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HOW SMOOTH IS φ(2n + 3)?

FLORIAN LUCA

Introduction. For any integer n let P (n) denote the largest prime
divisor of n with the convention that P (±1) = P (0) = 1. We also let
φ(n) denote the Euler function of n. In this paper, we show, among
other things, that P (φ(2n + 3)) tends to infinity with n on a set of n
of asymptotic density 1.

The example 2n +3 that we chose is not incidental and is, in a certain
sense, the smallest example of numbers of the form 2n + b, with a fixed
integer b, and varying positive integers n, which is interesting for our
type of problem. Suppose, let’s say, that instead we look at the numbers
2n+1. It is then well-known (see [2]), that for all sufficiently large n, the
number 2n+1 will have a prime divisor p which is congruent to 1 modulo
n. In particular, n divides φ(2n+1), and therefore P (φ(2n+1)) ≥ P (n).
Since P (n) tends to infinity on a set of n of asymptotic density 1 (see
[3]), we get that P (φ(2n+1)) tends to infinity on a set of n of asymptotic
density 1 as well. This example also hints as to why it is difficult to
show that P (φ(2n + 1)) tends to infinity with n for all n. In fact,
when n = 2k is a power of two, the number Fk := 22k

+ 1 is what
is known as a Fermat number. It is not known if there are infinitely
many Fermat numbers which are primes, nor is it known if there are
infinitely many Fermat numbers which are composite, but the standard
believed conjecture is that there should be only finitely many Fermat
numbers which are primes (see [5]). However, if this were not so, that
is if infinitely many Fermat numbers Fk were primes, then for such k

we would have P (φ(22k

+ 1)) = 2, which shows why it is difficult to
prove that P (φ(2n + 1)) tends to infinity with n for all values of n.
Since φ(2n + 2) = φ(2n−1 + 1), it follows that the same arguments as
above apply to P (φ(2n + 2)), which is why we have chosen to look at
the numbers of the form 2n + 3.

The numbers of the form 2n + 3 were chosen only as an example,
and in this paper we will formulate and prove our main Theorem in
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somewhat greater generality.

Let r and s be two non-zero integers with r2 + 4s �= 0. A binary
recurrent sequence of integers (un)n≥0 is a sequence of integers such
that

(1) un+2 = run+1 + sun

holds for all n ≥ 0. It is well-known that there exist two constants a, b
such that the formula

(2) un = aαn + bβn

holds for all n ≥ 0, where α and β are the two roots of the characteristic
equation

(3) x2 − rx − s = 0.

The sequence (un)n≥0 is said to be non-degenerate if ab �= 0 and α/β
is not a root of 1. Throughout this paper, we assume that |α| ≥ |β|.

Our main motivation in this paper is to give a lower bound of the
type P (φ(|un|)) ≥ f(n) with some increasing function f defined on
the set of positive integers whose range is in the set of positive real
numbers and which tends to infinity with n, and such that the above
inequality holds for almost all positive integers n. Unfortunately, we
cannot give such a lower bound for all binary recurrent sequences of
integers (un)n≥0, but we can do so for the sequences which satisfy
certain technical assumptions. The assumptions in force throughout
this paper are:

A1. α is a rational number, and

A2.1. either β does not divide α, or

A2.2. β divides α but a/b is not an integer, or

A.2.3 β divides α, a/b is an integer, but a/b and β/α are multiplicatively
dependent.

Notice first of all that assumption A1 together with the fact that
α and β are the roots of a monic quadratic equation with integer
coefficients, imply that both α and β are integers, and therefore a
and b are rational numbers. Thus, it makes sense to say that β does
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not divide α (as in A2.1 above), or that a/b is not an integer (as in
A2.2 above).

Our main result is the following:

Theorem. Assume that (un)n≥0 is a binary recurrent sequence of
integers satisfying recurrence (1), general formula (2), and assumptions
A1 and A2 above. Then, there exists an effectively computable positive
constant c1 such that the inequality

(4) P (φ(|un|)) > c1(log n)1/6(log log n)5/6

holds for all positive integers n except, perhaps, for a set of n of
asymptotic density 0.

Notice that the sequence of general term un := 2n +3 is binary recur-
rent, satisfies the general formula (2) with (a, b, α, β) = (1, 3, 2, 1),
and so it also satisfies assumptions A1 and A2.3 of the above Theorem.

It would be of interest to remove the assumptions A1 and A2 and to
prove that the above Theorem still holds. Unfortunately, this seems
very hard to do. Assume first that α is an integer. Take, for example,
un := a2n + 1, where a is a fixed odd integer with a > 1. Notice that
(un)n≥0 does not satisfy any one of the assumptions from A2. Then
obviously P (φ(un)) ≤ P (a) provided that un is prime. In order to
prove the Theorem for the sequence (un)n≥0, we should be able first
of all to infer that un is prime only on a set of positive integers n of
asymptotic density zero. While this is probably true, the only result
in this sense which is available to us is that this is indeed so if both
the extended Riemann hypothesis and some other assumptions (such
as Hypothesis 12 on page 112 of [4]) are assumed to hold. That is,
there is no unconditional result claiming that indeed un is prime only
on a set of n of asymptotic density zero.

The assumption A1 has been imposed just for technical reasons
but our proof relies essentially on it. We shall describe where this
assumption is needed in our argument in the next section.

We close this section by recalling that there are many papers in the
literature dealing with finding non-trivial lower bounds for P (un) in
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terms of n. For example (see [7]), it is known that the inequality

(5) P (un) > c2

( n

log n

) 1
d+1

holds for all positive integers n, where d is the degree of α over the
rationals and c2 is a computable constant depending only on α, β, a,
and b. If one wants a lower bound on P (un) which holds not for all
positive integers n, but only for almost all positive integers n, then it
is known (see [8]) that the inequality

(6) P (un) > ε(n)n log n

holds for all n, except for a set of n of asymptotic density zero, where
ε(n) is any real valued function for which limn→∞ ε(n) = 0. The
interested reader should consult the survey paper [9] for a detailed
account of the existing results concerning this type of problem.

A guide to the proof of the Theorem. The purpose of this
section is twofold. First, we show that we can reduce the general
problem to a slightly more particular one. Secondly, since the proof
of the Theorem is rather involved, we give an informal account of the
general principle behind the proof of the Theorem. The detailed proof
appears in the next section.

Notations. Throughout the proof, we use c, c1, c2, . . . to denote
computable constants depending on α, β, a, b, and we use the Vino-
gradov symbols � and � as well as the Landau symbols O and o
with the meaning that they depend on the initial data r, s, u0 and
u1. For every positive integer k and any large positive real num-
ber x we let logk(x) be the log(max(logk−1(x), e)) for k ≥ 2, and
log1(x) := max(log x, 1), where log denotes the natural logarithm func-
tion. Notice that for large x the function logk(x) is nothing else but
the composition of the natural logarithm function with itself k-times
evaluated in x.

The reduction of the Problem. We shall suppose that |α| > |β|.
We show that we can assume that a, b, α, β are all integers, that
gcd(aα, bβ) = 1, that α > 0 and that a > 0.
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Indeed, if a and b are rational numbers which are not integers, then
we may replace the sequence of general term un by the sequence of
general term ∆un = (∆a)αn+(∆b)βn, where ∆ is the greatest common
denominator of the numbers a and b. In particular, we may assume that
a and b are integers.

Set l := gcd(α, β). If l > 1, then we may replace the sequence of
general term un by the sequence of general term un/ln = a(α/l)n +
b(β/l)n and therefore we may assume that α and β are coprime. The
same discussion applies to see that we may assume that a and b are
coprime.

Now set vn := gcd(aαn, bβn) = gcd(a, βn) · gcd(b, αn). Suppose that
there exists a positive integer n such that vn > 1. In this case, there
exists n0 such that vn = v is constant for n > n0, and by eliminating
the first n0 terms of the sequence (un)n≥0, reindexing, and finally
replacing the sequence of general term un by the sequence of general
term un/v =

(
(aαn0)/v

)
αn +

(
(bβn0)/v

)
βn, it follows that we may

indeed assume that gcd(aα, bβ) = 1.

Finally, if α < 0, we may replace the sequence of general term un by
the sequence of general term (−1)nun = a(−α)n + b(−β)n and thus
assume that α > 0. In particular, α > |β|. Changing the sign of a,
and/or eliminating the first few terms from the sequence (un)n≥0, if
needed, it follows that we may assume that a > 0 and that un > 0 for
all n ≥ 0.

Notice that all the transformations employed above do not affect the
assumptions A1 and A2 of the Theorem, nor do they affect P (φ(un))
once this is sufficiently large.

A sketch of the proof of the Theorem. We shall use f(x) for
some increasing function which is O((log x)c), where 0 < c < 1/2 is
an absolute constant, and we shall try to determine such a function
f such that the inequality P (φ(un)) < f(x) can hold only for a set
of cardinality o(x) of positive integers n in the interval

(
x/ log x, x

)
.

Assume that n is one of these numbers. We start by writing un := AB,
where A accounts for the multiplicative contribution of all prime num-
bers p < f(x) in un and B accounts for the multiplicative contribution
of the remaining primes in un. Using lower bounds for linear forms
in logarithms, we show that A is small, thus B is large. Let p be any
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prime divisor of B. For such p, we write d := d(p) for the smallest pos-
itive integer k so that p divides the kth member of the Lucas sequence
(Lm)m≥0 of general term Lm := (αm − βm)/(α− β) for all m ≥ 0. We
show that such a number d(p) exists. Thus, p is a primitive divisor
of Ld(p). We then use an elementary counting argument to show that
primes p dividing B such that d(p) is “large” (say, at least as large as
exp((log x)1−2c)) must exist, and we pick q to be the smallest one which
satisfies the fact that d(q) is as large as indicated above. We then show
that for most n this number q is “small”, namely at least as small as
exp(exp(3(log x)1−2c)). This is the hardest part of the proof. It relies
on rewriting the expression un − φ(un) = un − φ(A) · φ(B) in such
a way as to point out that the contribution of this “smallest” prime
number q for which d(q) satisfies the desired inequality can be more or
less read off from an expression which is a difference of two numbers,
each one of them being a multiplicative combination of rather small
numbers appearing at rather large powers, such that the expression is
suitable to deal with via lower bounds for linear forms in logarithms.
If the expression we are looking at is non-zero, then we apply linear
forms in logarithms to deal with this contribution of q. However, if the
expression is zero, then linear forms in logarithms are useless, but we
recognize an S-unit equation. To deal with this last case, we employ
effective results on the number of solutions of such S-unit equations to
infer that such equations can appear only for relatively few values of
the positive integer n. Here is where assumption A2 is used. Having
surpassed this point, we now notice that this number q is chosen in a
unique way in terms of n, and moreover that if q is fixed, then n can run
only in a certain arithmetical progression modulo d(q). The assump-
tion A1 now enters into the picture by saying that since q is primitive
for Ld(q), it follows that q ≡ 1 (mod d(q)). Since q − 1 is f(x)-smooth
(because q − 1 divides φ(un) which is assumed to be f(x)-smooth), we
get that d(q) is an f(x)-smooth number. If we were not assuming A1,
then it is only known that if q is primitive for Ld(q) then one of the
congruences q ≡ ±1 (mod d(q)) holds, but should q be congruent to
−1 modulo d(q) the fact that q − 1 is f(x)-smooth will tell us nothing
about d(q). Thus, under A1, q is a prime number such that d(q) is an
f(x)-smooth number which can run only in an interval bounded both
from below and from above by some functions depending on x alone,
and for each such q the positive integer n < x sits in a unique arithmetic
progression modulo d(q). We then employ an elementary argument to
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count how many such positive integers n there can be, and matching
up all the bounds arising either from applications of lower bounds for
linear forms in logarithms, or for the number of solutions of S-unit
equations together with this last count, we finally get that the number
of such positive integers n < x satisfying P (φ(un)) < f(x) is o(x) when
f(x) is chosen as indicated in the statement of the Theorem.

The proof of the Theorem. We use f(x) to denote some function
of x which is increasing for large values of x and tends to infinity with
x. We shall try to find the best (i.e., “largest”) such function f (which
comes out of our arguments) and for which the inequality

(7) P (φ(un)) < f(x)

holds only on a set of cardinality o(x) of positive integers n belonging to
the interval

(
x/ log x, x

)
. As the conclusion of the Theorem suggests,

our best f is a constant multiple of (log x)1/6 · (log2 x)5/6.

For the moment, we shall work with an unknown such function f .
Pick a large x0 such that f(x0) > abαβ(a + b)(α − β), let x > x0

be a large positive real number, and let n be a positive integer in the
interval x/ log x < n < x for which P (φ(un)) < f(x) holds. Assume
that p1 < p2 < · · · < pt < f(x) are all the prime numbers less that
f(x) and set S := {pα1

1 · · · · · pαt
t | αi ≥ 0} to be the set of all

positive integers m with P (m) < f(x). Notice that for large x we

have t := π(f(x)) ≤ 2f(x)
log(f(x))

. Since φ(un) ∈ S, we may write

(8) un =
∏

pα||n
pα = A · B,

where

(9) A :=
∏

pα||n
α>1

pα and B :=
∏
p||n

p.

Clearly,

(10) φ(un) =
A

rad(A)
· φ(rad(A)) · φ(B),
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where for a positive integer k we write rad(k) :=
∏

p|k p. Since p | φ(un)
whenever p | A, it follows that A ∈ S. We now bound the size of A.
For every fixed prime p < f(x), we have, by a standard application of
linear forms in p-adic logarithms (see [10]), that if pαp ||un, then

(11) αp � p

log p
log n ≤ p

log p
log x,

where the constant understood in � above depends only on the initial
data r, s, u0, u1 but not on p or x. Hence,

(12) log A =
∑

p<f(x), pαp ||un

αp log p � log x
∑

p<f(x)

p � f(x)2 log x.

Since certainly
log un � n � x

log x
,

it follows that

(13) log B = log un − log A � x

log x
− f(x)2 log x ≥ x

2 log x
,

holds for any large enough real number x, provided that our function
f(x) satisfies f(x) < (log x)c1 with some constant c1, and large enough
values of x. Since the function f shown at (4) certainly satisfies the
above inequality with, say c1 := 1/5, we get that inequality (13) holds
for all large enough values of x. In particular, B > 1.

Now let p ≥ f(x) be any prime number which divides some member
of the sequence (un)n≥0. For this p, set r := r(p) to be the minimal
non-negative integer k for which p | uk and set d := d(p) to be the
minimal positive integer k for which p divides the kth term of the
Lucas sequence (Ln)n≥0 of general term

(14) Ln :=
αn − βn

α − β
, for n ≥ 0.

We claim that d exists, that r < d, and that p | un if and only if
n ≡ r (mod d). To see this, notice that since (un)n≥0 is periodic
modulo p, infinitely many numbers n exist such that p | un. Pick



HOW SMOOTH IS φ(2n + 3)? 1375

m > n to be such that p | un, p | um and the difference m − n = k is
minimal. In particular,

um = un+k = aαn+k + bβn+k =

(15) aαn(α − β)
αk − βk

α − β
+ βk(aαn + bβn) = aαn(α − β)Lk + βkun,

and since p divides both um and un and p > aα(α − β), we read that
p | Lk. From the well-known divisibility properties of Lucas sequence
(Ln)n≥0, it follows that d | k, and now the same argument as above
shows that if p | un, then p | un+d as well. Hence, by the minimality
of k, we get d = k, and then further, by the minimality of r, we get
that the number r is less than d, and that it is the unique non-negative
integer l < d for which p | ul, and finally that any positive integer n
for which p | un must be congruent to r modulo d and conversely, if
n ≡ r (mod d), then p | un. We notice that r > 0, which follows from
the fact that we are assuming that p > a + b = u0 > 0.

We now pick q to be the smallest prime divisor of B for which
d(q) > x1/t2 . We show that this q exists and we find an upper bound
on it. To show that q exists, let

C(x) :=
∏

p, d(p)≤x1/t2

p.

Then certainly
C(x)

∣∣ ∏
1≤d≤x1/t2

Ld,

therefore

(16)

log C(x) ≤ log
( ∏

1≤d≤x1/t2

Ld

)
=

∑
1≤d≤x1/t2

log Ld

�
∑

1≤d≤x1/t2

d = O(x2/t2).

Set

(17) D := gcd(B, C(x)),
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and write

(18) B = DE,

where obviously

(19) E =
∏

p≥f(x), p|un

d(p)>x1/t2

p.

By (16), we get

(20) log D ≤ log C(x) ≤ c2x
2/t2 ,

with some constant c2, and by (13) and (20), we get that

(21) log E = log B − log D ≥ x

2 log x
− c2x

2/t2 >
x

3 log x

holds for sufficiently large x. In particular, such a prime number q
exists, and we write it as q := q(n), and set d(n) := d(q(n)). To get an
upper bound on q, write

(22) E := q1q2 · · · qk,

where q = q1 < q2 < · · · < qk are distinct primes. Certainly,
E ≤ φ(un) < un, and therefore

2k ≤ E ≤ un,

thus
k log 2 � n < x,

and hence,

(23) k � x.

In fact, using the fact that E is square-free, one can even infer that
k � x/(log x) holds, but inequality (23) suffices for our purposes. Now
write F := AD, therefore un = EF , with E and F coprime. Hence,

φ(un)
un

=
φ(F )

F
· φ(E)

E
,
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or

(24)
1 − φ(E)

E
= 1 − F

φ(F )
· φ(un)

un
=

un − F
φ(F )φ(un)

un

=
(aαn − F

φ(F ) · φ(un)) + bβn

aαn + bβn
.

To get an upper bound on q, we use a lower bound depending on q
on the left-hand side of (24) and an upper bound depending only on
x (and f(x)) on the right-hand side of (24). For the left-hand side of
(24) we write

(25) 1 − φ(E)
E

= 1 −
k∏

i=1

(
1 − 1

qi

)
.

In light of the inequality

(26) 1 −
k∏

i=1

(1 − xi) ≤
k∑

i=1

xi

which holds for all k ≥ 1 and all real numbers xi ∈ (0, 1) for
i = 1, . . . , k, and which can be immediately proved by induction on
k, we get, from (25), (26) and (23), that

(27) 1 − φ(E)
E

= 1 −
k∏

i=1

(
1 − 1

qi

)
≤

k∑
i=1

1
qi

� x

q
.

We now need a lower bound for the right-hand side. We look at the
expression

(28) aαn − F

φ(F )
φ(un).

Assume first that the expression appearing at (28) is zero. In this case,
we get

aαn =
F

φ(F )
φ(un) = Fφ(E),
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therefore F | aαn. Since F | (aαn + bβn), we read that F | bβn, and
since gcd(aαn, bβn) = 1, we get F = 1. Thus, equation (28) becomes

aαn = φ(E),

and formula (24) becomes

1 − φ(E)
E

=
bβn

un
�

(β

α

)n

.

On the other hand, since

1 − φ(E)
E

= 1 −
k∏

i=1

(
1 − 1

qi

)
≥ 1

q1
,

we get
1
q1

�
(β

α

)n

,

therefore the inequality
q1 > exp(c3n)

holds for all n sufficiently large with the constant c3 :=
log(α/β)

2
. So,

αn � un = E ≥ qk
1 > exp(kc1n),

which implies that k < c4. We now write

(29) bβn = E − φ(E) = q1q2 · · · qk − φ(E),

or

(30) bβn =
k∏

i=1

((qi − 1) + 1) − φ(E) =
∑

I⊂{1,2,... ,k}
I �={1,2,... ,k}

∏
i∈I

(qi − 1).

Assume that k = 1. In this case, equation (30) becomes bβn = 1, which
shows that b = β = 1, so that un is of the form un = aαn + 1, and
the only difficulty in carrying out the argument will be to investigate
when aαn + 1 is a prime. As we have mentioned in the Introduction,
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this is a very hard problem, and it is known, conditionally, that indeed
un is a prime only for a set of n of asymptotic density zero. With our
hypothesis however, we get that a and α are positive integers which are
multiplicatively dependent. Thus, there exists a positive integer ρ, two
non-negative integers µ and ν (with at least one of them positive) which
are also coprime such that both a = ρµ and α = ρν hold. Therefore,
un = ρµ+νn+1 holds for all positive integers n. Replacing the sequence
of general term un by the sequence of general term un = ρn + 1, it
follows that it suffices to show that ρn + 1 can be a prime only on a
set of n of asymptotic density zero. But the only chance that ρn + 1
can be a prime for infinitely many values of n is when ρ is even and n
is a power of 2, and the set of powers of 2 is obviously of asymptotic
density zero. This disposes of the only hard case of our problem, and
it is only here where the assumptions A2 are really needed.

Assume now that k > 1. Since k < c4, we may assume that k is
fixed. Recalling that qi − 1 ∈ S, equation (30) is a particular case of
an equation of the type

X =
∑

I⊂{1,2,... ,k}
I �={1,2,... ,k}

XI

in 2k ≥ 4 indeterminates X := bβn and XI :=
∏
i∈I

(qi − 1) where I

is a proper subset of {1, 2, . . . , k} (including the subset I = ∅ for
which X∅ := 1). Since XI > 0 for all I, it follows that the above
equation is non-degenerate in the sense that no proper subsum of the
form XI1 + · · ·+ XIj

vanishes. We now use a result of Schlickewei (see
[6]) on the number of non-degenerate solutions of S-equations. That
is, if γ1, . . . , γm are fixed non-zero rational numbers, then there exists
a number of at most

(31) l ≤ exp
(
237mt6 log(8t)

)

non-degenerate solutions (X(j)
1 , . . . , X

(j)
n ) with j = 1, 2, . . . , l for the

equation

(32)
m∑

i=1

γiXi = 0, with Xi ∈ S for i = 1, . . . , m,
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so that for any other non-degenerate solution (X1, . . . , Xm) of equation
(32) there exists a number ρ ∈ S and a number s ≤ l such that
(X1, . . . , Xm) = ρ(X(s)

1 , . . . , X
(s)
n ). Let us notice that from the above

result it follows that equation (30) can have at most l solutions n, where
l is bounded above as in (31) with m = 2k ≤ 2c4 . Indeed, we can label
the indeterminates XI for I ⊂ {1, . . . , k} such that 1 = X∅ = X1,
such that if equation (30) has more than l solutions, then there must
exist two solutions (X1, . . . , X2k) and (X ′

1, . . . , X ′
2k) and a rational

number ρ �= 1 composed only from the primes p1, . . . , pt such that
(X ′

1, . . . , X ′
2k) = ρ(X1, . . . , X2k). In particular, 1 = X ′

1 = ρX1 = ρ
forcing ρ = 1, which is a contradiction. This is for a fixed value of k,
and now letting k run from 2 to c4, we get that the number of solutions
of (30) with n < x is at most

(33) c4exp
(
c5t

6 log(8t)
)

with c5 := 237·2c4 , and it is enough for our purposes to check that the
number appearing at (33) is smaller than x/(log x). But this will be so
provided that the inequality

c5t
6 log(8t) < log x − log2 x − log c4

holds, which will hold provided that the inequality

(34) t6 log(8t) < c6 log x

holds, where one can take c6 := 1/(2c5). The above inequality (34) is
fulfilled provided that the inequality

(35) t < c7

( log x

log2 x

)1/6

holds with some appropriate constant c7, and in order for (35) to hold
for large x it suffices that the inequality

(36)
f(x)

log f(x)
< c8

( log x

log2 x

)1/6

,

is satisfied with, say c8 := c7/2. Clearly, inequality (36) holds provided
that one chooses

(37) f(x) := c9(log x)1/6(log2 x)5/6,
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with some appropriate constant c9, as stated in the conclusion of the
Theorem.

From now on, we may therefore assume that the expression (28) is
non-zero. In this case, we can find a lower bound on the expression
appearing at (28) by using a linear form in logarithms (see [1]). That
is, write

φ(un) := pβ1
1 · · · · · pβt

t

and

(38)
∣∣∣aαn − F

φ(F )
φ(un)

∣∣∣ = aαn
∣∣∣1 −

( F

aφ(F )

)
· pβ1

1 · · · · · pβt
t · α−n

∣∣∣.
Since

φ(un) < un � αn,

we get that

(39) maxt
i=1(βi) � n.

For any rational number w let H(w) be the maximum of the absolute
values of its numerator and denumerator when written in reduced form.
Since a is a constant, and F/φ(F ) is a rational number which written
in reduced form has its numerator greater than its denominator and
the numerator is square-free and composed of primes less than x1/t2 ,
we get that

(40) log
(
H

( F

aφ(F )

))
�

∑
p<x1/t2

log p � x1/t2 .

Let

(41) Ω :=
t∏

i=1

log pi

and notice the following upper bound

(42) Ω ≤ (log f(x))t = exp(t log2(f(x)) < exp(2t log2 t),
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which is valid for large values of x.

With the estimates (40), (42), and a classical lower bound for linear
forms in complex logarithms (as in [1]), we deduce the existence of a
constant c10 > 1 such that the inequality

(43)

∣∣∣1−( F

aφ(F )

)
· pβ1

1 · · · · · pβt
t · α−n

∣∣∣
> exp

(
−tc10t log

(
H

( F

aφ(F )

))
· Ω · log n

)

> exp
(
−x1/t2 log(n)exp

(
c10t log t + 2t log2 t

))

holds for large enough values of x. Let us observe that

(44) exp
(
c10t log t + 2t log2 t

)
< x1/t2

holds for large enough values of x. Indeed, inequality (44) is implied
by

c10t
2(t log t + 2t log2 t) < log x,

which obviously holds for large values of x because t = π(f(x)) < f(x)
and f(x) is given by (37). Thus, with (43) and (44), we get that

(45)
∣∣∣1 −

( F

aφ(F )

)
· pβ1

1 · · · · · pβt

t · α−n
∣∣∣ > exp(−x2/t2 log n).

We now show that the expression appearing at (28) is positive. Indeed,
assuming that the expression appearing at (28) is negative, then from
formula (24) and the fact that the left-hand side of (24) is positive, we
get that bβn is positive and that

(46) bβn >
∣∣∣aαn − F

φ(F )
φ(un)

∣∣∣ > aαn · exp(−x2/t2 log n).

The above inequality implies, after rearranging it, taking logarithms,
and recalling that α > |β|, that

x2/t2 log x > x2/t2 log n � n ≥ x

log x
,
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which is impossible for large enough values of x. This shows that for
large enough values of x the expression appearing at (28) is positive. In
particular, the numerator of the expression appearing in the right-hand
side of (28) is at least as large as

aαn · exp(−x2/t2 log n) − |bβn| >
a

2
αnexp(−x2/t2 log n),

for large enough values of x. Since un � αn, it follows that

(47)
(aαn − F

φ(F ) · φ(un)) + bβn

aαn + bβn
� exp(−x2/t2 log n).

Combining estimate (47) with (27), we get

(48) q = q1 � x exp(x2/t2 log x),

so that

(49) q = q1 < exp(x3/t2)

holds for large enough values of x. Since q − 1 ∈ S, the number of
numbers q that can fulfill (49) is certainly no more than

O(x3/t) = o(x).

We now return to the values of n. From what we have said, but
for o(x) positive integers n in the interval

(
x/(log x), x

)
for which

φ(un) ∈ S, a prime number q := q(n) exists such that q > f(x),
d(n) := d(q(n)) > x1/t2 , and q is minimal with this property. Moreover,
this number q satisfies inequality (49) and the number of such numbers
q is o(x). Fix such a number q. Since q | un, this means that n is in the
arithmetical progression r(q) (mod d(q)). The number of such numbers
n < x is certainly at most

(50)
⌊ x

d(q)

⌋
+ 1 ≤

⎧⎨
⎩

2x

d(q)
, if d(q) < x,

1, if d(q) > x.
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So, the total contributions when d(q) > x are at most the number of
such numbers q which, as we have seen, is o(x). Thus, it remains to
find an upper bound for

(51) x
∑

q−1∈S
x1/t2<d(q)<x

1
d(q)

.

In particular, the Theorem will be proved provided that we can show
that

(52)
∑

q−1∈S
x1/t2<d(q)<x

1
d(q)

= o(1).

Set

(53) D := {d | d = d(q) for some q with q − 1 ∈ S}.

In order to prove (52), we first need to understand an upper bound for
the multiplicity of an element d ∈ D. That is, given d ∈ D, how many
primes q with q − 1 ∈ S are there such that d = d(q)? Denote this
number by T (d). We shall show that

(54) T (d) ≤ (3t)!d1− 1
t+1

holds for large enough values of x and uniformly in d. Assume for the
moment that we have proved inequality (54). Then we can bound the
expression appearing in the left-hand side of (52) by saying that

(55)
∑

q−1∈S
x1/t2<d(q)<x

1
d(q)

≤ (3t)!
∑
d∈D

x1/t2<d

1

d
1

t+1
.

Finally, let us notice that from the way the number d := d(q) was
defined, we get that for every prime number q which divides un for
some n, q is a primitive divisor of Ld(q). That is, q | Ld(q) but q does
not divide Lm for any positive integer m < q. From the well-known
properties of the primitive divisors, we get that d(q) | q − 1. So, in
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particular, when q − 1 ∈ S, we get that d(q) ∈ S. In particular, we
have

(56)
∑

q−1∈S
x1/t2<d(q)<x

1
d(q)

≤
∑
d∈S

x1/t2<d

1

d
1

t+1
.

It remains to show that

(57)
∑
d∈S

x1/t2<d

1

d
1

t+1
= o

( 1
(3t)!

)
.

But obviously, the series

(58)
∑
d∈S

1

d
1

t+1

is convergent, and the sum of the above series is precisely

(59) g(t) :=
t∏

i=1

(
1 − 1

p
1

t+1
i

)−1

.

We now find an upper bound on g(t). Notice that with a fixed prime
number p, we have

(
1− 1

p
1

t+1

)−1

=
∑
i≥0

1

p
i

t+1
=

( t∑
i=0

1

p
i

t+1

)
·
(∑

j≥0

1
pj

)
< (t+1)

(
1− 1

p

)−1

,

so that

(60)
g(t) < (t + 1)t

t∏
i=1

(
1 − 1

pi

)−1

< exp(t log(t + 1) + c11 log2 t) < exp(2t log t)

holds for large enough values of x. To estimate the tail of the series
(58) appearing in the left-hand side of formula (57), let d ∈ S be
such that d > x1/t2 , and assume that δ denotes the maximum of the



1386 F. LUCA

exponents at which the prime numbers dividing d can appear in the
prime factorization of d. Then obviously

t log f(x)δ ≥ log d ≥ log x

t2
,

so that

(61) δ ≥ log x

t3 log f(x)
≥ log x

2t3 log t

holds for all large enough values of x. By separating the prime power of
maximal exponent δ from d, and then summing up over all the primes
p ∈ S and over all the powers δ which are at least as large as shown
in (61), we get that the sum appearing in the left hand side of (57) is
bounded above by

(62)

t∑
i=1

∑
j≥ log x

2t3 log t

1

p
j

t+1

∑
d∈S

1

d
1

t+1

≤ g(t)
t∑

i=1

∑
j≥ log x

2t3 log t

1

p
j

t+1

≤ g(t)
t∑

i=1

exp
(
− log x log pi

2t3(t + 1) log t

)(
1 − 1

p
1

t+1
i

)−1

� g(t)t
t∑

i=1

exp
(
− log x log pi

2t3(t + 1) log t

)

≤ g(t)t2exp
(
− log x log 2

2t3(t + 1) log t

)

< exp
(
2t log t + 2 log t − log x

2t3(t + 1) log t

)
.

Since 1/(3t)3t = o(1/(3t)!), it follows, with (62), that in order for (57)
to hold it suffices that

exp
(
2t log t + 2 log t − log x

2t3(t + 1) log t

)
<

1
(3t)3t

,
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which is implied by

6t log(3t) <
log x

2t3(t + 1) log t
,

which is fulfilled provided that

(63) 12t4(t + 1) log2(3t) < log x,

and (63) obviously holds for large values of x because t = π(f(x)) <
f(x) and f(x) is given by formula (37).

Thus, the Theorem is proved once we are able to show that inequality
(54) holds. To prove (54), assume that t is large, pick a number d ∈ S,
set T := T (d), and write

αd � Ld =
T∏

i=1

qi,

where q1 < q2 < · · · < qT are distinct primes with qi − 1 ∈ S. Then
certainly

(64) αd �
T∏

i=1

(qi − 1).

To get a large T , we have to assume that all the qi’s are as small as
possible. But how small can we make the product on the left? Well,
discarding the fact that qi have to be primes, we will certainly want to
first put q − 1 = pi for i = 1, 2, . . . , t, then for the next numbers we
will want to put q − 1 = pipj for 1 ≤ i ≤ j ≤ t and so on. The above
argument shows that in order to get an upper bound on T , we should
write

T =
(

t

t − 1

)
+

(
t + 1
t − 1

)
+ · · · +

(
t + u

t − 1

)
+ N,

where u is the unique positive integer such that 0 ≤ N <
( t+u+1

t−1

)
holds, and by (64) the maximal value of T will certainly be bounded
above by those u and N for which the inequality

(65)
(

t

1

)
+ 2

(
t + 1

2

)
+ · · · + (u + 1)

(
t + u

t − 1

)
+ (u + 2)N ≤ d
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holds. Inequality (65) together with the obvious lower bound
(

t + i

t − 1

)
≥ (i + 1)t−1

(t − 1)!

uniformly in i, shows that

u+1∑
i=1

it ≤ (t − 1)!d,

and since
u+1∑
i=1

it � ut+1

t + 1

holds uniformly in i and u, we get

u � (t + 1)!
1

t+1 d
1

t+1 .

In particular, using now the fact that
(

t + i

t − 1

)
≤ (i + 1)t−1

holds uniformly in i, we get

(66)
T ≤

u+1∑
i=0

(
t + i

t − 1

)
≤

u+2∑
i=1

it−1 ≤ t(u + 2)t−1

� t · (t + 1)!
t−1
t+1 · d t

t+1 ·
(
1 +

2
u

)t−1

< (3t)! · d1− 1
t+1 ,

where in the last step of (66) we used the fact that

t((t + 1)!)
t−1
t+1 ·

(
1 +

2
u

)t−1

≤ t · ((t + 1)!)
t−1
t+1 · 3t−1 = o((3t)!),

which holds for large t (for example, by Stirling’s formula).

The Theorem is therefore proved.
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