed points.
We claim that g is ε-near to f because

d(f(x), g(x)) ≤ d(f(x), fε(x)) + d(fε(x), g(x)) < ε

for all x ∈ D.

As consequences of Theorem 2.1, we obtain the following corollaries.

Corollary 2.3. Any nonempty convex subset C of a metrizable
locally convex vector space (E, d) satisfies the FFAP for every compact
map f : C → C.

Proof. Let ε > 0 and f : C → C be a compact map. Then f(C)
is a compact subset of E. By an argument similar to the proof of
Lemma 2.1 for ε > 0 there exist a finite number of points x1, . . . , xn
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of C and a Schauder mapping πε : f(C) → conv {x1, . . . , xn} such
that d(πε(y), y) < 1

2 ε for all y ∈ f(C). Set fε = πε ◦ f . So
fε : C → conv {x1, . . . , xn} is a compact map and d(fε(x), f(x)) < 1

2 ε,
for all x ∈ C. By Theorem 2.2 there exists a continuous map
g : C → conv {x1, . . . , xn} which is 1

2 ε-near to fε and has only a
finite number of fixed points. We claim that the map g is ε-near to f
because

d(f(x), g(x)) ≤ d(f(x), fε(x)) + d(fε(x), g(x)) < ε

for all x ∈ C.

Corollary 2.4. Any nonempty open subset U of a metrizable
locally convex vector space (E, d) satisfies the FFAP for compact maps
f : U → U .

Proof. Let ε > 0 and f : U → U a compact map. Since U is an open
subset of E, then for all x ∈ U there exists r(x) ∈ ]

0, 1
2 ε

[
such that

B(x, r(x)) ⊂ U .

Since f(U) is a compact subset of E then there exists a finite number
of points x1, . . . , xn of U such that f(U) ⊂ ∪i=n

i=1B(xi, r(xi)) ⊂ U . By
Theorem 2.2 there exists a continuous map g : U → ∪i=n

i=1B(xi, r(xi))
which is ε-near to f and has only a finite number of fixed points.

3. Fix-finite approximation property for continuous self
multi-functions. First we give the definition of an n-function.

Definition 3.1. Let E be a metrizable locally convex vector space
and F : E → E be a multi-function. The multi-function F is called
an n-function if there exist n continuous maps fi : E → E where
i = 1, . . . , n such that F (x) = {f1(x), . . . , fn(x)} for all x ∈ E and
fi(x) �= fj(x) for all x ∈ E and i, j = 1, . . . , n with i �= j.

In the following lemma we study the FFAP for the family of n-
functions.
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Proposition 3.2. Let Ci be a nonempty convex compact subset of
a metrizable locally convex vector space for i = 1, . . . ,m, then ∪i=m

i=1 Ci

satisfies the FFAP for any n-function

F :
i=m⋃
i=1

Ci −→
i=m⋃
i=1

Ci.

Proof. Set C = ∪i=m
i=1 Ci. Let ε > 0 and F : C → C be an n-

function. Then there exist n continuous maps fi : C → C such that
F (x) = {f1(x), . . . , fn(x)} for all x ∈ C and fi(x) �= fj(x) for all x ∈ C
and i, j = 1, . . . , n with i �= j.

For all i, j = 1, . . . , n with i �= j we define

δ(i,j)(F ) = min{d(fi(x), fj(x)) : x ∈ C}.

As each fi is continuous for all i = 1, . . . , n and C is compact, then for
each i, j = 1, . . . , n with i �= j, we have δ(i,j)(F ) > 0. Therefore,

δ(F ) = min{δ(i,j)(F ) : i, j = 1, . . . , n, i �= j} > 0.

For a given ε > 0, we set λ = min( 1
2 δ(F ), 1

2 ε). By Theorem 2.2, for
each i = 1, . . . , n, there exists a map gi : C → C which is λ-near to fi

and has only a finite number of fixed points. Let G : C → C be the
multi-function defined by G(x) = {gi(x), . . . , gn(x)} for all x ∈ C.

Claim 1. The multi-function G is an n-function. Indeed, if there
exist x0 ∈ C and i, j = 1, . . . , n with i �= j such that gi(x0) = gj(x0),
then

d(fi(x0), fj(x0)) ≤ d(fi(x0), gi(x0)) + d(fj(x0), gj(x0)) < 2λ.

Therefore, δ(i,j)(F ) < δ(F ). This is a contradiction and our claim is
proved.

Claim 2. The multi-function G is ε-near to F . Indeed, for all
i = 1, . . . , n and for every x ∈ C, we have d(fi(x), gi(x)) < 1

2 ε. Then
dH(F,G) < ε.
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Claim 3. The multi-function G has only a finite number of fixed
points. Indeed, Fix (G) = ∪i=n

i=1Fix (gi) and for all i = 1, . . . , n, the
map gi has only a finite number of fixed points.

Now we recall some definitions concerning n-valued continuous multi-
functions.

Definition 3.3. Let X and Y be two Hausdorff topological spaces.
A multi-function F : X → Y is said to be n-valued if for all x ∈ X, the
subset F (x) of Y consists of n points.

Definition 3.4. Let X and Y be two Hausdorff topological spaces,
and let F : X → Y be an n-valued continuous multi-function. Then we
can write F (x) = {y1, . . . , yn} for all x ∈ X. We define a real function
γ on X by

γ(x) = inf{d(yi, yj) : yi, yj ∈ F (x), i, j = 1, . . . , n, i �= j}
for all x ∈ X,

and the gap of F by

γ(F ) = inf{γ(x) : x ∈ X}.

Remark 3.5. Since the multi-function F is continuous then the
function γ is also continuous [5, p. 76]. If X is compact, then γ(F ) > 0.

Before giving Theorem 3.7 we recall the following lemma due to
Schirmer [8].

Lemma 3.6. Let X and Y be compact Hausdorff topological spaces.
If X is path and simply connected and F : X → Y is an n-valued
continuous multi-function, then F is an n-function.

Now we give the main result in this paper.

Theorem 3.7. Let Ci be a nonempty convex compact subset of
a metrizable locally convex vector space for i = 1, . . . ,m such that
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∩i=m
i=1 Ci �= ∅ or Ci∩Cj = ∅ for i �= j, then ∪i=m

i=1 Ci satisfies the FFAP
for any n-valued continuous multi-function F : ∪i=m

i=1 Ci → ∪i=m
i=1 Ci.

Proof. Let ε > 0 and F : ∪i=m
i=1 Ci → ∪i=m

i=1 Ci be an n-valued
continuous multi-function. For the proof we distinguish the following
two cases.

First case. Ci ∩ Cj = ∅ for i, j = 1, . . . ,m and i �= j. We
have F |Ci

: Ci → ∪i=m
i=1 Ci is an n-valued continuous multi-function

for i = 1, . . . ,m. From Lemma 3.6, the multi-function F |Ci
is an

n-function for i = 1, . . . ,m. Therefore, for each i ∈ {1, . . . ,m},
there exist n continuous maps fij

: Ci → ∪i=m
i=1 Ci such that F (x) =

{fi1(x), . . . , fin
(x)} for all x ∈ Ci. Now for each j ∈ {1, . . . , n} we can

define a continuous map hj : ∪i=m
i=1 Ci → ∪i=m

i=1 Ci by hj(x) = fij
(x)

if x ∈ Ci. It follows that for all x ∈ ∪i=m
i=1 Ci we have F (x) =

{h1(x), . . . , hn(x)}. Thus, the multi-function F is an n-function. By
Proposition 3.2 there exists an n multi-function G : ∪i=m

i=1 Ci → ∪i=m
i=1 Ci

which is ε-near to F and has only a finite number of fixed points.

Second case. ∩i=m
i=1 Ci �= ∅. It follows from Proposition 3.2 that

∪i=m
i=1 Ci satisfies the FFAP for any n-valued continuous multi-function.

As a particular case of Theorem 3.7, we obtain the following

Corollary 3.8. If C1 and C2 are two nonempty convex compact
subsets of a metrizable locally convex vector space, then C1∪C2 satisfies
the FFAP for any n-valued continuous multi-function F : C1 ∪ C2 →
C1 ∪ C2.
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5. H. Hopf, Über die algebraische Anzahl von Fixpunkten, Math. Z. 29 (1929),
493 524.

6. S.T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, Michigan, 1959.
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