
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 34, Number 4, Winter 2004

PLANE CURVES WITH MANY
POINTS OVER FINITE FIELDS

MATTHEW L. CARLIN AND JOSÉ FELIPE VOLOCH

1. Introduction. The purpose of this paper is to construct plane
curves over finite fields which meet the upper bound of [4, Theorem
0.1], recalled below, for the number of their rational points. We also
prove an irreducibility criterion for plane curves.

The upper bound of [4, Theorem 0.1] is the first inequality of the
following Theorem in the special case of irreducible curves.

Theorem 1. Let C be a, possibly reducible, plane algebraic curve
defined over Fp, p prime, of degree d < p. Suppose that C does not have
a linear component defined over Fp. Then #C(Fp) ≤ d(d + p − 1)/2.
If #C(Fp) ≥ d(d + p− 1)/2− (d− 1), then C is absolutely irreducible.

Proof. Without loss of generality, we can assume C is reduced, for the
conditions are only strengthened in this case. Let C1, . . . , Cm be the
components of C over Fp and let di be the degree of Ci. By hypothesis
di > 1 for all i. If Ci is absolutely irreducible, then by [4, Theorem 0.1],
#Ci(Fp) ≤ di(di +p−1)/2, whereas if Ci is not absolutely irreducible,
then #Ci(Fp) ≤ d2

i /4 as follows from the proof of Lemma 3.3 of [2].
As d2

i /4 < di(di + p − 1)/2, we also get the first bound when Ci is not
absolutely irreducible. Now

#C(Fp) ≤
∑

#Ci(Fp) ≤
∑

di(di + p − 1)/2.

From
∑

di = d we get that
∑

di(di + p − 1)/2 = d(d + p − 1)/2 −
∑

i<j

didj .

This, combined with the preceding inequality, gives the first state-
ment of the theorem. To get the second statement, consider the case
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that C is not absolutely irreducible. If m > 1, then assume without
loss of generality that d1 ≤ di, i > 1. It follows that
∑

i<j

didj ≥ d1(d2 + · · ·+dm) ≥ 2(d2 + · · ·+dm) ≥ d1 +d2 + · · ·+dm = d.

So #C(Fp) ≤ d(d + p − 1)/2 − d. If m = 1 then C is irreducible but
not absolutely irreducible so, as noted above, #C(Fp) ≤ d2/4. This
implies the requisite inequality unless p = 2 and d = 1 but then C is
absolutely irreducible and this completes the proof.

This result is useful when it easy to check that C contains no lines
defined over Fp. The following easy lemma gives a criterion for that to
happen.

Lemma. Let C/Fp be a plane curve which has no rational points in
common with a given line defined over Fp. Then C contains no line
defined over Fp.

Proof. Indeed, if C contains a line defined over Fp, the intersection
of this line with the given line will be a rational point common to C
and the given line, contrary to the hypothesis.

Remarks. (i) It may appear that the conditions of the lemma and the
theorem are hard to meet but, in fact, we will be using exactly these
conditions on the examples below.

(ii) It can also be shown that if, under the assumptions of the
theorem, we have #C(Fp) = d(d + p− 1)/2 then C is actually smooth.

Theorem 2. Let p be a prime, p ≡ 1 mod 4, and c a nonsquare in
Fp. Let C be the projective curve defined by

g = (y + cz)(p−1)/2 + y(p−1)/2 − z(p−1)/2 − x(p−1)/2 = 0.

Then C has 3(p − 1)2/8 points over Fp.

Proof. Consider first points with z = 0. It is clear that there
are no points with z = x = 0, so assume without loss of generality
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that z = 0, x = 1. The equation then gives 2y(p−1)/2 − 1 = 0.
As y(p−1)/2 ∈ {0, 1,−1} for y ∈ Fp, we get a contradiction unless
y(p−1)/2 = −1 and p = 3, but this is excluded since p ≡ 1 mod 4, by
hypothesis.

Now consider the case z = 1. If, in addition, x = 0 we get that
(y + c)(p−1)/2 + y(p−1)/2 = 1 with y ∈ Fp which implies that y = 0 or
y = −c, but either of these cases lead to c(p−1)/2 = 1, which contradicts
the assumption that c is a nonsquare in Fp. If now y = 0, we get
−2 − x(p−1)/2 = 0 which is impossible with x �= 0 unless p = 3, but
since we assumed p ≡ 1 mod 4, this case doesn’t happen.

Now assume that z = 1 and x, y �= 0. The proof now breaks into four
cases according to the quadratic character of x and y. If x, y are both
nonzero squares, they give a point on the curve if and only if y + c is
a nonzero square also. The conic u2 + c = v2 has two rational points
at infinity, and no rational point with u = 0 or v = 0. The other p − 1
points lead to (p−1)/4 values of y = u2 satisfying the above conditions
and conversely every such y is obtained this way. As there are (p−1)/2
choices for x we get (p − 1)2/8 points on the curve. Likewise, the case
where both x, y are nonsquares requires y + c to be a square and by
considering the conic cu2 + c = v2 again gives (p− 1)2/8 points on the
curve. When x is a nonsquare and y is a non-zero square, this requires
y + c to be a nonsquare and by considering the conic u2 + c = cv2

again we get a contribution of (p− 1)2/8 points. The case where y is a
nonsquare and x is a nonzero square leads to (y + c)(p−1)/2 = 3 which
is impossible. So there are a total of 3(p − 1)2/8 points on the curve
over Fp.

Remarks. (i) Likewise it can be shown that the curves defined by

(y + z)(p−1)/2 + y(p−1)/2 − z(p−1)/2 − x(p−1)/2 = 0

and
(cy + z)(p−1)/2 + y(p−1)/2 − z(p−1)/2 − x(p−1)/2 = 0

both have 3(p − 1)2/8 − (p − 5)/2 points over Fp.

(ii) In all these cases Theorem 1 and the lemma (with the given
line being x = 0, say) apply to prove that the curve in question is
irreducible and, in the case of the curve of the theorem, even smooth
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(by a previous remark), since the curve of theorem 2 attains the bound
d(d + p − 1)/2.

(iii) These curves are all obtained by slicing the surface

w(p−1)/2 + y(p−1)/2 − z(p−1)/2 − x(p−1)/2 = 0

by certain planes. This is a smooth surface with many points for its
degree, compare [5], but it also has many lines. The slicing is done so
as to avoid picking up these lines as components.

Theorem 3. Let p be a prime, p ≡ 3 mod 4, and c a nonsquare
in Fp. Let C be the projective curve defined by the affine equation
g(x, y) = (f(x)− f(y))/(x− y) where f(x) = (x + c)(p−1)/2 + x(p−1)/2.
Then C has (p − 3)(3p − 5)/8 points over Fp.

Proof. It is easy to see that C has (p−3)/2 rational points at infinity.
To compute the affine points, notice that f(x) = 0 if x ∈ Fp is such that
x is a nonzero square and x + c is a nonsquare or if x is a non-square
and x + c is a nonzero square. By an argument identical to one in the
proof of Theorem 2, there are (p − 1)/2 such values of x and taking
pairs of distinct such values give (p − 1)(p − 3)/4 rational points on
C. Further, f(x) = 2 if both x and x + c are nonzero squares. Again,
there are (p − 3)/4 such values of x and taking pairs of distinct such
values give (p − 7)(p − 3)/8 rational points on C. The same number
of points is obtained by looking at f(x) = −2. We have thus found
(p−3)(3p−5)/8 rational points on C. We claim that C has no rational
point with x = 0. Indeed, f(0) = −1 and if y �= 0, y ∈ Fp, f(y) = 0,±2,
unless y = −c which satisfies f(y) = 1, so C has no rational point with
x = 0 and y �= 0. Finally (0, 0) /∈ C since f ′(0) �= 0. The lemma now
gives that C has no rational linear component, so Theorem 1 gives that
C has at most (p − 3)(3p − 5)/8 points over Fp. As we have seen that
C has at least that many points, we conclude the proof.

Remark. Again it follows that C is irreducible and smooth.

In [3] there are examples attaining the upper bound in Theorem 1 for
all degrees d of the form p−1−2k, where k is any divisor of p−1 with
k < (p− 1)/2. Taking k = (p− 1)/4 gives examples of the same degree
as those of theorem 2, but the curves can be shown to be different.
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The degree of the curves in Theorem 3 is (p − 3)/2 which is not of
the form of the examples of [3]. Serre, see [1], has given constructions
of curves of degree 4 for 5 ≤ p ≤ 23 attaining the upper bound in
Theorem 1, but in some cases, such as p = 11, the construction is not
explicit. Theorem 3 gives an explicit example for p = 11 of a smooth
plane quartic, so a curve of genus 3, with 28 rational points.

One only knows improvements to the upper bound in Theorem 1 for
d < p/15 roughly (or for d > p, but this is trivial), these come from [4]
or from results such as the Hasse-Weil bound that apply to all curves.
Is it possible that the upper bound in Theorem 1 is always attained if
d is even and (p − 1)/15 ≤ d ≤ p − 1?
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