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SELECTION OF SLOW DIFFUSION IN A
REACTION DIFFUSION MODEL: LIMITING CASES

GILBERTO FLORES AND KONSTANTIN MISCHAIKOW

Introduction. A common phenomenon, observed in a wide variety
of models for the dispersal of organisms, is that dispersal rates tend
to be lower if the environment is spatially heterogeneous [10]. In an
attempt to understand this, Dockery et al. [3] proposed a reaction
diffusion model for the evolution of n different phenotypes of a species,
where the only phenotypic difference is in the diffusion rate. It is
assumed that the per-capita net rate of increase of each phenotype,
denoted by a, is not a constant. The diffusion rates are d1 < d2 <
· · · < dn, the environment is a region Ω ⊂ Rk. It is assumed that
Ω is a bounded domain with smooth boundary, across which there is
no migration. In this model, the equation for the density ui(x, t) of
phenotype i is:

(1)
∂ui

∂t
= di∆ui +

[
a(x) −

n∑
j=1

uj

]
ui in Ω, i = 1, . . . , n.

with homogeneous Neumann boundary condition: ∂ui/∂ν = 0 and
prescribed initial values ui(x, 0) which are nonnegative functions in Ω.

One of the basic results of [3] is that the only nonnegative equilibria
of this system are semi-trivial solutions, i.e., they have the form Ũ i(x),
where the jth component is zero for j �= i and the ith component Ũ i

i (x)
is the positive solution of

(2)
di∆u + [a(x) − u] u = 0 in Ω

∂u

∂ν
= 0 on ∂Ω.

It was also shown that Ũ1(x) is linearly asymptotically stable and
Ũ i(x) is unstable for i = 2, . . . , n. Furthermore, if n = 2 and the
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first component of the initial condition is not identically zero, then the
solution tends to Ũ1(x) as t → ∞. In other words, Ũ1(x) is the global
attractor for the set of initial conditions which lie in the interior of the
positive cone.

In this sense, one sees that the spatial heterogeneity, a(x) noncon-
stant, selects for the phenotype with the slowest diffusion rate. Dockery
et al. conjectured that this phenomenon is true for all n. The purpose
of this paper is to verify this conjecture in some special limiting cases.

We begin with the observation that the same techniques used in [3]
apply to the more general setting where the diffusion rates are allowed
to be spatially dependent. More precisely, we will consider equations
of the form

(3)
∂ui

∂t
= ∇.(di(x)∇ui) +

[
a(x) −

n∑
j=1

uj

]
ui

defined on a bounded domain Ω ⊂ Rk with smooth boundary and
homogeneous Neumann boundary conditions. Throughout this work
it is assumed that a ∈ C2+α(Ω) is not constant, dj ∈ C1+α(Ω) for
j = 1, . . . , n with 0 < d0 ≤ d1(x) ≤ d2(x) ≤ · · · ≤ dn(x) and
unless explicitly stated otherwise, di �= dj for i �= j. We also assume∫
Ω

a(x) dx > 0. This condition refers to the quality of the environment
and guarantees the existence of nonzero semi-trivial solutions for all
diffusions di(x) under consideration. We prove the following three
results.

Theorem 2.1. The only nonnegative equilibria of (3) are semi-trivial
solutions Ũ i(x), with Ũ i

i (x) �≡ 0. Furthermore, Ũ1(x) is linearly stable
and Ũ i(x) is unstable for i = 2, . . . , n.

Thus, the equilibrium structure is not changed by allowing the
diffusion coefficients to be spatially dependent. It is easy to see that
equation (3) reduces to a single equation in the case that d1(x) =
d2(x) = · · · = dn(x). Using this observation, one can verify the
conjecture in the case that the diffusion coefficients are close to one
of two values. An example of the type of result that can be proven is
the following.
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Theorem 4.2. Let n = 3 and assume |d1(x) − d2(x)| is sufficiently
small for all x ∈ Ω. Then, Ũ1(x) is the global attractor for the set of
initial conditions which lie in the interior of the positive cone.

A biological interpretation of this result is as follows. Given two
phenotypes u2 and u3 with diffusion rates d2 < d3, the results of [3]
imply that u2 will dominate. Theorem 4.2 implies that if u2 undergoes
a mutation that produces a phenotype u1 which diffuses at a slightly
smaller rate, then the slower diffuser u1, in turn, becomes dominant.

In the proof, it will become clear that Theorem 4.2 is just a prototype
of a variety of theorems that can be proven; however, they all require
that the diffusion rates are appropriately clustered about two primary
values.

At the other extreme is the case where the diffusion coefficients are
quite different. A particular subset of these is where some of the
diffusion coefficients are extremely large. Again, an example of the
typical result that can be proven is the following.

Theorem 5.3. Assume that infx∈Ω di(x) are sufficiently large for
i = 3, . . . , n. Then, Ũ1(x) is the global attractor for the set of initial
conditions which lie in the interior of the positive cone.

An outline for the paper is as follows. In Section I we review some
results for the single equation

(4)
∂u

∂t
= ∇.(d(x)∇u) +

[
a(x) − u

]
u

as these provide the basic information on the existence and uniqueness
of stationary solutions, their stability properties and the large time
behavior that will be used for the analysis of system (3). In Section II
we study the special case of two phenotypes, for which we prove
the convergence to the slowest equilibrium for all diffusions under
consideration, and we construct a family of comparison functions that
control the global dynamics. The proof of Theorem 4.2 is presented
in Section IV. In Section V we prove Theorem 5.3. This involves the
introduction of u = u1, v = u2, wi = ui+2 for i = 1, . . . , n−2, ξi = 〈wi〉,
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w = ξ + z, σ =
∑n−2

j=1 ξj and the shadow system

(5)

∂u

∂t
= ∇.(d1(x)∇u) + [a(x) − (u + v) − σ]u

∂v

∂t
= ∇.(d2(x)∇v) + [a(x) − (u + v) − σ]v

ξ̇i =
[

1
|Ω|

∫
Ω

(
a(x) − (u+v)

)
dx − σ

]
ξi, i = 1, . . . , n−2.

The dynamics of this system can be described in detail and we shall
show that it approximates the dynamics of (3) in the case that di(x) is
sufficiently large in all of Ω for i = 3, . . . , n.

I. The scalar equation. We begin with a review of some basic
properties of solutions of the single equation

(6)
∂u

∂t
= ∇.(d(x)∇u) + [a(x) − u]u in Ω

with ∂u/∂ν = 0 on ∂Ω and u(x, 0) = u0(x) ≥ 0.

This equation is well understood in the case of a constant diffusion
coefficient, see [1]. The case of a variable diffusion coefficient is similar
and we include the proofs only for the sake of completeness. We begin
by considering a general smooth function a(x). At the end of the section
we prove that the positivity of its integral implies the existence of a
unique positive steady state of (6).

Let λ0 be the first eigenvalue of the self-adjoint operator defined by

Lφ = ∇.(d(x)∇φ) + a(x)φ

with zero Neumann boundary conditions, which is the linearization of
the righthand side of (6) around u ≡ 0. If λ0 ≤ 0, then all solutions
of (6) tend to 0 as t → ∞, see Proposition 1.1 below. If λ0 > 0, there
exists a unique positive stationary solution which is the global attractor
for the flow. This is the content of Proposition 1.2.

The result in [1] is stated in terms of an eigenvalue problem with a
weight, which is equivalent to the formulation given in [9]. We have
chosen to present a direct proof, as it gives information on the dynamics



LIMITING CASES 1303

and the convergence to equilibrium. Moreover, we prove that under the
assumption

∫
Ω

a(x) dx > 0, there exists a positive stationary solution
for any positive diffusion coefficient d(x).

I.1. Existence and uniqueness of a positive stationary solution. The
first observation is that the form of the reaction term guarantees
uniqueness of positive stationary solutions of (6).

Lemma 1.1. The elliptic problem

(7)
∇.(d(x)∇u) + [a(x) − u]u = 0 in Ω

∂u

∂ν
= 0 on ∂Ω

has at most one positive solution.

Proof. Note that if u1(x), u2(x) are any two solutions of (7), then∫
Ω

d(x)∇u1.∇u2 dx =
∫

Ω

[a(x) − u1]u1u2 dx =
∫

Ω

[a(x) − u2]u1u2 dx

from which it follows that∫
Ω

u1u2(u1 − u2) dx = 0.

If, moreover 0 < u1 ≤ u2, then necessarily u1 = u2.

Now let a∗ := max{a(x) : x ∈ Ω}. Note that any nonnegative solution
u(x) of (7) must satisfy u(x) ≤ a∗ for all x ∈ Ω. Moreover, u(x) := a∗

is an upper solution. Using the monotone iteration scheme starting at
u, we get a nonnegative solution ũ(x). If u(x) ≥ 0 is another solution
of (7), then, by the maximum principle, u(x) ≤ ũ(x) in Ω. Therefore,
u(x) = ũ(x) for all x ∈ Ω, which establishes the uniqueness.

Remark 1.1. The above argument works for reaction terms of the
form f(x, u)u, such that ∂f/∂u(x, 0) < 0 (> 0) for all x and all u.

A sufficient condition for the existence of the positive stationary
solution is stated in terms of λ0, the first eigenvalue of the linear
operator L defined above.
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Lemma 1.2. If λ0 > 0, then equation (7) has a unique positive
solution ũ(x).

Proof. By Lemma 1.1, it is enough to construct a strictly positive
lower solution. We use the analogue of the comparison functions for
the constant diffusion case, see [1].

Let φ0 be the positive eigenfunction associated to λ0, and take r > 0.
Since

∇.(d(x)r∇φ0) + [a(x) − rφ0]rφ0 = rφ0(λ0 − rφ0)

it follows that u(x) = rφ0(x) is a positive lower solution, provided r is
small enough.

Finally, we state conditions that guarantee λ0 > 0. The simplest way
to achieve this is to assume that a∗ := min{a(x): x ∈ Ω} > 0, since
λ0 ≥ a∗. In this case the constant a∗ is a positive lower solution.

In the case of zero Neumann boundary conditions, if a(x) is allowed
to become negative in some parts of the habitat, then substitution of
φ(x) ≡ 1 in the Rayleigh quotient in (8) yields λ0 ≥< a >, so that by
Lemma 1.2, the condition

∫
Ω

a(x) dx > 0 guarantees the existence of a
positive stationary solution.

I.2. Behavior of eigenvalues and stationary solutions. In the con-
stant diffusion case, the first eigenvalue depends monotonically on the
diffusion coefficient and on the potential. The limiting behavior of this
eigenvalue, as the diffusion gets small or large, is known, see [1]. These
results generalize to the case of a variable diffusion coefficient. The
proofs are essentially the same.

Lemma 1.3. Let λ0 = λ0(d, q) be the first eigenvalue of the linear
operator L = L(d, q) defined by Lφ = ∇.(d(x)∇φ) + q(x)φ, then

(i) λ0 is a decreasing function of d if q is not a constant.

(ii) λ0 is increasing in q.
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Proof. It is easily obtained from the variational principle
(8)

λ0(d, q) = sup

{∫
Ω

[ − d(x)|∇φ|2 + q(x)φ2
]
dx∫

Ω
φ2(x) dx

: φ ∈ H1, φ �= 0

}
.

With the convention

〈q〉 :=
1
|Ω|

∫
Ω

q(x) dx,

and
q∗ := max{q(x) : x ∈ Ω},

the asymptotic behavior of the principal eigenvalue is as follows.

Lemma 1.4. (i) λ0(d, q) → q∗ as d → 0 uniformly on Ω.

(ii) λ0(d, q) →< q > as d → ∞ uniformly on Ω.

Proof. (i) It is obtained from the variational principle (8), see [4].

(ii) Let φ0 be the principal eigenfunction, normalized by 〈φ0〉 = 1,
then φ0 = 1+r with 〈r〉 = 0. If E(φ; d, q) denotes the Rayleigh quotient
in (8), then

λ0(d, q) ≥ E(1; d, q) = 〈q〉.
Moreover,

∫
Ω

qφ2/
∫
Ω

φ2 ≤ q∗. It follows that the first term in
E(φ0; d, q) is bounded below and therefore

∫
Ω
|∇r|2 dx = O(1/d∗),

where d∗ denotes the minimum of d over Ω. By Rellich’s Lemma,
there exists a constant C such that

∫
Ω

r2 dx ≤ C
∫
Ω
|∇r|2 dx. It follows

that r → 0 in the H1-norm as d∗ → ∞. Therefore, φ0 → 1 in H1 and
λ0(d, q) = E(φ0; d, q) = 〈q〉 + O(1/d∗) → 〈q〉 as d → ∞ uniformly on
Ω.

I.3. Integral identities. Integration of (7) yields
∫
Ω
[a(x)−ũ(x)]ũ(x) dx

= 0. Multiplication of (7) by ũ followed by integration results in∫
Ω

[a(x) − ũ(x)]ũ2(x) dx =
∫

Ω

d(x)|∇ũ(x)|2 dx.
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An important identity is obtained upon division of (7) by ũ and
integration by parts:

(9)
∫

Ω

[a(x) − ũ(x)] dx = −
∫

Ω

d(x)
|∇ũ(x)|2

ũ2(x)
dx.

I.4. The dynamics. The existence of solutions for a short time
is straightforward. Let X = L2(Ω), 3/4 < α < 1 and Xα be
the usual fractional power space. We also assume that k, the space
dimension, satisfies k ≤ 3. With these choices, we have the inclusion
Xα ⊂ H1(Ω)∩L∞ and, for any u0 ∈ Xα, there exists T > 0 such that
the solution of (6) with u(x, 0) = u0(x) is defined on [0, T ], it satisfies
u(., t) ∈ H2 for 0 ≤ t ≤ T and it is continuous in (t, u0). See [7].

By the maximum principle, u(x, t) ≥ 0 for 0 ≤ t ≤ T if u0(x) ≥ 0.
Hence, the positive cone K+ = {u0 ∈ Xα : u0 ≥ 0} is positively
invariant under the flow. Moreover, if M0 = max{u0(x)|x ∈ Ω} and
C = max{a∗, M0}, then u(x, t) ≤ C for all t ∈ [0, T ]. Therefore, any
solution remains bounded in L∞, uniformly in time, as long as it exists.
From this it follows that solutions of (6) exist for all positive times for
initial conditions in Xα.

From now on we shall restrict our attention to initial conditions in
the positive cone K+.

Equation (6) has a gradient structure, since it is of the form
u̇ = −∇Φ(u), where the energy Φ is defined by

Φ(u) =
∫

Ω

[
d(x)

2
|∇u(x)|2 − a(x)

2
u2(x) +

1
3
u3(x)

]
dx.

The energy decreases along trajectories of (6):

d

dt
Φ(u(., t)) = −

∫
Ω

u2
t (x, t) dx ≤ 0

and it is constant only along stationary solutions.

It follows that the only possible ω-limit points of trajectories corre-
sponding to nonnegative initial values are u ≡ 0 and ũ(x).
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We claim that in the case λ0 > 0, there are no trajectories in K+

which converge to 0. Indeed, the positive eigenfunctions {rφ0}, for
r sufficiently small, form a family of stationary lower solutions of (6)
which act as barriers in the sense that given any u0 ∈ K+, by the
strong maximum principle, u(x, 1; u0) > 0 for all x ∈ Ω and, therefore,
there exists a positive value of r = r(u0) such that rφ0(x) < u(x, 1; u0).
This allows us to conclude that u(x, t; u0) → ũ(x) as t → ∞. Hence,
all solutions corresponding to nonnegative initial conditions converge
to ũ(x) as t → ∞.

Our final task is to verify that the global dynamics is controlled by
the sign of λ0, the leading eigenvalue of the linearization around the
zero solution. In particular, we prove that the condition

∫
Ω

a(x) dx > 0
guarantees the existence of a positive stationary solution of (6) which
is the global attractor of the nonlinear flow.

Proposition 1.1. If λ0 ≤ 0, then u(x, t) → 0 as t → ∞.

Proof. Take r > 0, and φ0 > 0 a fixed eigenfunction corresponding
to λ0, then rφ0 is an upper solution:

∇.(d(x)rφ0) + [a − rφ0]rφ0 = rφ0[λ0 − rφ0] ≤ −r2φ2
0 < 0.

Let u(x, t; r) be the solution with u(x, 0; r) = rφ0(x). By the maximum
principle, u(x, t; r) decreases to a nonnegative stationary solution.

We claim that u(x, t; r) decreases to zero. Assume contrariwise
that there exists a positive stationary solution u(x) and r > 0 such
that u(x, t; r) → u(x) as t → ∞. Define r∗ := inf{r > 0 : u(x) <
rφ0(x)}, then r∗ > 0. Since u(x) ≤ r∗φ0(x) in Ω, it follows that
u(x, t; r∗) → u(x). On the other hand, there exists x0 ∈ Ω such that
u(x0) = r∗φ0(x0). Since ut(x0, 0; r∗) < 0, it follows that u(x, t; r∗) → 0.
This contradiction proves the claim and it establishes the result.

Proposition 1.2. If
∫
Ω

a(x) dx > 0, then

(i) there exists a positive stationary solution ũ(x) of (6)

(ii) λ0 > 0

(iii) ũ is the global attractor for initial conditions in the positive cone.
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Proof. (i) If α is a constant, then

Φ(α) = −α2

2

∫
Ω

a(x) dx +
1
3
|Ω|α3 =

α2|Ω|
3

[
α − 3

2
〈a〉

]

and this quantity is negative if 0 < α < 3/2〈a〉. Thus, the solution
u(x, t; α) cannot converge to 0. It follows that there exists a positive
stationary solution ũ(x) to which u(x, t; α) converges as t → ∞.

(ii) Fix φ0 > 0 an eigenfunction corresponding to λ0, then for any
r > 0,

∇.(d(x)rφ0) + [a − rφ0]rφ0 = rφ0[λ0 − rφ0].

Assume λ0 ≤ 0, then rφ0 is an upper solution of (7). Now choose r
small enough so that rφ0(x) < ũ(x) in Ω, then u(x, t; rφ0) decreases
to 0 as t → ∞. But this contradicts part i), as we can find a positive
value of α < rφ0 such that E(α) < 0. Therefore, λ0 > 0.

(iii) Given u0 ∈ K+, choose α small so that 0 < α < u(x, 1; u0) in Ω;
then, by the maximum principle, u(x, t; u0) → ũ(x) as t → ∞.

From now on, we assume that the function a(x) satisfies the hypoth-
esis of Proposition 1.2.

Remark 1.2. In this case, the rate of convergence to the positive
steady state is exponential, as the linearized operator around ũ is given
by

L(d, a − 2ũ)φ = ∇.(d(x)∇φ) + [a − 2ũ]φ

and λ0(d, a − 2ũ) < λ0(d, a − ũ) = 0.

An interesting property of equation (6) is that the one-parameter
family of functions αũ for 0 < α < 1 are lower solutions. This follows
from

∇.(d(x)α∇ũ) + (a − αũ)αũ = α(1 − α)ũ2.

Note that we get upper solutions for α > 1 and for α < 0.

An important problem is to determine the behavior of the flow away
from the stationary solutions. Our next result is a step in this direction,
as it gives an upper bound on the time that a solution can spend in
an order interval of the form [αũ, βũ], for 0 < α < β < 1. The bound
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is given in terms of λ0, the first eigenvalue of L = L(d, a − (1 + α)ũ),
which satisfies λ0(α) ∼ α.

Proposition 1.3. Let 0 < α < β < 1, and λ0 as defined in the
preceding paragraph. Consider a solution u(x, t) such that αũ(x) ≤
u(x, t) ≤ βũ(x) in Ω for 0 ≤ t ≤ T , then

T ≤ T ∗ :=
−1
λ0

ln
(

1 − α

1 − β

)
.

Moreover, u(x, t) > βũ(x) in some part of Ω for t > T ∗.

Proof. In terms of p = ũ − u, equation (6) becomes

(10) pt = ∇.(d(x)∇p) + [a − 2ũ]p + p2.

For the solutions under consideration we have

pt ≤ ∇.(d(x)∇p) + [a − (1 + α)ũ]p

Moreover, ḟ(t) ≤ 2λ0f(t) for

f(t) =
1
2

∫
Ω

p2(x, t) dx.

Since (1 − β)ũ(x) ≤ p(x, t) ≤ (1 − α)ũ(x), we get

1
2

∫
Ω

(1−β)2ũ2(x) dx ≤ f(t) ≤ f(0)e2λ0t ≤ 1
2

[ ∫
Ω

(1−α)2ũ2(x) dx
]
e2λ0t

from which the estimate is obtained.

The rest of the statement follows from the fact that αũ are upper
solutions of (10) for 0 ≤ α ≤ 1.

Since T ∗ = ln(1+(β − α/1 − β)) and λ0 ∼ α, it follows that T ∗ ∼ 1/α
as α → 0 and T ∗ ∼ ln(1/1 − β) as β → 1.
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II. Basic properties of the full system.

II.1. Determination of nonnegative stationary solutions. In the
constant diffusion case, it was shown in [3] that the only nonnegative
stationary solutions of (1) are the zero solution and the semi-trivial
solutions Ũ i = ũi
ei, where ũi is the positive solution of (2). In that
paper it was also shown that Ũ1 is linearly stable and Ũ i is unstable
for i = 2, . . . , n. The results for the case of diffusion coefficients with
spatial dependence are the same.

Theorem 2.1. If 0 < d1(x) ≤ · · · ≤ dn(x), then the only nonnegative
equilibria of (3) are the zero solution and the semi-trivial solutions
Ũ i = ũi
ei, for i = 1, . . . , n, where ũi is the positive solution of (7)
with d = di.

Proof. Assume (u1, . . . , un) is a nonnegative stationary solution of
(3), and let q(x) = a(x)−∑n

j=1 uj(x), then ui is a nonnegative solution
of ∇.(di(x)∇ui) + q(x)ui = 0. We claim that q(x) is not a constant.
To see this, assume contrariwise that q(x) ≡ µ, and take i such that
ui �≡ 0, then ui > 0 and ∇.(d(x)∇ui) = −µui which forces µ = 0 and
ui constant. Combining these two facts we get a(x) =

∑n
j=1 uj is a

constant, a contradiction. It follows from Lemma 1.1 that the principal
eigenvalue λ0(d, q) is a strictly decreasing function of d. Therefore,
ui �≡ 0 for at most one value of i, and if there is such a value, ũi is the
required positive stationary solution.

When all diffusion coefficients d1, . . . , dn are the same, the set of
nonnegative stationary solutions is an n − 1-dimensional manifold.

Theorem 2.2. If the diffusion coefficients in (3) are equal, then any
stationary solution is of the form ũΛ, where ũ is the positive solution
of (7), Λ = (λ1, . . . , λn), with 0 ≤ λi ≤ 1 for i = 1, . . . , n, and∑n

i=1 λi = 1.

Proof. Assume (u1, . . . , un) is a nonnegative stationary solution of
(3) and let v =

∑n
j=1 uj . Then, v is a nonnegative stationary solution

of (7). By uniqueness, either v ≡ 0 or v = ũ, the positive stationary
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solution. In the former case, each ui ≡ 0.

If v = ũ, then each ui is a nonnegative solution of

∇.(d(x)∇φ) + [a − ũ]φ = 0.

Therefore, each ui must be of the form ui = λiũ with λi ≥ 0 and∑n
i=1 λi = 1.

II.2. Linear stability analysis. The linearization of (3) around Ũ i is
determined by the operator Li defined by

(11)
Li

i(Φ) = ∇.(di(x)∇φi) + [a − 2ũi]φi −
( ∑

j �=i

φj

)
ũi

Li
k(Φ) = ∇.(dk(x)∇φk) + [a − ũi]φk for k �= i

The spectrum of Li consists of the values of λ ∈ C for which there exists
a bounded nontrivial solution Φ = (φ1, . . . , φn) of Li(Φ) = λΦ.

The following result corresponds to Theorem 3.2 of [3].

Theorem 2.3. Under the assumptions of Theorem 2.1, we have

(i) Ũ1 is linearly stable

(ii) Ũ i is unstable for i = 2, . . . , n.

Proof. (i) If λ ∈ σ(L1), then either λ ∈ σ(L(dk, a − ũ1) for
some k ≥ 2 or λ ∈ σ(L(d1, a − 2ũ1). Since the first eigenvalue of
L(d1, a − ũ1) is λ0(d1, a − ũ1) = 0, it follows from the monotonocity
that λ0(d1, a − 2ũ1) < 0. Hence all eigenvalues of L1 are negative.

(ii) For i ∈ {2, . . . , n} and j ∈ {1, . . . , i−1}, any positive eigenvalue
of L(dj , a − ũi) is also an eigenvalue of Li, therefore it is an unstable
mode of Ũ i.

An important consequence of identity (9) and part i) above is the
uniform control on the first eigenvalue of L1 if we fix d1 and d2, and
let di → ∞ uniformly in Ω for i = 3, . . . , n. Indeed, for such values of
i we have

λ0(di, a − ũ1) → 〈a − ũ1〉 = − 1
|Ω|

∫
Ω

d1(x)|∇ũ1(x)|2
ũ2

1(x)
dx as di → ∞.
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Therefore, the first eigenvalue of L1 remains uniformly bounded away
from zero as di → ∞ in Ω for i = 3, . . . , n.

In the case of equal diffusions, all stationary solutions have similar
stability properties.

Theorem 2.4. If di(x) = d(x) for i = 1, . . . , n, then the first
eigenvalue of the linearization of (3) around ũΛ is µ = 0. All other
eigenvalues are negative.

Proof. If LũΛ is the linearized operator, then the eigenvalue equation
is

(12) ∇.(d(x)∇φi) + [a − ũ]φi −
( n∑

j=1

φj

)
λiũ = µφi i = 1, . . . , n.

It follows that S =
∑n

j=1 φj is a solution of ∇.(d(x)∇S) + [a− 2ũ]S =
µS. Then, either S �≡ 0 or S ≡ 0. In the former case, µ ∈ σ(L(d, a −
2ũ)), hence µ < 0. In the latter case, µ ∈ σ(L(d, a − ũ)). Moreover,
one can see from the structure of (11) that each µ ∈ σ(L(d, a − ũ)) is
an eigenvalue of the linearized operator. Therefore, µ = 0 is the top
eigenvalue.

II.3. Global existence, uniform bounds and the global attractor. The
existence of solutions of (3) proceeds as in I.4, with X = (L2(Ω))n,
and the norm being the sum of the norms of the components. In
the present situation, the initial condition U0 belongs to (Xα)n. The
solution satisfies U(., t; U0) ∈ (H2)n and it is C1 in t and continuous in
U0, as long as it exists.

A simple application of the maximum principle shows that the posi-
tive cone (K+)n is positively invariant under the flow.

From
∂ui

∂t
≤ ∇.(di(x)∇ui) + [a(x) − ui]ui,

we conclude that each component is bounded above by the solution of
the scalar equation (6) with diffusion di(x) and initial value ui(x, 0), if
U0 is in the positive cone.
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Therefore, solutions of (3) exist for all time and are bounded in L∞.
The existence of a compact global attractor is standard, see [5].

Moreover, each function (u1, . . . , un) in the global attractor satisfies
0 ≤ ui ≤ ũi, for i = 1, . . . , n, that is, each component is bounded above
by the corresponding steady state.

II.4. 0 is a repelling equilibrium. We shall verify that in K+ there is
a neighborhood N of the trivial solution of (3) with the property that
every trajectory starting in N leaves this set in finite time.

Indeed, let A :=〈a〉 and define N :={U =(u1, . . . , un) : ||U ||<A/2}.
For any t > 0 and any i ∈ {1, . . . , n} we have

d

dt

∫
Ω

ln(ui(x, t)) dx =
∫

Ω

di(x)
|∇ui(x, t)|2

u2
i (x, t)

dx

+
∫

Ω

[
a(x) −

n∑
j=1

uj(x, t)
]
dx.

Therefore, the lefthand side is bounded below by A/2 as long as the
solution U(x, t) remains in N . Since ui(x, t) is bounded in L∞, it
follows that U(x, t) leaves N in finite time.

III. The system of two phenotypes. The case of two phenotypes
is special: the corresponding system is monotone. Here we use the
notation u1 = u and u2 = v, so that the system becomes

(13)
ut = ∇.(d1(x)∇u) + [a − (u + v)]u
vt = ∇.(d2(x)∇v) + [a − (u + v)]v.

The stationary solutions are denoted by Ũ = (ũ, 0) and Ṽ = (0, ṽ).
The monotonicity of the system means that if u1(x, 0) ≥ u2(x, 0) and
v1(x, 0) ≤ v2(x, 0), then u1(x, t) ≥ u2(x, t) and v1(x, t) ≤ v2(x, t) for
all t > 0. This defines the order in (Xα)2 that is preserved by the flow.
The verification of the monotonicity is straightforward.

Theorem 3.1. If 0 < d1(x) ≤ d2(x) but d1 �= d2, then Ũ = (ũ, 0)
is the global attractor for the set of solutions with positive initial
conditions.
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Proof. The result for initial conditions in the order interval I :=
[Ũ , Ṽ ] follows from Proposition 2.4 in [8] since there are no stationary
solutions in the interior of the positive cone, the origin is a repelling
equilibrium and an extreme point of I. These properties guarantee the
existence of a connecting orbit γ(t) which is decreasing in t and such
that γ(−∞) = Ṽ , and γ(+∞) = Ũ .

Each function on the connecting orbit is a comparison function and
each initial condition in the order interval is bounded above by one of
these comparison functions.

The estimates in II.3 show that the ω-limit set of every positive initial
condition lies in the order interval I. Moreover, no trajectory in the
positive cone can converge to Ṽ , otherwise, in any neighborhood of Ṽ
there would be an open set of initial conditions on the stable manifold
of Ṽ , but this contradicts the fact that the local center-stable manifold
of Ṽ has codimension at least 1.

Our next task is to find explicit comparison functions. To this end,
notice that the principal eigenvalue λ0 of

∇.(d1(x)∇φ) + [a − ṽ]φ = λφ,

is positive. If, in addition, φ0 denotes the corresponding eigenfunction,
then λ0 is also the first eigenvalue of the linearization of (13) around
Ṽ and the corresponding eigenfunction is (φ0, 0).

The comparison functions (or lower-upper solutions) for (13) are
(rφ0, βṽ). If we normalize φ0 by the condition ||φ0||∞ = 1, then it is
enough to require 0 < r ≤ λ0. The restriction on β is that 1−β ≤ m0r,
where m0 = inf{φ0(x)/ṽ(x)}.

These comparison functions provide explicit invariant regions of the
form

{(u0, v0) : u0 ≥ rφ0, v0 ≤ βṽ}.
In this situation we see that the difference in the diffusion rates plays

a role in the construction of comparison functions, as λ0 is very small
if d1 and d2 are very close.

It is clear from Theorems 2.2 and 2.4 that if the diffusion coefficients
are different but very close, then the flow on the perturbed invariant
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manifold is very slow. Thus, if there is an estimate for the time
that a solution spends in an order interval determined by comparison
functions, that is, the extension of Proposition 1.2 to systems, then the
estimate will depend on the difference in the diffusions.

IV. Dynamics in the nearly equal diffusions case. When all
diffusion coefficients in (3) are the same, di(x) = d(x) for i = 1, . . . , n,
system (3) reduces to a scalar equation. Indeed, v =

∑n
i=1 ui is a

solution of
∂v

∂t
= ∇.(d(x)∇v) + [a − v]v.

More generally, we can consider the case where

(14) dk(x) = dk+1(x) = · · · = dk+l(x).

(Since by assumption dk(x) ≤ dk+1(x) for all k = 1, . . . , n−1 the above
statement follows from assuming dk(x) = dk+l(x).) This degeneracy
results in an l-dimensional family of equilibria. In particular, let ũ be
the positive equilibrium for (4) when d(x) = dk(x), then the set of
equilibria corresponding to the degeneracy of (14) is given by

S(k, . . . , k + l) :=
{ l∑

i=k

λiũ
ei |
l∑

i=k

λi = 1
}

.

It follows from the result in I.4 that v(x, t) → ũ(x) as t → ∞, at an
exponential rate. We shall prove that all trajectories of (3) with initial
conditions in the positive cone converge to a stationary solution, which,
by Theorem 2.2, is of the form ũΛ.

In this case we get a Morse decomposition, which will persist for small
perturbations of the diffusion coefficients, yielding the equilibrium U1

as the global attractor of the perturbed system. In the case of two
phenotypes, system (3) is monotone. From this property, we can extend
the previous result to the case of systems whose diffusion coefficients
are clustered about two primary values.

IV.1. Dynamics in the equal diffusion case. Consider the system

(15)
∂ui

∂t
= ∇.(d(x)∇ui) +

[
a(x) −

n∑
j=1

uj

]
ui for i = 1, . . . , n.
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The main result in this part is that all solutions of (15) starting in the
positive cone converge to a stationary solution, the form of which is
described in Theorem 2.2.

Theorem 4.1. Any solution of (15) with initial condition in K+ con-
verges to a stationary solution of the form ũΛ, where Λ = (λ1, . . . , λn)
with 0 ≤ λi ≤ 1 and

∑n
i=1 λi = 1.

Proof. Note that v(x, t) :=
∑n

i=1 ui → ũ(x) as t → ∞, at an
exponential rate.

The next step is to show that each component has a limit as t → ∞.
Let L0 be the linear operator L0 = L(d, a − ũ), then for each t > 0 we
have the representation

ui(x, t) = etL0ui(x, 0) +
∫ t

0

e(t−s)L0 [ũ(x) − v(x, s)]ui(x, s) ds.

The first term in the above expression converges to the projection of
the ith component of the initial condition onto the positive steady
state ũ. The integral term has two contributions, one coming from
the projection onto the span of ũ and one from the projection onto the
orthogonal complement. Because of the exponential rate of convergence
of v to ũ, the first contribution converges to

∫ ∞
0

αi(s) dsũ, where αi(s)
is the projection of [ũ − v(s)]ui(s) onto ũ. The second term decays to
zero at an exponential rate. Therefore,

lim
t→∞ui(x, t) =

(
µi +

∫ ∞

0

αi(s) ds

)
ũ(x).

Let λi = µi +
∫ ∞
0

αi(s) ds, then λi ≥ 0 by the maximum principle
and clearly

∑n
i=1 λi = 1.

IV.2. The clustered diffusion case. Consider the system

(16)

∂ui

∂t
= ∇.(µ(x)∇ui) +

[
a(x) −

n∑
j=1

uj

]
ui for i = 1, . . . , m,

∂ui

∂t
= ∇.(ν(x)∇ui) +

[
a(x) −

n∑
j=1

uj

]
ui for i = m + 1, . . . , n.
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where 0 < µ(x) ≤ ν(x) and µ �= ν. Setting

v =
m∑

i=1

ui and w =
n∑

i=m+1

ui

allows one to rewrite (16) as

(17)

∂v

∂t
= ∇.(µ(x)∇v) +

[
a(x) − v − w

]
v,

∂w

∂t
= ∇.(ν(x)∇w) +

[
a(x) − v − w

]
w.

As was indicated in Section II, the global dynamics for this system
is completely understood. However, to treat the case of perturbations
from (16) we need to introduce some additional ideas, see [2] for further
details.

Let Inv.K+ denote the set of bounded solutions in K+. The alpha and
omega limit sets of a point u are denoted by α(u) and ω(u), respectively.
A finite collection of disjoint compact invariant subsets of InvK+,

{M(p) ⊂ Inv K+ | p = 1, . . . P}

is a Morse decomposition if there exists a partial ordering > on the
indexing set {1, . . . , P} such that for every

u ∈ InvK+ \
P⋃

p=1

M(p)

there exists p for which ω(u) ⊂ M(p) and for each full trajectory
in backwards time through u there exists q such that q > p and
α(u) ⊂ M(q).

In the case of the dynamics generated by (17) the Morse decomposi-
tion is given by

M(3) = (0, 0), M(2) = (0, w̃), M(1) = (ṽ, 0)

or equivalently in the context of (16) one has that

M(3) = (0, 0), M(2) = S(m + 1, . . . n), M(1) = S(1, m).
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An important property of Morse decompositions is that they are
robust with respect to perturbations. In the context of these equations
this implies the following. Given ε > 0, there exists a δ > 0 such that
if for all x ∈ Ω,

|di(x) − µ(x)| < δ, for i = 1, . . .m

|di(x) − ν(x)| < δ, for i = m + 1, . . . n,

then there is a Morse decomposition {M ′(3), M ′(2), M ′(1)} of Inv K+

for the perturbed system and in the Hausdorff metric on compact sets

d(M(k), M ′(k)) < ε, k = 1, 2, 3.

Thus, one immediately has the following proposition.

Proposition 4.1. Consider system (3) under the additional assump-
tion that |d1(x) − dm(x)| < δ and |dm+1(x) − dn(x)| < δ for all x ∈ Ω
and δ > 0 sufficiently small. Then, if u ∈ Inv+K such that uk(x) �= 0
for some k < m,

ω(u) ⊂ Bε(S(1, . . . , m)).

If we impose the additional assumption that m = 2 then obviously
ω(u) ⊂ Bε(S(1, 2)). However, since in the perturbed system, d1 �= d2

the dynamics on S(1, 2) is determined by Theorem 3.1. Thus, in the
special case of n = 3 and |d1(x)−d2(x)| small, we obtain Theorem 4.2.

V. Large diffusions. In this section we consider equation (3) in
the case when at least n − 2 diffusion coefficients are large in Ω. We
shall prove that the slow equilibrium is the global attractor of initial
conditions in the interior of the positive cone, if di is sufficiently large
in Ω for i = 3, . . . , n. This result is based on the corresponding result
for the associated shadow system (5), and the fact that the dynamics
of (3) is approximated by that of the shadow system.

As a motivation, we begin with the case of two equations having
constant diffusion rates. In this section we use the notation u1 = u and
u2 = v.
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Let d2 = 1/ε, with 0 < ε � 1. We look for solutions of (3) of the
form

u(x, t; ε) = u0(x, t)+εu1(x, t)+. . . , v(x, t; ε) = v0(x, t)+εv1(x, t)+. . . .

The equations to order ε0 are

∂u0

∂t
= d1∆u0 + (a − u0)u0 − u0v0

0 = ∆v0.

The boundary condition implies that v0 is a function of t only, v0 =
v0(t) = 〈v(., t)〉.

The equation for v to order ε is

v̇0 = ∆v1 + [a − (u0 + v0)]v0,

which has solutions if and only if v̇0 = 〈a − u0〉v0 − (v0)2. It follows
that the shadow system is

∂u

∂t
= d1∆u + [a − (u + v)]u

v̇ = [〈a − u〉 − v]v.

When the diffusion coefficients are allowed to vary in space and n−2
of them are large, the shadow system is (5). The first step in the
analysis of (5) is the determination of the stationary solutions in the
positive cone.

Theorem 5.1. The only nonnegative stationary solutions of (5)
are the zero solution, Û = (ũ, 0, 0), V̂ = (0, ṽ, 0), (0, 0, α〈a〉), where
α = (α1, . . . , αn−2) with 0 ≤ αi ≤ 1 and

∑n−2
i=1 αi = 1.

Proof. The system for stationary solutions (u, v, ξ) of (5) is

(18)
∇.(d1(x)∇u) + [a(x) − (u + v + σ)]u = 0
∇.(d2(x)∇v) + [a(x) − (u + v + σ)]v = 0

[〈a − (u + v)〉 − σ]ξi = 0
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where σ =
∑n−2

j=1 ξj .

The stationary solutions of (18) in the positive cone satisfy either
ξi = 0 for i = 1, . . . , n − 2, or 〈a − (u + v)〉 = σ. In the first case, we
get the semi-trivial solutions Û , V̂ as well as the zero solution. In the
second case, if u is not identically zero, then u > 0 in Ω, so that we can
divide the first equation in (18) by u and integrate by parts to get∫

Ω

d1(x)
|∇u(x)|2

u2(x)
dx = −

∫
Ω

(a − u − v − σ) dx = 0.

Hence, u is constant in Ω. Similarly, if v �≡ 0, then v is a constant.
Since a(x) is not a constant, there are no solutions to the first equation
in (18) for which u and v are constants in space. This contradiction
shows that u ≡ 0, v ≡ 0 and ξ = 〈a〉α.

Existence of solutions of (18) for all positive times is established in
the space (Xα)2 × Rn−2, the argument is similar to the one given for
the full system in Section II. The a priori bounds of solutions and the
existence of the global attractor are entirely analogous. The only new
element is the estimate of the norm in (Xα)2 in terms of the L2-norm
as in [7].

An important tool in the description of the dynamics of the shadow
system is the existence of a Lyapunov function in the interior of the
positive cone K+:

Φ(u(.), v(.), ξ) = − 1
|Ω|

∫
Ω

[ln(u(x)) + ln(v(x))] dx + 2
n−2∑
i=1

ln(ξi).

Indeed, along a trajectory (u(., t), v(., t), ξ(t)) of (5) starting in the
interior of the positive cone we have

d

dt
Φ(u(., t), v(., t), ξ(t))

= − 1
|Ω|

∫
Ω

d1(x)
|∇u(x, t)|2

u2(x, t)
+ d2(x)

|∇v(x, t)|2
v2(x, t)

dx.

This energy decreases along orbits of (5) which lie in int (K+) and
it is strictly decreasing along such orbits, since there are no solutions
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of (18) in the interior of the positive cone for which u and v remain
independent of x during an interval of time.

Theorem 5.2. The stationary solution Û = (ũ, 0, 0) is the global
attractor of the shadow system (5) for the set of initial conditions which
lie in the interior of the positive cone.

Proof. Take a point p0 = (u0, v0, ξ0) in the interior of K+, and a
point q = (u1, v1, ξ1) in the ω-limit set ω(p0). The Lyapunov function
and Theorem 5.1 guarantee that q lies on the boundary ∂(K+), and by
the maximum principle, at least one of the components of q must be
zero.

Since Φ(u1, v1, ξ1) = ∞ if σ1 > 0 and either u1 ≡ 0 or v1 ≡ 0, then
necessarily, ξ1 = 0. Hence, the global attractor lies on the subspace
ξ = 0. Moreover, ξ(t) → 0 as t → ∞. It follows that every trajectory
starting in the interior of the positive cone converges to either Û or V̂ .

On the subspace ξ = 0, the dynamics corresponds to system (3) with
n = 2. One can verify that the shadow system is order preserving in
the sense of the hypotheses of [8]. From Theorem 2.3 (i), the fact that
each component of a point in the global attractor is bounded above by
the corresponding equilibrium, and Theorem B of [8], we conclude that
the slow equilibrium (ũ, 0) is the global attractor for initial conditions
in the interior of the positive cone.

Relative to (5), the center, if any, and stable directions of V̂ are
contained in the subspace u ≡ 0. Therefore, the center-stable manifold
is also contained in that subspace.

In the constant diffusion case, the basic facts about shadow systems
and attractors for systems of reaction-diffusion equations have been
established by Hale and Sakamoto [6]: if the shadow system has a
compact attractor A(d1, d2) for all d1 and d2 sufficiently large, then
for di sufficiently large, i = 3, . . . , n, the full system has a compact
attractor A(d1, d2, . . . , dn) which is upper semi-continuous at di = ∞,
i = 3, . . . , n.

In (2.5) of [6], the full system is expressed as a perturbation of a
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system consisting of the shadow system and a system of linear heat
equations, with diffusion constants di, in the subspace of functions with
mean zero. From this and Gronwall’s inequality, one concludes that
orbits of the shadow system are uniformly close to the corresponding
orbits of the full system, over finite intervals of time. See the proof of
Theorem 1 in [6] for details.

With the conventions established in the introduction, the unper-
turbed system is

∂u

∂t
= ∇.(d1(x)∇u) + [a(x) − (u + v + σ)]u

∂v

∂t
= ∇.(d2(x)∇v) + [a(x) − (u + v + σ)]v

ξ̇i = [〈a − (u + v)〉 − σ]ξi

∂zi

∂t
= ∇.(di(x)∇zi) i = 1, . . . , n − 2.

The perturbation is obtained from (3) and (5).

The estimates can be extended to the type of diffusion coefficients we
are considering. Indeed, the key ingredient is the exponential bound
(2.7) in [6] for the fundamental solution of the linear heat equation on
the subspace of functions with mean zero. In our case, the basic linear
operator is ∇.(d(x)∇u) and its first nonzero eigenvalue is bounded
above by the first nonzero eigenvalue of d∗∆, where d∗ is the minimum
of d over Ω. The estimates in the proof of the next theorem are omitted,
as they are straightforward extensions of the estimates used in the proof
of Theorem 1 in [6].

Theorem 5.3. Assume that di in (3) are sufficiently large for
i = 3, . . . , n. Then, U1 = ũ1
e1 is the global attractor for the set of
initial conditions which lie in the interior of the positive cone.

Proof. Let λ0 be the top eigenvalue of the linearization of (3) around
U1. In Section II we verified that λ0 remains uniformly bounded away
from zero as di → ∞ uniformly in Ω for i = 3, . . . , n. Hence, there
exist r > 0 and D > 0 such that if di > D in Ω for i = 3, . . . , n, then
all trajectories of the full system (3) starting in B(U1, r) converge to
U1 as t → ∞.
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Let A(d1, d2, . . . , dn) be the global attractor of (3) for initial con-
ditions in the interior of the positive cone. By the second estimate
in (2.10) of [6], the full system is a small (O(Dα−1)) perturbation of
the shadow system when we take initial conditions on the attractor
A(d1, d2, . . . , dn).

By compactness of the flow, there exists t0 > 0 such that the
trajectory of the shadow system starting at (u, v, w) ∈ A(d1, d2, . . . , dn)
remains in B(U1, (r/2)) for t ≥ t0. By choosing D so that the size of the
perturbation satisfies O(Dα−1) < (r/2t0), we can guarantee that the
solution of the full system starting at (u, v, w) differs from the solution
of the shadow system by less than (r/2) for 0 ≤ t ≤ t0. It follows that
the trajectory of the full system enters B(U1, r) at time t0, hence it
approaches U1 as t → ∞.

Therefore, A(d1, d2, . . . , dn) = U1.
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