CONFORMALLY RECURRENT SEMI-RIEMANNIAN MANIFOLDS

YOUNG JIN SUH AND JUNG-HWAN KWON

Abstract

In this paper we give a complete classification of conformally recurrent semi-Riemannian manifolds with harmonic conformal curvature tensor and to give another generalization of conformally symmetric Riemannian manifolds. Moreover, we give a nontrivial example which is neither locally symmetric nor conformally flat.

1. Introduction. Let us denote by M an $n(\geq 4)$-dimensional semiRiemannian manifold with semi-Riemannian metric g and Riemannian connection ∇ and let R, respectively S or r, be the Riemannian curvature tensor, respectively the Ricci tensor or the scalar curvature, on M.

It is said to be conformally recurrent if the conformal curvature tensor C with components $C_{i j k l}$ so that

$$
\begin{align*}
C_{i j k l}= & R_{i j k l}-\frac{1}{n-2}\left(S_{i l} g_{j k}-S_{i k} g_{j l}+S_{j k} g_{i l}-S_{j l} g_{i k}\right) \tag{1.1}\\
& +\frac{r}{(n-1)(n-2)}\left(g_{i l} g_{j k}-g_{i k} g_{j l}\right)
\end{align*}
$$

is recurrent, i.e., there is a 1 -form α such that $\nabla C=\alpha \otimes C$, where $R_{i j k l}, S_{i j}$ and $g_{i j}$ are components of R, S and g on M. In particular, it is said to be conformally symmetric if $\nabla C=0$. As is easily seen, the class of conformally recurrent semi-Riemannian manifolds includes all the classes of conformally symmetric, conformally flat and locally symmetric semi-Riemannian manifolds. Among them such kind of Riemannian manifolds are studied by Besse [2], Ryan [12], Simon [13], Weyl $[\mathbf{1 5}, \mathbf{1 6}]$, Yano [17], Yano and Bochner [18], for example.

[^0]Conformally symmetric semi-Riemannian manifolds are investigated by Derdziński and Roter [6]. In particular, in the Riemannian case, Derdziński and Roter [6] and Miyazawa [9] proved the following

Theorem A. An $n(\geq 4)$-dimensional conformally symmetric manifold is conformally flat or locally symmetric.

The symmetric tensor K of type $(0,2)$ with components $K_{i j}$ is called the Weyl tensor if it satisfies

$$
\begin{equation*}
K_{i j l}-K_{i l j}=\frac{1}{2(n-1)}\left(k_{l} g_{i j}-k_{j} g_{i l}\right) \tag{1.2}
\end{equation*}
$$

where $k=\operatorname{Tr} K$ and $K_{i j l}$, respectively k_{j}, are components of the covariant derivative ∇K, respectively ∇k.

On the other hand, in Weyl [15] and [16] it can be easily seen that the Ricci tensor is a Weyl tensor when we only consider an $n(\geq 4)$ dimensional conformally flat Riemannian manifold, see Eisenhart [7]. In particular, Derdziński and Roter [6] investigated the structure of analytic conformally symmetric indefinite Riemannian manifold of index 1 which is neither conformally flat nor locally symmetric.

We denote by M an $n(\geqq 4)$-dimensional semi-Riemannian manifold with semi-Riemannian metric g and semi-Riemannian connection ∇. For a tensor field $(0, r+1)$ the codifferential δT of T is defined by

$$
\delta T\left(X_{1}, \ldots, X_{r}\right)=\sum_{i=1}^{r} \varepsilon_{i} \nabla_{E_{i}} T\left(E_{i}, X_{1}, \ldots, X_{r}\right)
$$

for any vector fields X_{1}, \ldots, X_{r}, where $\left\{E_{i}\right\}$ is an orthonormal frame on M. If $\delta C=0$, then M is said to have harmonic conformal curvature tensor, see Besse [2].

In this paper we want to make a generalization of such results in the direction of a certain kind of curvature-like tensor fields. In order to do this we introduce the notion of conformal recurrent curvature tensor, that is, the covariant derivative of the conformal curvature tensor C satisfies $\nabla C=\alpha \otimes C$ for a certain 1-form α. Moreover, let us say a semiRiemannian manifold M has harmonic conformal curvature tensor if
its conformal curvature tensor C satisfies $\delta C=0$, that is,

$$
\sum_{r} \varepsilon_{r} C_{r j k m r}=0
$$

If the semi-Riemannian manifold M is conformally symmetric, then it is trivial that it is conformally recurrent for $\mathcal{A}=0$ and it has a harmonic conformal curvature tensor.

Now in this paper we want to show the following

Theorem. Let M be an $n(\geq 4)$-dimensional Riemannian manifold. If M is conformally recurrent and it has a harmonic conformal curvature tensor and if the scalar curvature is nonzero constant, then it is conformally flat or locally symmetric.

When the 1 -form α vanishes identically in above theorem, it can be explained that a conformal Riemannian symmetric manifold M is locally symmetric or conformally flat. So our theorem is also a generalization of Theorem A. In Remark 3.3 given in Section 3 we will explain that the condition concerned with the scalar curvature is not necessary.

On the other hand, in Section 4 we will show that among the indefinite class of conformal recurrent manifolds with harmonic conformal curvature tensor there are so many kind of examples which are neither locally symmetric nor conformally flat, but its scalar curvature is vanishing. So in an indefinite version of such a theorem, the condition that nonzero constant scalar curvature is essential.
2. Preliminaries. Let M be an $n(\geqq 2)$-dimensional semiRiemannian manifold of index $s, 0 \leqq s \leqq n$, equipped with semiRiemannian metric tensor g and let R, respectively S or r, be the Riemannian curvature tensor, respectively the Ricci tensor or the scalar curvature, on M. In particular, if $0<s<n$, then M is said to be indefinite.
We can choose a local field $\left\{E_{j}\right\}=\left\{E_{1}, \ldots, E_{n}\right\}$ of orthonormal frames on a neighborhood of M. Here and in the sequel the indices i, j, k, \ldots run from 1 to n. With respect to the indefinite Riemannian
metric we have $g\left(E_{j}, E_{k}\right)=\varepsilon_{j} \delta_{j k}$, where

$$
\varepsilon_{j}=-1 \quad \text { or } \quad 1, \text { according to whether } 1 \leqq j \leqq s \text { or } s+1 \leqq j \leqq n
$$

Let $\left\{\theta_{i}\right\},\left\{\theta_{i j}\right\}$ and $\left\{\Theta_{i j}\right\}$ be the canonical form, the connection form and the curvature form on M, respectively, with respect to the local field $\left\{E_{j}\right\}$ of orthonormal frames. Then we have the structure equations

$$
\begin{gathered}
d \theta_{i}+\sum_{j} \varepsilon_{j} \theta_{i j} \wedge \theta_{j}=0, \quad \theta_{i j}+\theta_{j i}=0 \\
d \theta_{i j}+\sum_{k} \varepsilon_{k} \theta_{i k} \wedge \theta_{k j}=\Theta_{i j} \\
\Theta_{i j}=-\frac{1}{2} \sum_{k, l} \varepsilon_{k l} R_{i j k l} \theta_{k} \wedge \theta_{l}
\end{gathered}
$$

where $\varepsilon_{i j \cdots k}=\varepsilon_{i} \varepsilon_{j} \cdots \varepsilon_{k}$ and $R_{i j k l}$ denotes the components of the Riemannian curvature tensor R of M.
Now, let C be the conformal curvature tensor with components $C_{i j k l}$ on M, which is given by

$$
\begin{align*}
C_{i j k l}= & R_{i j k l}-\frac{1}{n-2}\left\{\varepsilon_{i}\left(\delta_{i l} S_{j k}-\delta_{i k} S_{j l}\right)+\varepsilon_{j}\left(S_{i l} \delta_{j k}-S_{i k} \delta_{j l}\right)\right\} \\
& +\frac{r}{(n-1)(n-2)} \varepsilon_{i j}\left(\delta_{i l} \delta_{j k}-\delta_{i k} \delta_{j l}\right) \tag{2.1}
\end{align*}
$$

where $S_{i j}=\sum_{l} \varepsilon_{l} R_{l i j l}$ are the components of the Ricci tensor S with respect to the local field $\left\{e_{j}\right\}$ of orthonormal frames and $r=\sum_{j} \varepsilon_{j} S_{j j}$ is the scalar curvature.

Remark 2.1. If M is Einstein, then the conformal curvature tensor C satisfies

$$
C_{i j k l}=R_{i j k l}-\frac{r}{n(n-1)} \varepsilon_{i j}\left(\delta_{i l} \delta_{j k}-\delta_{i k} \delta_{j l}\right)
$$

This yields that the conformal curvature tensors of Einstein Riemannian manifolds are the concircular curvature one. In particular, if M is of constant curvature, the conformal curvature tensor vanishes identically, Yano and Bochner [18].

Let $D^{r} M$ be the vector bundle consisting of differentiable r-forms and $D M=\sum_{r=0}^{n} D^{r} M$, where $D^{0} M$ is the algebra of differentiable functions on M. For any tensor field K in $D^{r} M$ the components $K_{i j k l h}$ of the covariant derivative ∇K of K are defined by (for simplicity, we consider the case $r=4$)

$$
\begin{aligned}
& \sum_{h} \varepsilon_{h} K_{i j k l h} \theta_{h} \\
& \quad=d K_{i j k l}-\sum_{h} \varepsilon_{h}\left(K_{h j k l} \theta_{h i}+K_{i h k l} \theta_{h j}+K_{i j h l} \theta_{h k}+K_{i j k h} \theta_{h l}\right)
\end{aligned}
$$

Now we denote by $T M$ the tangent bundle of M. Let T be a quadrilinear mapping of $T M \times T M \times T M \times T M$ into \mathbb{R} satisfying the curvature-like properties:
(a) $\quad T(X, Y, Z, U)=-T(Y, X, Z, U)=-T(X, Y, U, Z)$,
(b) $\quad T(X, Y, Z, U)=T(Z, U, X, Y)$,
(c) $\quad T(X, Y, Z, U)+T(Y, Z, X, U)+T(Z, X, Y, U)=0$.

Then T is called the curvature-like tensor on M. See Kobayashi and Nomizu [5], for example. Let $T_{i j k l}$ be the components of T associated with the orthonormal frame $\left\{E_{j}\right\}$; then the components $T_{i j k l}$ are given by $T_{i j k l}=T\left(E_{i}, E_{j}, E_{k}, E_{l}\right)$. By the conditions (a), (b) and (c), the following properties of the components of T hold corresponding to the conditions (a), (b) and (c):

$$
\begin{align*}
& T_{i j k l}=-T_{j i k l}=-T_{i j l k} \tag{2.2}\\
& T_{i j k l}=T_{k l i j}=T_{l k j i} \tag{2.3}\\
& T_{i j k l}+T_{j k i l}+T_{k i j l}=0 \tag{2.4}
\end{align*}
$$

If the components $T_{i j k l}$ of a tensor T in $D^{4} M=\otimes^{4} T^{*} M$ satisfy (2.2), (2.3) and (2.4), then it becomes a curvature-like tensor.

Lemma 2.1. On a semi-Riemannian manifold, the conformal curvature tensor C is curvature-like.

For any integer a and b such that $1 \leqq a<b \leqq s$ the metric contraction reduced by a and b is denoted by $\mathcal{C}_{a b}: T_{s}^{r} M \rightarrow T_{s-2}^{r} M$ with respect
to the orthonormal frame $\left\{E_{j}\right\}$. The symmetric tensor U in $D^{2} M$ is called the Weyl tensor if its components of the covariant derivative ∇U of U satisfy

$$
\begin{equation*}
U_{i j k}-\frac{1}{2(n-1)} u_{k} \varepsilon_{i} \delta_{i j}=U_{i k j}-\frac{1}{2(n-1)} u_{j} \varepsilon_{i} \delta_{i k} \tag{2.5}
\end{equation*}
$$

where $u=\mathcal{C}_{12} U$. In particular, if u is constant, then U is called the Codazzi tensor. We put $\nabla_{X} U(Y, Z)=\nabla U(Y, Z, X)$. Then it is easily seen that $\sum_{k} \varepsilon_{k} U_{k j k}=u_{k} / 2$.

Now let C be the conformal curvature tensor with components $C_{i j k l}$ on M. The semi-Riemannian manifold is said to be conformally flat if $C=0$. For the geometric meaning of conformally flat Riemannian manifolds, see Yano and Bochner [18], for example. In particular, if M is a space of constant curvature, the conformal curvature tensor vanishes identically.
The Ricci-like tensor Ric (C) of C is defined by $\mathcal{C}_{14}(C)=\mathcal{C}_{23}(C)$. Then the components $C_{j k}$ of $\operatorname{Ric}(C)$ are given by $C_{j k}=\sum_{r} \varepsilon_{r} C_{r j k r}$. We have then

$$
\begin{equation*}
C_{j k}=0 \tag{2.6}
\end{equation*}
$$

3. Conformally recurrent spaces. Let M be an $n(\geq 2)$ dimensional semi-Riemannian manifold of index $2 s, 0 \leq s \leq n$, with Riemannian connection ∇ and let R, respectively S or r, be the Riemannian curvature tensor, respectively the Ricci tensor or the scalar curvature, on M.

Now let C be the conformal curvature tensor with components $C_{i j k l}$ with respect to the field $\left\{E_{j}\right\}$ of orthonormal frames given by

$$
\begin{align*}
C_{i j k l}= & R_{i j k l}-\frac{1}{n-2}\left(\varepsilon_{j} S_{i l} \delta_{j k}-\varepsilon_{j} S_{i k} \delta_{j l}+\varepsilon_{i} S_{j k} \delta_{i l}-\varepsilon_{i} S_{j l} \delta_{i k}\right) \tag{3.1}\\
& +\frac{r}{(n-1)(n-2)} \varepsilon_{i j}\left(\delta_{i l} \delta_{j k}-\delta_{i k} \delta_{j l}\right)
\end{align*}
$$

Differentiating C of (3.1) covariantly, we have

$$
\begin{align*}
C_{i j k l m}= & R_{i j k l m}-\frac{1}{n-2}\left(\varepsilon_{j} S_{i l m} \delta_{j k}-\varepsilon_{j} S_{i k m} \delta_{j l}\right. \\
& \left.+\varepsilon_{i} S_{j k m} \delta_{i l}-\varepsilon_{i} S_{j l m} \delta_{i k}\right) \tag{3.2}\\
& +\frac{r_{m}}{(n-1)(n-2)} \varepsilon_{i j}\left(\delta_{i l} \delta_{j k}-\delta_{i k} \delta_{j l}\right),
\end{align*}
$$

where $C_{i j k l m}$, respectively $R_{i j k l m}, S_{j k m}$ or r_{m}, are the components of the covariant derivative ∇C of C, respectively the covariant derivative ∇R of $R, \nabla S$ of S or $d r$.

By the second Bianchi identity

$$
R_{i j k l m}+R_{i j l m k}+R_{i j m k l}=0
$$

for R and putting $i=m$ in (3.2) and summing up with respect to i, we obtain
$\sum_{r} \varepsilon_{r} C_{r j k m r}=(n-3)\left\{S_{j k m}-S_{j m k}-\varepsilon_{j}\left(r_{m} \delta_{j k}-r_{k} \delta_{j m}\right) / 2(n-1)\right\} /(n-2)$.
If M has a harmonic conformal curvature tensor, then we have by definition

$$
\begin{equation*}
\sum_{r} \varepsilon_{r} C_{r j k m r}=0 \tag{3.3}
\end{equation*}
$$

from which the following property is derived

Lemma 3.1. Let M be an $n(\geq 4)$-dimensional semi-Riemannian manifold. If M has a harmonic conformal curvature tensor, then the Ricci tensor is a Weyl tensor.

Lemma 3.2. Let M be an $n(\geq 4)$-dimensional semi-Riemannian manifold. If M has a harmonic conformal curvature tensor, then it satisfies

$$
\begin{equation*}
\sum_{r} \varepsilon_{r}\left(R_{r i k m} S_{r j}+R_{r i m j} S_{r k}+R_{r i j k} S_{r m}\right)=0 \tag{3.4}
\end{equation*}
$$

Proof. By the assumption, Lemma 3.1 gives that the Ricci tensor S is the Weyl tensor. By the definition of (2.5) we have

$$
\begin{equation*}
S_{i j k}-S_{i k j}=\varepsilon_{i}\left(r_{k} \delta_{i j}-r_{j} \delta_{i k}\right) / 2(n-1) \tag{3.5}
\end{equation*}
$$

Differentiating covariantly, we get

$$
S_{i j k m}-S_{i k j m}=\left(r_{k m} \varepsilon_{i} \delta_{i j}-r_{j m} \varepsilon_{i} \delta_{i k}\right) / 2(n-1)
$$

Interchanging the indices k and m and subtracting the resulting equation from this, we obtain

$$
S_{i j k m}-S_{i j m k}+S_{i m j k}-S_{i k j m}=\varepsilon_{i}\left(r_{j k} \delta_{i m}-r_{j m} \varepsilon_{i k}\right) / 2(n-1),
$$

where we have used the property that $r_{i j}$ is symmetric with respect to i and j, because r is the function. Thus we have that the left side is equivalent to

$$
\begin{aligned}
= & \left(S_{i j k m}-S_{i j m k}\right)+\left(S_{i m j k}-S_{i m k j}\right)+\left(S_{i m k j}-S_{i k j m}\right) \\
= & \left(S_{i j k m}-S_{i j m k}\right)+\left(S_{i m j k}-S_{i m k j}\right) \\
& +\left[\left\{S_{i k m j}+\varepsilon_{i}\left(r_{k j} \delta_{i m}-r_{m j} \delta_{i k}\right) / 2(n-1)\right\}-S_{i k j m}\right] \\
= & -\sum_{r} \varepsilon_{r}\left(R_{m k i r} S_{r j}+R_{m k j r} S_{i r}\right)-\sum_{r} \varepsilon_{r}\left(R_{k j i r} S_{r m}+R_{k j m r} S_{i r}\right) \\
& -\sum_{r} \varepsilon_{r}\left(R_{j m i r} S_{r k}+R_{j m k r} S_{i r}\right)+\varepsilon_{i}\left(r_{k j} \delta_{i m}-r_{m j} \delta_{i k}\right) / 2(n-1) \\
= & -\sum_{r} \varepsilon_{r}\left(R_{m k i r} S_{r j}+R_{j m i r} S_{r k}+R_{k j i r} S_{r m}\right. \\
& +\varepsilon_{i}\left(r_{k j} \delta_{i m}-r_{m j} \delta_{i k}\right) / 2(n-1)
\end{aligned}
$$

where the second equality follows from (3.2), the third equality is derived from the Ricci identity for the Ricci tensor $S_{i j}$ and the fourth equality follows from the first Bianchi identity. It yields that we have (3.4). It completes the proof.

Lemma 3.3. Let M be an ($n \geq 4$)-dimensional semi-Riemannian manifold. If M is conformally recurrent and if S is the Weyl tensor, then we obtain

$$
\begin{align*}
& \sum_{r} \varepsilon_{r}\left(C_{r i k m} S_{r j}+C_{r i m j} S_{r k}+C_{r i j k} S_{r m}\right)=0 \tag{3.6}\\
& \sum_{r} \varepsilon_{r}\left(C_{r i k m} S_{r j n}+C_{r i m j} S_{r k n}+C_{r i j k} S_{r m n}\right)=0 \tag{3.7}
\end{align*}
$$

Proof. Substituting the components $R_{i j k m}$ of (2.1) into the lefthand side of (3.4) and calculating directly, we get the equation (3.6).

Now differentiating (3.6) covariantly and taking account of (3.6), then the conformal recurrence implies (3.7). This completes the proof.

Theorem 3.4. Let M be an $n(\geq 4)$-dimensional semi-Riemannian manifold of index $s, 0 \leq s \leq n$, with Riemannian connection ∇. Assume that M is conformally recurrent and has a harmonic conformal curvature tensor. If the scalar curvature is constant, then it satisfies

$$
\|\alpha\|^{2}\|C\|^{2}\|\nabla S-\alpha S\|^{2}=0
$$

where $\|*\|^{2}$ denotes the squared norm of the scalar product on M.

Proof. Let $C_{i j k m n p}$ be the components of the covariant derivative $\nabla^{2} C$ of ∇C. They are given by

$$
\begin{equation*}
C_{i j k m n p}=\left(\alpha_{n} \alpha_{p}+\alpha_{n p}\right) C_{i j k m} \tag{3.8}
\end{equation*}
$$

Now we define by f the scalar product of C, namely we put $f=\langle C, C\rangle$. Let M^{\prime} be the subset of M consisting of points x in M such that $f(x)=0$. Then we have

$$
\nabla f=2\langle\nabla C, C\rangle=2 \alpha f
$$

on the open subset $M-M^{\prime}$ and hence we have $\alpha=\nabla f / 2 f$, from which it follows that

$$
2 \alpha=\nabla \log |f|
$$

This implies that

$$
\begin{equation*}
\alpha_{i j}=\alpha_{j i} \quad \text { on } M-M^{\prime} \tag{3.9}
\end{equation*}
$$

So, on $M-M^{\prime}$, by (3.8) and (3.9) we have $C_{i j k m n p}=C_{i j k m p n}$. Accordingly, by the Ricci identity we get

$$
\begin{equation*}
\sum_{r} \varepsilon_{r}\left(R_{p n i r} C_{r j k m}+R_{p n j r} C_{i r k m}+R_{p n k r} C_{i j r m}+R_{p n m r} C_{i j k r}\right)=0 \tag{3.10}
\end{equation*}
$$

Differentiating the above equation covariantly and taking account of $C_{i j k m n}=\alpha_{n} C_{i j k m}$, we have

$$
\begin{aligned}
& \sum_{r} \varepsilon_{r}\left\{\left(R_{p n i r q} C_{r j k m}+R_{p n j r q} C_{i r k m}+R_{p n k r q} C_{i j r m}+R_{p n m r q} C_{i j k r}\right)\right. \\
& \left.\quad+\alpha_{q}\left(R_{p n i r} C_{r j k m}+R_{p n j r} C_{i r k m}+R_{p n k r} C_{i j r m}+R_{p n m r} C_{i j k r}\right)\right\}=0
\end{aligned}
$$

Hence we have by (3.10)
(3.11)
$\sum_{r} \varepsilon_{r}\left(R_{p n i r q} C_{r j k m}+R_{p n j r q} C_{i r k m}+R_{p n k r q} C_{i j r m}+R_{p n m r q} C_{i j k r}\right)=0$.
On the other hand, by $(2.1),(3.2)$ and $\alpha_{h} C_{i j k l}=C_{i j k l h}$ we have

$$
\begin{aligned}
\alpha_{n} & R_{i j k m}-\left\{\varepsilon_{i}\left(S_{j k} \delta_{i m}-S_{j m} \delta_{i k}\right)+\varepsilon_{j}\left(\delta_{j k} S_{i m}-\delta_{j m} S_{i k}\right)\right\} /(n-2) \\
& \left.+r \varepsilon_{i}\left(\delta_{j k} \delta_{i m}-\delta_{j m} \delta_{i k}\right) /(n-1)(n-2)\right] \\
= & R_{i j k m n}-\left\{\varepsilon_{i}\left(S_{j k n} \delta_{i m}-S_{j m n} \delta_{i k}\right)+\varepsilon_{j}\left(\delta_{j k} S_{i m n}-\delta_{j m} S_{i k n}\right)\right\} /(n-2) \\
& +r_{n} \varepsilon_{i j}\left(\delta_{j k} \delta_{i m}-\delta_{j m} \delta_{i k}\right) /(n-1)(n-2)
\end{aligned}
$$

and hence we get

$$
\begin{align*}
& R_{i j k m n} \tag{3.12}\\
& \qquad \begin{array}{l}
=\alpha_{n} R_{i j k m}+\varepsilon_{i}\left\{\left(S_{j k n} \delta_{i m}-S_{j m n} \delta_{i k}\right)-\alpha_{n}\left(S_{j k} \delta_{i m}-S_{j m} \delta_{i k}\right)\right\} /(n-2) \\
\quad+\varepsilon_{j}\left\{\left(\delta_{j k} S_{i m n}-\delta_{j m} S_{i k n}\right)-\alpha_{n}\left(\delta_{j k} S_{i m}-\delta_{j m} S_{i k}\right)\right\} /(n-2) \\
\quad+\left(r \alpha_{n}-r_{n}\right) \varepsilon_{i j}\left(\delta_{j k} \delta_{i m}-\delta_{j m} \delta_{i k}\right) /(n-1)(n-2)
\end{array}
\end{align*}
$$

From (3.11) and (3.12) it follows that

$$
\begin{aligned}
\alpha_{q} \sum_{r} & \varepsilon_{r}\left(R_{p n i r} C_{r j k m}+R_{p n j r} C_{i r k m}+R_{p n k r} C_{i j r m}+R_{p n m r} C_{i j k r}\right) \\
& +\sum_{r} \varepsilon_{r p}\left[\left\{S_{n i q} \delta_{p r}-S_{n r q} \delta_{p i}\right)-\alpha_{q}\left(S_{n i} \delta_{p r}-S_{n r} \delta_{p i}\right)\right\} C_{r j k m} \\
& +\left\{\left(S_{n j q} \delta_{p r}-S_{n r q} \delta_{p j}\right)-\alpha_{q}\left(S_{n j} \delta_{p r}-S_{n r} \delta_{p j}\right)\right\} C_{i r k m} \\
& +\left\{\left(S_{n k q} \delta_{p r}-S_{n r q} \delta_{p k}\right)-\alpha_{q}\left(S_{n k} \delta_{p r}-S_{n r} \delta_{p k}\right)\right\} C_{i j r m} \\
& \left.+\left\{\left(S_{n m q} \delta_{p r}-S_{n r q} \delta_{p m}\right)-\alpha_{q}\left(S_{n m} \delta_{p r}-S_{n r} \delta_{p m}\right)\right\} C_{i j k r}\right] /(n-2) \\
& +\sum_{r} \varepsilon_{r} n\left[\left\{\left(\delta_{n i} S_{p r q}-\delta_{n r} S_{p i q}\right)-\alpha_{q}\left(\delta_{n i} S_{p r}-\delta_{n r} S_{p i}\right)\right\} C_{r j k m}\right. \\
& +\left\{\left(\delta_{n j} S_{p r q}-\delta_{n r} S_{p j q}\right)-\alpha_{q}\left(\delta_{n j} S_{p r}-\delta_{n r} S_{p j}\right)\right\} C_{i r k m} \\
& +\left\{\left(\delta_{n k} S_{p r q}-\delta_{n r} S_{p k q}\right)-\alpha_{q}\left(\delta_{n k} S_{p r}-\delta_{n r} S_{p k}\right)\right\} C_{i j r m} \\
& \left.+\left\{\left(\delta_{n m} S_{p r q}-\delta_{n r} S_{p m q}\right)-\alpha_{q}\left(\delta_{n m} S_{p r}-\delta_{n r} S_{p m}\right)\right\} C_{i j k r}\right] /(n-2) \\
& +\left(r \alpha_{q}-r_{q}\right)\left\{\varepsilon_{n}\left(\delta_{n i} C_{p j k m}+\delta_{n j} C_{i p k m}+\delta_{n k} C_{i j p m}+\delta_{n m} C_{i j k p}\right)\right. \\
& \left.-\varepsilon_{p}\left(\delta_{p i} C_{n j k m}+\delta_{p j} C_{i n k m}+\delta_{p k} C_{i j n m}+\delta_{p m} C_{i j k n}\right)\right\} /(n-1)(n-2) \\
= & 0
\end{aligned}
$$

which can be reformed by (3.10) as

$$
\begin{aligned}
& \sum_{r} \varepsilon_{r p}\left[\left\{S_{n i q} \delta_{p r}-S_{n r q} \delta_{p i}\right) C_{r j k m}+\left(S_{n j q} \delta_{p r}-S_{n r q} \delta_{p j}\right) C_{i r k m}\right. \\
&+\left\{\left(S_{n k q} \delta_{p r}-S_{n r q} \delta_{p k}\right) C_{i j r m}-\left(S_{n m q} \delta_{p r}-S_{n r q} \delta_{p m}\right) C_{i j k r}\right\} \\
&-\alpha_{q}\left\{\left(S_{n i} \delta_{p r}-S_{n r} \delta_{p i}\right) C_{r j k m}+\left(S_{n j} \delta_{p r}-S_{n r} \delta_{p j}\right) C_{i r k m}\right. \\
&\left.+\left(S_{n k} \delta_{p r}-S_{n r} \delta_{p k}\right) C_{i j r m}+\left(S_{n m} \delta_{p r}-S_{n r} \delta_{p m}\right) C_{i j k r}\right] /(n-2) \\
&+\sum_{r} \varepsilon_{r} n\left[\left\{\delta_{n i} S_{p r q}-\delta_{n r} S_{p i q}\right)-\alpha_{q}\left(\delta_{n i} S_{p r}-\delta_{n r} S_{p i}\right)\right\} C_{r j k m} \\
&+\left\{\left(\delta_{n j} S_{p r q}-\delta_{n r} S_{p j q}\right)-\alpha_{q}\left(\delta_{n j} S_{p r}-\delta_{n r} S_{p j}\right)\right\} C_{i r k m} \\
&+\left\{\left(\delta_{n k} S_{p r q}-\delta_{n r} S_{p k q}\right)-\alpha_{q}\left(\delta_{n k} S_{p r}-\delta_{n r} S_{p k}\right)\right\} C_{i j r m} \\
&\left.+\left\{\left(\delta_{n m} S_{p r q}-\delta_{n r} S_{p m q}\right)-\alpha_{q}\left(\delta_{n m} S_{p r}-\delta_{n r} S_{p m}\right)\right\} C_{i j k r}\right] /(n-2) \\
&+\left(r \alpha_{q}-r_{q}\right)\left\{\varepsilon_{n}\left(\delta_{n i} C_{p j k m}+\delta_{n j} C_{i p k m}+\delta_{n k} C_{i j p m}+\delta_{n m} C_{i j k p}\right)\right. \\
&\left.-\varepsilon_{p}\left(\delta_{p i} C_{n j k m}+\delta_{p j} C_{i n k m}+\delta_{p k} C_{i j n m}+\delta_{p m} C_{i j k n}\right)\right\} /(n-1)(n-2) \\
&= 0
\end{aligned}
$$

and hence by multiplying both sides by $(n-2)$ we obtain

$$
\begin{aligned}
\left(S_{n i q}\right. & \left.C_{p j k m}+S_{n j q} C_{i p k m}+S_{n k q} C_{i j p m}+S_{n m q} C_{i j k p}\right) \\
& -\left(S_{p i q} C_{n j k m}+S_{p j q} C_{i n k m}+S_{p k q} C_{i j n m}+S_{p m q} C_{i j k n}\right) \\
& -\sum_{r} \varepsilon_{r p}\left(\delta_{p i} C_{r j k m}+\delta_{p j} C_{i r k m}+\delta_{p k} C_{i j r m}+\delta_{p m} C_{i j k r}\right) S_{n r q} \\
& +\sum_{r} \varepsilon_{r n}\left(\delta_{n i} C_{r j k m}+\delta_{n j} C_{i r k m}+\delta_{n k} C_{i j r m}+\delta_{n m} C_{i j k r}\right) S_{p r q} \\
& -\alpha_{q}\left\{\left(S_{n i} C_{p j k m}+S_{n j} C_{i p k m}+S_{n k} C_{i j p m}+S_{n m} C_{i j k p}\right)\right. \\
& \left.-\left(S_{p i} C_{n j k m}+S_{p j} C_{i n k m}+S_{p k} C_{i j n m}+S_{p m} C_{i j k n}\right)\right\} \\
& +\alpha_{q}\left\{\sum_{r} \varepsilon_{r p}\left(\delta_{p i} C_{r j k m}+\delta_{p j} C_{i r k m}+\delta_{p k} C_{i j r m}+\delta_{p m} C_{i j k r}\right) S_{n r}\right. \\
& \left.-\sum_{r} \varepsilon_{r n}\left(\delta_{n i} C_{p j k m}+\delta_{n j} C_{i r k m}+\delta_{n k} C_{i j p m}+\delta_{n m} C_{i j k r}\right) S_{p r}\right\} \\
& +\left(r \alpha_{q}-r_{q}\right)\left\{\varepsilon_{n}\left(\delta_{n i} C_{p j k m}+\delta_{n j} C_{i p k m}+\delta_{n k} C_{i j p m}+\delta_{n m} C_{i j k p}\right)\right. \\
& \left.-\varepsilon_{p}\left(\delta_{p i} C_{n j k m}+\delta_{p j} C_{i n k m}+\delta_{p k} C_{i j n m}+\delta_{p m} C_{i j k n}\right)\right\} /(n-1) \\
= & 0 .
\end{aligned}
$$

Accordingly, we have

$$
\begin{align*}
& \left\{\left(S_{n i q}-\alpha_{q} S_{n i}\right) C_{p j k m}+\left(S_{n j q}-\alpha_{q} S_{n j}\right) C_{i p k m}\right. \tag{3.13}\\
& \left.\quad+\left(S_{n k q}-\alpha_{q} S_{n k}\right) C_{i j p m}+\left(S_{n m q}-\alpha_{q} S_{n m}\right) C_{i j k p}\right\} \\
& \quad-\left\{\left(S_{p i q}-\alpha_{q}\right) C_{n j k m}+\left(S_{p j q}-\alpha_{q} S_{p j}\right) C_{i n k m}\right. \\
& \left.\left.\quad+\left(S_{p k q}-\alpha_{q}\right) C_{i j n m}+\left(S_{p m q}-\alpha_{q} S_{p m}\right) C_{i j k n}\right)\right\} \\
& \quad-\sum_{r} \varepsilon_{r p}\left(\delta_{p i} C_{r j k m}+\delta_{p j} C_{i r k m}+\delta_{p k} C_{i j r m}+\delta_{p m} C_{i j k r}\right) \\
& \quad \cdot\left(S_{n r q}-\alpha_{q} S_{n r}\right) \\
& \quad+\sum_{r} \varepsilon_{r n}\left(\delta_{n i} C_{r j k m}+\delta_{n j} C_{i r k m}+\delta_{n k} C_{i j r m}+\delta_{n m} C_{i j k r}\right) \\
& \quad \cdot\left(S_{p r q}-\alpha_{q} S_{p r}\right) \\
& \quad+\left(r \alpha_{q}-r_{q}\right)\left\{\varepsilon_{n}\left(\delta_{n i} C_{p j k m}+\delta_{n j} C_{i p k m}+\delta_{n k} C_{i j p m}+\delta_{n m} C_{i j k p}\right)\right. \\
& \left.\quad-\varepsilon_{p}\left(\delta_{p i} C_{n j k m}+\delta_{p j} C_{i n k m}+\delta_{p k} C_{i j n m}+\delta_{p m} C_{i j k n}\right)\right\} /(n-1) \\
& \quad=
\end{align*}
$$

Now putting $i=r$ in (3.13), summing up with respect to \sum_{i} and taking account of (2.6), Lemma 2.1 and the first Bianchi identity for C, we have

$$
\begin{align*}
\sum_{r} & \varepsilon_{r}\left[(n-2)\left(S_{n r q}-\alpha_{q} S_{n r}\right) C_{r j k m}+\left(S_{j r q}-\alpha_{q} S_{j r}\right) C_{r n k m}\right. \tag{3.14}\\
& +\left(S_{k r q}-\alpha_{q} S_{k r}\right) C_{r j n m}+\left(S_{m r q}-\alpha_{q} S_{m r}\right) C_{r j k n} \\
& \left.+\sum_{s} \varepsilon_{s}\left\{\varepsilon_{n} \delta_{n k}\left(S_{r s q}-\alpha_{q} S_{r s}\right) C_{r j m s}-\varepsilon_{n} \delta_{n m}\left(S_{r s q}-\alpha_{q} S_{r s}\right) C_{r j k s}\right\}\right] \\
& =0
\end{align*}
$$

Next we assume that M is conformally recurrent and M has a harmonic conformal curvature tensor, namely, it satisfies $\sum_{r} \varepsilon_{r} C_{r j k m r}=0$. Then we have

$$
\begin{equation*}
\sum_{r} \varepsilon_{r} \alpha_{r} C_{r j k m}=0 \tag{3.15}
\end{equation*}
$$

Putting $m=q$ in (3.14), summing up with respect to m and taking
account of (3.15) and (3.5), we have

$$
\begin{align*}
\sum_{r, s} & \varepsilon_{r s}\left\{(n-2) S_{n r s} C_{r j k s}+S_{j r s} C_{r n k s}+S_{k r s} C_{r j n s}-\alpha_{s} S_{r s} C_{r j k n}\right\} \tag{3.16}\\
& +\sum_{r} \varepsilon_{r} r_{r} C_{r j k n} / 2+\sum_{r, s, t} \varepsilon_{n} \varepsilon_{r s t} \delta_{n k} S_{r s t} C_{r j t s} \\
& -\sum_{r s} \varepsilon_{r s}\left(S_{r s n}-\alpha_{n} S_{r s}\right) C_{r j k s}=0
\end{align*}
$$

The third term of (3.16) vanishes identically, since it satisfies

$$
\begin{aligned}
\text { the third term } & =\sum_{r, s, t} \varepsilon_{n} \varepsilon_{r s t} \delta_{n k}\left(S_{r s t}-S_{r t s}\right) C_{r j t s} / 2 \\
& =\sum_{r, s, t} \varepsilon_{r s t} \varepsilon_{n} \delta_{n k} \varepsilon_{r}\left(r_{t} \delta_{r s}-r_{s} \delta_{r t}\right) C_{r j t s} / 4(n-1)=0
\end{aligned}
$$

where the first equality follows from (2.2), the second one is derived by (3.5) and the last one is derived from (2.6).

On the other hand, we get

$$
\begin{aligned}
\sum_{r, s} \varepsilon_{r s t}\left(S_{r n s}-S_{r s n}\right) C_{r j k s} & =\sum_{r, s} \varepsilon_{r s} \varepsilon_{r}\left(r_{s} \delta_{r n}-r_{n} \delta_{r s}\right) C_{r j k s} / 2(n-1) \\
& =\sum_{s} \varepsilon_{s} r_{s} C_{n j k s} / 2(n-1)
\end{aligned}
$$

where the first equality is derived by (3.4) and the second one follows from (2.6). Thus (3.16) is deformed as

$$
\begin{align*}
& \sum_{r, s} \varepsilon_{r s}\left\{(n-3) S_{n r s} C_{r j k s}+S_{j r s} C_{r n k s}+S_{k r s} C_{r j n s}-\alpha_{s} S_{r s} C_{r j k n}\right\} \tag{3.17}\\
& \quad+\sum_{r} r_{r} \varepsilon_{r} C_{r j k n} / 2+\sum_{r} r_{r} \varepsilon_{r} C_{n j k r} / 2(n-1)+\sum_{r, s} \alpha_{n} S_{r s} C_{r j k s}=0 .
\end{align*}
$$

Since M is conformally recurrent and M has a harmonic conformal curvature tensor, by (3.7) we have

$$
\sum_{r} \varepsilon_{r}\left(C_{r i k m} S_{r j n}+C_{r i m j} S_{r k n}+C_{r i j k} S_{r m n}\right)=0
$$

Putting m and n by s in (3.7) and multiplying ε_{l} and summing up with respect to s, we have

$$
\begin{equation*}
\sum_{r, s} \varepsilon_{r s}\left(S_{j r s} C_{r i k s}-S_{k r s} C_{r i j s}\right)+\frac{1}{2} \sum_{s} \varepsilon_{s} r_{s} C_{s i j k}=0 \tag{3.18}
\end{equation*}
$$

By (3.17) and (3.18) we have

$$
\begin{gathered}
\sum_{r, s} \varepsilon_{r s}\left\{(n-1) S_{n r s} C_{r j k s}-\alpha_{s} S_{r s} C_{r j k n}\right\}-\sum_{r} r_{r} \varepsilon_{r} C_{r j k n} / 2 \\
\quad+\sum_{r} r_{r} \varepsilon_{r} C_{n j k r} / 2(n-1)+\sum_{r, s} \varepsilon_{r s} \alpha_{n} S_{r s} C_{r j k s}=0
\end{gathered}
$$

Then from this by using the conformal recurrence and the assumption of constant scalar curvature we have

$$
(n-1) \sum_{r s} S_{n r s} C_{r j k s}+\sum_{r s} S_{r s}\left(C_{r j k n s}-C_{r j k s n}\right)=0
$$

Here we note that the indices j and k in the first and the third terms are symmetric with each other, because $S_{n r s}$ and $S_{r s}$ are symmetric with respect to the indices r and s. From such a fact, if take a skewsymmetric part to the above equation, then it follows that

$$
\begin{aligned}
0 & =\sum_{r, s} \varepsilon_{r s} S_{r s}\left(C_{r j k n s}-C_{r k j n s}\right)=\sum_{r, s} \varepsilon_{r s} S_{r s}\left(C_{r j k n s}+C_{r k n j s}\right) \\
& =-\sum_{r, s} \varepsilon_{r s} S_{r s} C_{r n j k s} .
\end{aligned}
$$

Hence we are able to assert that

$$
\begin{equation*}
\sum_{r, s} \varepsilon_{r s} S_{n r s} C_{r j k s}=\sum_{r, s} \varepsilon_{r s} S_{r s n} C_{r j k s}=0 \tag{3.19}
\end{equation*}
$$

Transvecting (3.14) to $\alpha_{m} \alpha_{n} \alpha_{q}$, summing up with respect to m, n and q, and taking account of (3.15) and (3.19), we have

$$
\begin{equation*}
\|\alpha\|^{2} \sum_{r, s} \varepsilon_{r s} S_{r s} C_{r j k s}=0 \tag{3.20}
\end{equation*}
$$

where $\|\alpha\|^{2}=\left\|\sum_{r} \varepsilon_{r} \alpha_{r} \alpha_{r}\right\|$. By (3.14), (3.19) and (3.20) we have

$$
\begin{aligned}
&\|\alpha\|^{2} \sum_{r} \varepsilon_{r}\left[\left\{(n-2)\left(S_{n r q}-\alpha_{q} S_{n r}\right) C_{r j k m}+\left(S_{j r q}-\alpha_{q} S_{j r}\right) C_{r n k m}\right\}\right. \\
&\left.+\left(S_{k r q}-\alpha_{q} S_{k r}\right) C_{r j n m}+\left(S_{m r q}-\alpha_{q} S_{m r}\right) C_{r j k n}\right]=0
\end{aligned}
$$

By Lemma 3.3 we have

$$
\begin{aligned}
& \sum_{r} \varepsilon_{r}\left\{\left(S_{k r q}-\alpha_{q} S_{k r}\right) C_{r j n m}+\left(S_{m r q}-\alpha_{q} S_{m r}\right) C_{r j k n}\right\} \\
& = \\
& \quad \sum_{r} \varepsilon_{r}\left\{\left(S_{k r q}-\alpha_{q} S_{k r}\right) C_{r j n m}-\left(S_{k r q}-\alpha_{q} S_{k r}\right) C_{r j n m}\right. \\
& \left.\quad-\left(S_{n r q}-\alpha_{q} S_{n r}\right) C_{r j m k}\right\} \\
& = \\
& -\sum_{r} \varepsilon_{r}\left(S_{n r q}-\alpha_{q} S_{n r}\right) C_{r j m k}
\end{aligned}
$$

From the above two equations we obtain

$$
\|\alpha\|^{2} \sum_{r} \varepsilon_{r}\left\{(n-1)\left(S_{n r q}-\alpha_{q} S_{n r}\right) C_{r j k m}+\left(S_{j r q}-\alpha_{q} S_{j r}\right) C_{r n k m}\right\}=0
$$

which implies that
$\|\alpha\|^{2} \sum_{r} \varepsilon_{r}\left(S_{j r q}-\alpha_{q} S_{j r}\right) C_{r n k m}=-(n-1)\|\alpha\|^{2} \sum_{r} \varepsilon_{r}\left(S_{n r q}-\alpha_{q} S_{n r}\right) C_{r j k m}$.
From this it follows that

$$
\begin{equation*}
\|\alpha\| \sum_{r} \varepsilon_{r}\left(S_{j r q}-\alpha_{q} S_{j r}\right) C_{r n k m}=0 \tag{3.21}
\end{equation*}
$$

Transvecting $S_{n i q}-\alpha_{q} S_{n i}$ or $C_{p j k m}$ to (3.13) and applying equations (3.20) and (3.21), we can obtain

$$
\begin{equation*}
\|\alpha\|^{2}\|\nabla S-\alpha \otimes S\|^{2} C=0 \quad \text { or } \quad\|\alpha\|^{2}\|C\|^{2}(\nabla S-\alpha \otimes S)=0 \tag{3.22}
\end{equation*}
$$

on $M-M^{\prime}$. It completes the proof.

From this and Theorem 3.4 we want to give the following lemma which will be useful to prove our main theorem

Lemma 3.5. Let M be an $n(\geq 4)$-dimensional Riemannian manifold with Riemannian connection ∇. If M is conformally recurrent and if M has a harmonic conformal curvature tensor and constant scalar curvature, we have

$$
C \otimes(\nabla R-\alpha \otimes R)=0
$$

Proof. By Theorem 3.4 we have

$$
\alpha \otimes C \otimes(\nabla S-\alpha \otimes S)=0
$$

Let M_{1} be the subsets consisting of points x in M at which $\alpha(x)=0$.
First we suppose that M_{1} is not empty. If Int M_{1} is empty, the nonvanishing 1-form α gives $C=0$ or $\nabla S-\alpha \otimes S=0$. Then by the assumption of conformal recurrence we know that $\nabla R-\alpha \otimes R=0$. So in such a subcase the conclusion is given by the continuity of C and $\nabla R-\alpha \otimes R$.

Suppose that $\operatorname{Int} M_{1}$ is not empty. Then in such a subcase M is conformal symmetric. Then by Theorem A due to Derdzinski and Roter [5] and Miyazawa [9] we have $C=0$ or $\nabla R=0$ on Int M_{1}. Hence it follows that we have $C=0$ or $\nabla R=\alpha \otimes R$ on Int M_{1}. Thus we have $C \otimes(\nabla R-\alpha \otimes R)=0$ on M.
Now we suppose that M_{1} is empty. Then nonvanishing 1-form α implies $C=0$ or $\nabla S-\alpha \otimes S=0$. When $\nabla S-\alpha \otimes S=0$, we also have $\nabla R-\alpha \otimes R=0$, because M is conformally recurrent.

By virtue of Lemma 3.5 we have the following

Theorem 3.6. Let M be an $n(\geq 4)$-dimensional Riemannian manifold with Riemannian connection ∇. Suppose that M is conformally recurrent and has a harmonic conformal curvature tensor. If the scalar curvature is a nonzero constant, then M is conformally flat or M is locally symmetric.

Proof. Let $M^{\prime \prime}$ be the subset of points x in M at which

$$
(\nabla R-\alpha \otimes R)(x)=0
$$

Then we have $(\nabla r-\alpha r)(x)=0$ on $M^{\prime \prime}$. Since we have assumed that the scalar curvature is nonzero constant, we get $\alpha(x)=0$ on $M^{\prime \prime}$. Then from this together with Lemma 3.5 it follows that $\alpha=0$ or $C=0$, that is, $\alpha \otimes C=0$ on M.

Now let us consider the open subset M^{*} consisting of points x at which $C(x)=0$. Then on such an open subset we have $\nabla C=0$ and hence the inner product $\langle C, C\rangle$ is constant. By the continuity of $\langle C, C\rangle$, if M^{*} is not empty, then $\langle C, C\rangle=0$ on M, namely $C=0$ on M. That is, M is conformally flat. If M^{*} is empty, then the fact $\alpha \otimes C=0$ implies $\alpha=0$ on M. In such a case we know that M is conformally symmetric. From this together with Theorem A we complete the proof of our theorem.

Remark 3.1. In their paper [8] Goldberg and Okumura proved that in an $n(\geq 4)$-dimensional compact conformally flat Riemannian manifold, if the length of the Ricci tensor is constant and less than $r / \sqrt{n-1}$, then M is a space of constant curvature.

Remark 3.2. In the next section we will show that the assumption that the scalar curvature is a nonzero constant in Theorem 3.6 is essential when we consider an indefinite version of Theorem 3.6. That is, we will show a class of an indefinite complex hypersurfaces which is neither conformally flat nor locally symmetric, but its scalar curvature is vanishing.

Remark 3.3. But in a Riemannian version the referee suggests that the assumption concerned with the scalar curvature will not be necessary. Namely, one can verify that any conformally recurrent Riemannian manifold of dimension $n \geq 4$ which has harmonic conformal curvature tensor is conformally symmetric in the sense that $\nabla C=0$ (and Theorem A gives conformally flat or locally symmetric). Namely, he has given us another possible argument which is much more shorter than our proof as follows.

First, let g be a Riemannian-product metric, positive-definite or not, on a product manifold of dimension $n \geq 4$, with both factor manifolds of positive dimensions. If $C(X, \cdot, \cdot, \cdot)=0$ for all vectors X tangent to the first factor, and $\nabla C=\alpha \otimes C$ with a 1-form α such that the vector X obtained from α by index-raising $\left(X^{j}=g^{j k} \alpha_{k}\right)$ is tangent to the first factor, then $\nabla C=0$ identically on M. (Here $C(X, \cdot, \cdot, \cdot)=0$ means that $C(X, Y, Z, U)=0$ for all vectors $Y, Z, U)$.

In fact, in product coordinates obtained from coordinates x^{a} in the first factor manifold and x^{λ} in the second factor, our assumptions mean that all components of C vanish except, possibly, those of the form $C_{\lambda \mu \nu}$, while $\alpha_{\lambda}=0$. (We let $\lambda, \mu, \nu, \xi, \rho$ vary through one index range, and a, b through the other.) Due to the definition of C (formula (1.1) in the paper), relations $C_{a \lambda b \mu}=0$, contracted against $g^{a b}$ or $g^{\lambda \mu}$, show that both factor metrics are Einstein, even if one or both of them happen to be two-dimensional. In particular, they both have constant scalar curvatures, which now easily implies that the only (possibly) nonzero components of ∇C are $C_{\lambda \mu \nu \xi, \rho}$. As $\nabla C=\alpha \otimes C$ and $\alpha_{\rho}=0$, this gives $\nabla C=0$.

It follows now that a Riemannian manifold of dimension $n \geq 4$ with $\delta C=0$ and $\nabla C=\alpha \otimes C$ must have $\nabla C=0$ everywhere.

In fact, suppose on the contrary that $\nabla C \neq 0$ somewhere. Thus, we can pick a nonempty connected open set M^{\prime} such that $C \neq 0$ and $\nabla C \neq 0$, everywhere in M^{\prime}. Since $\nabla C=\alpha \otimes C$, defining the norm $|C|$ of C by the usual formula $|C|^{2}=g^{i p} g^{j q} g^{k s} g^{l t} C_{i j k l} C_{p q s t}$ we obtain $\nabla T=0$ on M^{\prime}, where T is the tensor field on M^{\prime} given by $T=C /|C|$. (To see this, first note that, by transvecting both sides of $\nabla C=\alpha \otimes C$ with C, we obtain $\alpha=d \log |C|$ on $\left.M^{\prime}\right)$. The tangent vectors X such that $T(X, \cdot, \cdot, \cdot)=0$, i.e., $T(X, Y, Z, U)=0$ for all Y, Z, U, form a distribution \mathcal{D} on M^{\prime} which is parallel (since so is T). Its dimension $\operatorname{dim} \mathcal{D}$ satisfies $0<\operatorname{dim} \mathcal{D}<n$ since not all vectors lie in \mathcal{D}, as $C \neq 0$, but some nonzero vectors do (namely, the vector X obtained from α by index-raising, at any point of M^{\prime}, is in \mathcal{D}, due to the assumption that $\nabla C=\alpha \otimes C$ and $\delta C=0$. The parallel distributions \mathcal{D} and \mathcal{D}^{\perp} are, locally in M^{\prime}, tangent to the factors of a Riemannian-product decomposition of the original metric which satisfies all the hypotheses of the preceding paragraph. Therefore, $\nabla C=0$ on M^{\prime}, contradicting our very choice of M^{\prime}.
4. Example. For any integer $p(\geq 2)$ and any complex number c such that $|c| \geq 1$ we define an indefinite complex Euclidean space $C_{n}^{2 n+1}$ of index $2 n$ is defined as follows.
Let $\left\{z^{j}, z^{j^{*}}, z^{2 n+1}\right\}=\left\{z^{1}, \cdots, z^{2 n+1}\right\}$ be a complex coordinate of $C_{n}^{2 n+1}$. Then $M=M(p, c)$ is an indefinite complete complex hypersurface of index $2 n$ defined by

$$
z^{2 n+1}=\sum_{j} h_{j}\left(z^{j}+c z^{j^{*}}\right), \quad h_{j}(z)=z^{p}
$$

where c is any complex number such that $|c| \geq 1$. The range of indices are given as follows:

$$
\begin{gathered}
i, j, \cdots=1, \cdots, n, \quad A, B, \cdots=1, \cdots, 2 n, \quad \alpha, \beta, \cdots=1, \cdots, 4 n \\
j^{*}=n+j, \quad A^{*}=2 n+A
\end{gathered}
$$

Usually in a semi-Kaehler manifold M we are able to choose a local field of orthonormal frame $\left\{E_{1}, \cdots, E_{n}, E_{1 *}, \cdots, E_{n^{*}}=J E_{n}\right\}$ on a neighborhood of M. Then $U_{j}=1 / \sqrt{2}\left(E_{j}-i E_{j^{*}}\right)$ and $U_{\bar{j}}=$ $1 / \sqrt{2}\left(E_{j}+i E_{j^{*}}\right)$ constitute a local field of unitary frames on M. Moreover, its semi-Kaehler metric is given by $g=2 \sum \varepsilon_{j} \omega_{j} \otimes \bar{\omega}_{j}$, where $\omega_{j}=\theta_{j}+i \theta_{j^{*}}$, and $\bar{\omega}_{j}=\theta_{j}-i \theta_{j^{*}}$.

Then the components $h_{A B}$ of the second fundamental form, see Aiyama, Ikawa, Kwon and Nakagawa [1], are given by

$$
\begin{gather*}
h_{i j}=p(p-1) \delta_{i j} z^{p-2}, \quad h_{i^{*} j}=p(p-1) c \delta_{i j} z^{p-2} \\
h_{i^{*} j^{*}}=p(p-1) c^{2} \delta_{i j} z^{p-2} \tag{4.1}
\end{gather*}
$$

Let $S_{A \bar{B}}$ be the components of the extended Ricci tensor S of M with respect to the complex coordinate $\left\{z^{j}, z^{j^{*}}\right\}$. Then from the formula due to Aiyama, Nakagawa and Suh [2] and Choi, Kwon and Suh $[\mathbf{4}, 5]$ we obtain that

$$
\begin{aligned}
S_{i \bar{j}} & =-\sum_{R} h_{i R} \bar{h}_{R j} \\
& =-\sum_{k} \varepsilon_{k} h_{i k} \bar{h}_{k j}-\sum_{k^{*}} h_{i k^{*}} \bar{h}_{k^{*} j} \\
& =\sum_{k} h_{i k} \bar{h}_{k j}-\sum_{k} h_{i k^{*}} \bar{h}_{k^{*} j} \\
& =\left(1-|c|^{2}\right) p^{2}(p-1)^{2} \delta_{i j}|z|^{2(p-2)}
\end{aligned}
$$

Similarly, the other components are given by

$$
\begin{aligned}
& S_{i \bar{j}^{*}}=-\sum_{R} \varepsilon_{R} h_{i R} \bar{h}_{R j^{*}}=\left(1-|c|^{2}\right) p^{2}(p-1)^{2} \delta_{i j}|z|^{2(p-2)}, \\
& S_{i^{*} \dot{j}^{*}}=-\sum_{R} \varepsilon_{R} h_{i R} \bar{h}_{R j^{*}}=\left(1-|c|^{2}\right) p^{2}(p-1)^{2} \delta_{i j}|z|^{2(p-2)}
\end{aligned}
$$

which means that if $|c|^{2}=1$, then the Ricci tensor S on M is flat. Then by (3.2) and (3.13) we know that the conformal curvature tensor is harmonic, that is, coclosed $\delta C=0$.

Next for the components $h_{A B C}$ of the covariant derivatives of the second fundamental form we have

$$
\begin{align*}
h_{i j k} & =p(p-1)(p-2) \delta_{i j} \delta_{i k} z^{p-3} \\
h_{i^{*} j k} & =p(p-1)(p-2) c \delta_{i j} \delta_{i k} z^{p-3} \\
h_{i^{*} j^{*} k} & =p(p-1)(p-2) c^{2} \delta_{i j} \delta_{i k} z^{p-3} \tag{4.2}\\
h_{i^{*} j^{*} k^{*}} & =p(p-1)(p-2) c^{3} \delta_{i j} \delta_{i k} z^{p-3}
\end{align*}
$$

We should note that the expression is by the complex coordinates. Let

$$
\left\{x^{A}, y^{A}, x^{2 n+1}, y^{2 n+1}\right\}
$$

be the real coordinate of $C_{n}^{2 n+1}$. Let $K_{\bar{A} B C \bar{D}}$ be the components of the extended Riemannian curvature tensor R of M with respect to the complex coordinate $\left\{z^{j}, z^{j^{*}}\right\}$ defined by

$$
K_{\bar{A} B C \bar{D}}=g\left(R\left(U_{\bar{A}}, U_{B}\right) U_{C}, U_{\bar{D}}\right),
$$

and let

$$
R_{\alpha \beta \gamma \delta}=g\left(R\left(E_{\alpha}, E_{\beta}\right) E_{\gamma}, E_{\delta}\right)
$$

be the components of the Riemannian curvature tensor R of M with respect to the real coordinates $\left\{x^{A}, y^{A}\right\}$. Then by the theory of complex hypersurfaces, see Aiyama, Nakagawa and Suh [2], in an indefinite Kaehler manifold we have

$$
\begin{align*}
& K_{\bar{A} B C \bar{D}}=-h_{B C} \bar{h}_{A D}, \quad K_{\bar{A} B C \bar{D} E}=-h_{B C E} \bar{h}_{A D} \tag{4.3}\\
& K_{\bar{A} B C \bar{D}}=-\left\{R_{A B C D}+R_{A^{*} B C^{*} D}+i\left(R_{A^{*} B C D}-R_{A B C^{*} D}\right)\right\} . \tag{4.4}
\end{align*}
$$

By (4.1) and (4.3) we have

$$
\begin{align*}
K_{\bar{i} j k \bar{m}} & =-h_{j k} \bar{h}_{i m}=-p^{2}(p-1)^{2} \delta_{j k} \delta_{i m}|z|^{2(p-2)} \\
K_{\bar{i} j k \bar{m}^{*}} & =-h_{j k} \bar{h}_{i m *}=-c p^{2}(p-1)^{2} \delta_{j k} \delta_{i m}|z|^{2(p-2)} \tag{*}
\end{align*}
$$

Others are similarly given, from which it follows that M is not necessarily flat. Furthermore we have

$$
\begin{aligned}
K_{\bar{i} j k \bar{m} n} & =-h_{j k n} \bar{h}_{i m}=-p^{2}(p-1)^{2}(p-2) \delta_{j m} \delta_{i k}|z|^{2(p-2)} z^{-1} \\
& =(p-2) \delta_{j n} z^{-1} K_{i \bar{j} k \bar{m}}=\alpha_{j} \delta_{j n} K_{\bar{i} j k \bar{m}}
\end{aligned}
$$

where $\alpha_{j}=d \beta_{j}$ and the smooth function β_{j} is defined by

$$
\beta_{j}=\log \frac{h_{j}(z)}{z^{2}}=\log z^{p-2}, \quad p \geq 3
$$

from which it follows that

$$
K_{\bar{i} j k \bar{m} n}=\alpha_{j} \delta_{j n} K_{\bar{i} j k \bar{m}}
$$

Similarly, we get

$$
K_{\bar{i} j k \bar{m}^{*} n}=\alpha_{j} \delta_{j n} K_{\bar{i} j k \bar{m}^{*}}
$$

Accordingly, if $p \geq 3$, then M is not locally symmetric and we are able to get

$$
\begin{equation*}
K_{\bar{A} B C \bar{D} E}=\alpha_{E} K_{\bar{A} B C \bar{D}} \tag{4.5}
\end{equation*}
$$

On the other hand, by (4.4) and the expression of $R_{\alpha \beta \gamma \delta}$ we have

$$
\begin{equation*}
K_{\bar{i} i i \bar{i}}=-R_{i^{*} i i^{*} i}=R_{i i^{*} i^{*} i}=g\left(R\left(E_{i}, J E_{i}\right) J E_{i}, E_{i}\right) \tag{4.6}
\end{equation*}
$$

In general, since M is the semi-Kaehler manifold, the components $R_{\alpha \beta \gamma \delta}$ of the Riemannian curvature tensor R satisfy

$$
\begin{equation*}
R_{A^{*} B C D}=-R_{A B^{*} C D}, \quad R_{A^{*} B^{*} C D}=R_{A B C D} \tag{4.7}
\end{equation*}
$$

For indices i, j such that $i \neq j$, we have known $K_{\bar{i} j C \bar{D}}=0$ from the formula (*). By (4.4) we get

$$
\begin{equation*}
R_{i j k m}+R_{i j^{*} k m^{*}}=0, \quad R_{i^{*} j k m}-R_{i j k^{*} m}=0 . \tag{4.8}
\end{equation*}
$$

Accordingly, the first equation of (4.8) is deformed as

$$
\begin{aligned}
R_{i j C D}+R_{i j^{*} C D^{*}} & =R_{i j C D}-R_{j^{*} i C D^{*}}=R_{i j C D}-R_{j i C^{*} D^{*}} \\
& =R_{i j C D}-R_{j i C D}=2 R_{i j C D} \\
& =0
\end{aligned}
$$

where the first equality is derived by the general property of the Riemannian curvature tensor, the second one follows from (4.8) and the general property of the Riemannian curvature tensor, and the third one is also derived from (4.7) and the general property of the Riemannian curvature tensor. Thus we have

$$
\begin{equation*}
R_{i j C D}=0, \quad i \neq j \tag{4.9}
\end{equation*}
$$

On the relation between the real natural frame and the complex natural frame we have (4.4) and by the definition of the covariant derivative the components $K_{\bar{A} B C \bar{D} E}$ are given by

$$
\begin{align*}
& K_{\bar{A} B C \bar{D} E} \tag{4.10}\\
& \quad=-\left\{R_{A B C D E}+R_{A B^{*} C D^{*} E}+i\left(R_{A^{*} B C D E}-R_{A B C D^{*} E}\right)\right\} / 2 \\
& \quad+i\left\{R_{A B C D E^{*}}+R_{A B^{*} C D^{*} E^{*}}+i\left(R_{A^{*} B C D E^{*}}-R_{A B C D^{*} E^{*}}\right)\right\} / 2 .
\end{align*}
$$

On the other hand, from (4.5) we get $K_{\bar{i} i i \bar{i} i}=\alpha_{i} K_{\bar{i} i i \bar{i}}$. Then from this together with (4.8) and (4.10) it follows that

$$
\begin{equation*}
R_{i^{*} i i i^{*} E}=2 \alpha_{E} R_{i^{*} i i i^{*}} \tag{4.11}
\end{equation*}
$$

Similarly, we get

$$
R_{A B C D E}=2 \alpha_{E} R_{A B C D}
$$

In such a case the Ricci tensor is flat if $|c|=1$ and the complex hypersurface M of index $2 n$ in a $(2 n+1)$-dimensional indefinite complex Euclidean space $C_{n}^{2 n+1}$ of index $2 n$ defined above is conformally recurrent. Of course its conformal curvature tensor is coclosed, which is neither locally symmetric nor conformally flat if $p \geq 3$. Moreover, we know that the scalar curvature is identically vanishing, because its Ricci tensor is vanishing on M.

This example shows that in an indefinite version of Theorem 3.6 the assumption that the scalar curvature is a nonzero constant is essential.

Acknowledgments. The present authors wish to express their sincere gratitude to the referee for his valuable comments to our manuscript.

REFERENCES

1. R. Aiyama, T. Ikawa, J-H. Kwon and H. Nakagawa, Complex hypersurfaces in an indefinite complex space form, Tokyo J. Math. 10 (1987), 349-361.
2. R. Aiyama, H. Nakagawa and Y.J. Suh, Semi-Kaehler submanifolds of an indefinite complex space form, Kodai Math. J. 11 (1988), 325-343.
3. A.L. Besse, Einstein manifolds, Springer-Verlag, New York, 1987.
4. Y.S. Choi, J.-H. Kwon and Y.J. Suh, On semi-symmetric complex hypersurfaces of a semi-definite complex space form, Rocky Mountain J. Math. 31 (2001), 417-435.
5. - On semi-Ryan complex submanifolds in an indefinite complex space form, Rocky Mountain J. Math. 31 (2001), 873-897.
6. A. Derdziński and W. Roter, On conformally symmetric manifolds with metrics of indices 0 and 1, Tensor, N.S. 31 (1978), 255-259.
7. L.P. Eisenhart, Riemannian geometry, Princeton University Press, Princeton, 1934.
8. S. Goldberg and M. Okumura, Conformally flat manifolds and a pinching problem on the Ricci tensor, Proc. Amer. Math. Soc. 58 (1976), 234-236.
9. T. Miyazawa, Some theorems on conformally symmetric spaces, Tensor, N.S. 32 (1978), 24-26.
10. B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983.
11. W. Roter, On conformally symmetric 2 Ricci-recurrent spaces, Colloq. Math. 26 (1972), 115-122.
12. P.J. Ryan, A class of complex hypersurfaces, Colloq. Math. 26 (1972), 175-182.
13. U. Simon, Compact conformally Riemannian spaces, Math. Z. 132 (1973), 173-177.
14. S. Tanno, Curvature tensors and covariant derivative, Annal. Math. Pura Appl. 96 (1973), 233-241.
15. H. Weyl, Reine Infinitesimalgeometrie, Math. Z. 26 (1918), 384-411.
16. - Zur Infinitesimalgeometriae: Einordnung der projecktiven und konformen Auffassung, Göttigen Nachr., 1921, pp. 99-112.
17. K. Yano, The theory of Lie derivatives and its applications, North-Holland, Amsterdam, 1957.
18. K. Yano and S. Bochner, Curvature and Betti numbers, Ann. Math. Studies No. 32, Princeton University Press, 1953.
19. K. Yano and M. Kon, Structures on manifolds, World Scientific, Singapore, 1984.

Department of Mathematics, Kyungpook University, Taegu, 702-701, Korea
E-mail address: yjsuh@bh.knu.ac.kr
Department of Mathematics Education, Taegu University, Taegu 705714, Korea
E-mail address: jhkwon@biho.daegu.ac.kr

[^0]: 2000 AMS Mathematics Subject Classification. Primary 53C40, 53C15.
 Key words and phrases. Weyl curvature tensor, conformally symmetric, conformallike curvature tensor, semi-Riemannian manifold.

 This work was supported by grant Proj. No. R14-2002-003-01001-0 from the Korea Science \& Engineering Foundation.

 Received by the editors on August 1, 2002.

