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CONFORMALLY RECURRENT
SEMI-RIEMANNIAN MANIFOLDS

YOUNG JIN SUH AND JUNG-HWAN KWON

ABSTRACT. In this paper we give a complete classifica-
tion of conformally recurrent semi-Riemannian manifolds with
harmonic conformal curvature tensor and to give another gen-
eralization of conformally symmetric Riemannian manifolds.
Moreover, we give a nontrivial example which is neither locally
symmetric nor conformally flat.

1. Introduction. Let us denote by M an n(≥4)-dimensional semi-
Riemannian manifold with semi-Riemannian metric g and Riemannian
connection ∇ and let R, respectively S or r, be the Riemannian
curvature tensor, respectively the Ricci tensor or the scalar curvature,
on M .

It is said to be conformally recurrent if the conformal curvature tensor
C with components Cijkl so that

(1.1)
Cijkl = Rijkl − 1

n − 2
(Silgjk − Sikgjl + Sjkgil − Sjlgik)

+
r

(n − 1)(n − 2)
(gilgjk − gikgjl)

is recurrent, i.e., there is a 1-form α such that ∇C = α⊗C, where
Rijkl, Sij and gij are components of R, S and g on M . In particular,
it is said to be conformally symmetric if ∇C = 0. As is easily seen,
the class of conformally recurrent semi-Riemannian manifolds includes
all the classes of conformally symmetric, conformally flat and locally
symmetric semi-Riemannian manifolds. Among them such kind of
Riemannian manifolds are studied by Besse [2], Ryan [12], Simon
[13], Weyl [15, 16], Yano [17], Yano and Bochner [18], for example.
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Conformally symmetric semi-Riemannian manifolds are investigated
by Derdziński and Roter [6]. In particular, in the Riemannian case,
Derdziński and Roter [6] and Miyazawa [9] proved the following

Theorem A. An n(≥4)-dimensional conformally symmetric mani-
fold is conformally flat or locally symmetric.

The symmetric tensor K of type (0, 2) with components Kij is called
the Weyl tensor if it satisfies

(1.2) Kijl − Kilj =
1

2(n − 1)
(klgij − kjgil),

where k = Tr K and Kijl, respectively kj , are components of the
covariant derivative ∇K, respectively ∇k.

On the other hand, in Weyl [15] and [16] it can be easily seen that
the Ricci tensor is a Weyl tensor when we only consider an n(≥4)-
dimensional conformally flat Riemannian manifold, see Eisenhart [7].
In particular, Derdziński and Roter [6] investigated the structure of
analytic conformally symmetric indefinite Riemannian manifold of in-
dex 1 which is neither conformally flat nor locally symmetric.

We denote by M an n(� 4)-dimensional semi-Riemannian manifold
with semi-Riemannian metric g and semi-Riemannian connection ∇.
For a tensor field (0, r + 1) the codifferential δT of T is defined by

δT (X1, . . . , Xr) =
r∑

i=1

εi∇Ei
T (Ei, X1, . . . , Xr)

for any vector fields X1, . . . , Xr, where {Ei} is an orthonormal frame
on M . If δC = 0, then M is said to have harmonic conformal curvature
tensor, see Besse [2].

In this paper we want to make a generalization of such results in the
direction of a certain kind of curvature-like tensor fields. In order to do
this we introduce the notion of conformal recurrent curvature tensor,
that is, the covariant derivative of the conformal curvature tensor C
satisfies ∇C = α⊗C for a certain 1-form α. Moreover, let us say a semi-
Riemannian manifold M has harmonic conformal curvature tensor if
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its conformal curvature tensor C satisfies δC = 0, that is,

∑
r
εrCrjkmr = 0.

If the semi-Riemannian manifold M is conformally symmetric, then
it is trivial that it is conformally recurrent for A = 0 and it has a
harmonic conformal curvature tensor.

Now in this paper we want to show the following

Theorem. Let M be an n(≥4)-dimensional Riemannian manifold.
If M is conformally recurrent and it has a harmonic conformal curva-
ture tensor and if the scalar curvature is nonzero constant, then it is
conformally flat or locally symmetric.

When the 1-form α vanishes identically in above theorem, it can
be explained that a conformal Riemannian symmetric manifold M
is locally symmetric or conformally flat. So our theorem is also a
generalization of Theorem A. In Remark 3.3 given in Section 3 we
will explain that the condition concerned with the scalar curvature is
not necessary.

On the other hand, in Section 4 we will show that among the indef-
inite class of conformal recurrent manifolds with harmonic conformal
curvature tensor there are so many kind of examples which are neither
locally symmetric nor conformally flat, but its scalar curvature is van-
ishing. So in an indefinite version of such a theorem, the condition that
nonzero constant scalar curvature is essential.

2. Preliminaries. Let M be an n(� 2)-dimensional semi-
Riemannian manifold of index s, 0 � s � n, equipped with semi-
Riemannian metric tensor g and let R, respectively S or r, be the Rie-
mannian curvature tensor, respectively the Ricci tensor or the scalar
curvature, on M . In particular, if 0 < s < n, then M is said to be
indefinite.

We can choose a local field {Ej} = {E1, . . . , En} of orthonormal
frames on a neighborhood of M . Here and in the sequel the indices
i, j, k, . . . run from 1 to n. With respect to the indefinite Riemannian
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metric we have g(Ej , Ek) = εjδjk, where

εj = −1 or 1, according to whether 1 � j � s or s + 1 � j � n.

Let {θi}, {θij} and {Θij} be the canonical form, the connection form
and the curvature form on M , respectively, with respect to the local
field {Ej} of orthonormal frames. Then we have the structure equations

dθi +
∑

j

εjθij ∧ θj = 0, θij + θji = 0,

dθij +
∑

k

εkθik ∧ θkj = Θij ,

Θij = −1
2

∑
k,l

εklRijklθk ∧ θl,

where εij···k = εiεj · · · εk and Rijkl denotes the components of the
Riemannian curvature tensor R of M .

Now, let C be the conformal curvature tensor with components Cijkl

on M , which is given by

(2.1)
Cijkl = Rijkl − 1

n−2
{εi(δilSjk − δikSjl) + εj(Silδjk − Sikδjl)}

+
r

(n−1)(n−2)
εij(δilδjk − δikδjl),

where Sij =
∑

l εlRlijl are the components of the Ricci tensor S with
respect to the local field {ej} of orthonormal frames and r =

∑
j εjSjj

is the scalar curvature.

Remark 2.1. If M is Einstein, then the conformal curvature tensor C
satisfies

Cijkl = Rijkl − r

n(n − 1)
εij(δilδjk − δikδjl).

This yields that the conformal curvature tensors of Einstein Rieman-
nian manifolds are the concircular curvature one. In particular, if M
is of constant curvature, the conformal curvature tensor vanishes iden-
tically, Yano and Bochner [18].
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Let DrM be the vector bundle consisting of differentiable r-forms
and DM =

∑n
r=0 DrM , where D0M is the algebra of differentiable

functions on M . For any tensor field K in DrM the components Kijklh

of the covariant derivative ∇K of K are defined by (for simplicity, we
consider the case r = 4)

∑
h

εhKijklhθh

= dKijkl −
∑

h

εh(Khjklθhi + Kihklθhj + Kijhlθhk + Kijkhθhl).

Now we denote by TM the tangent bundle of M . Let T be a
quadrilinear mapping of TM × TM × TM × TM into R satisfying
the curvature-like properties:

T (X, Y, Z, U) = −T (Y, X, Z, U) = −T (X, Y, U, Z),(a)
T (X, Y, Z, U) = T (Z, U, X, Y ),(b)
T (X, Y, Z, U) + T (Y, Z, X, U) + T (Z, X, Y, U) = 0.(c)

Then T is called the curvature-like tensor on M . See Kobayashi and
Nomizu [5], for example. Let Tijkl be the components of T associated
with the orthonormal frame {Ej}; then the components Tijkl are given
by Tijkl = T (Ei, Ej , Ek, El). By the conditions (a), (b) and (c), the
following properties of the components of T hold corresponding to the
conditions (a), (b) and (c):

Tijkl = −Tjikl = −Tijlk,(2.2)
Tijkl = Tklij = Tlkji,(2.3)
Tijkl + Tjkil + Tkijl = 0.(2.4)

If the components Tijkl of a tensor T in D4M = ⊗4T ∗M satisfy (2.2),
(2.3) and (2.4), then it becomes a curvature-like tensor.

Lemma 2.1. On a semi-Riemannian manifold, the conformal cur-
vature tensor C is curvature-like.

For any integer a and b such that 1 � a < b � s the metric contraction
reduced by a and b is denoted by Cab : T r

s M → T r
s−2M with respect
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to the orthonormal frame {Ej}. The symmetric tensor U in D2M is
called the Weyl tensor if its components of the covariant derivative ∇U
of U satisfy

(2.5) Uijk − 1
2(n − 1)

ukεiδij = Uikj − 1
2(n − 1)

ujεiδik,

where u = C12U . In particular, if u is constant, then U is called the
Codazzi tensor. We put ∇XU(Y, Z) = ∇U(Y, Z, X). Then it is easily
seen that

∑
k εkUkjk = uk/2.

Now let C be the conformal curvature tensor with components Cijkl

on M . The semi-Riemannian manifold is said to be conformally flat
if C = 0. For the geometric meaning of conformally flat Riemannian
manifolds, see Yano and Bochner [18], for example. In particular, if
M is a space of constant curvature, the conformal curvature tensor
vanishes identically.

The Ricci-like tensor Ric (C) of C is defined by C14(C) = C23(C).
Then the components Cjk of Ric (C) are given by Cjk =

∑
r εrCrjkr.

We have then

(2.6) Cjk = 0.

3. Conformally recurrent spaces. Let M be an n(≥2)-
dimensional semi-Riemannian manifold of index 2s, 0≤s≤n, with Rie-
mannian connection ∇ and let R, respectively S or r, be the Rie-
mannian curvature tensor, respectively the Ricci tensor or the scalar
curvature, on M .

Now let C be the conformal curvature tensor with components Cijkl

with respect to the field {Ej} of orthonormal frames given by

(3.1)
Cijkl = Rijkl − 1

n − 2
(εjSilδjk − εjSikδjl + εiSjkδil − εiSjlδik)

+
r

(n − 1)(n − 2)
εij(δilδjk − δikδjl).
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Differentiating C of (3.1) covariantly, we have

(3.2)

Cijklm = Rijklm − 1
n − 2

(εjSilmδjk − εjSikmδjl

+ εiSjkmδil − εiSjlmδik)

+
rm

(n − 1)(n − 2)
εij(δilδjk − δikδjl),

where Cijklm, respectively Rijklm, Sjkm or rm, are the components of
the covariant derivative ∇C of C, respectively the covariant derivative
∇R of R, ∇S of S or dr.

By the second Bianchi identity

Rijklm + Rijlmk + Rijmkl = 0

for R and putting i = m in (3.2) and summing up with respect to i,
we obtain
∑

r
εrCrjkmr = (n−3){Sjkm−Sjmk−εj(rmδjk−rkδjm)/2(n−1)}/(n−2).

If M has a harmonic conformal curvature tensor, then we have by
definition

(3.3)
∑

r
εrCrjkmr = 0,

from which the following property is derived

Lemma 3.1. Let M be an n(≥4)-dimensional semi-Riemannian
manifold. If M has a harmonic conformal curvature tensor, then the
Ricci tensor is a Weyl tensor.

Lemma 3.2. Let M be an n(≥4)-dimensional semi-Riemannian
manifold. If M has a harmonic conformal curvature tensor, then it
satisfies

(3.4)
∑

r
εr(RrikmSrj + RrimjSrk + RrijkSrm) = 0.

Proof. By the assumption, Lemma 3.1 gives that the Ricci tensor S
is the Weyl tensor. By the definition of (2.5) we have

(3.5) Sijk − Sikj = εi(rkδij − rjδik)/2(n − 1).
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Differentiating covariantly, we get

Sijkm − Sikjm = (rkmεiδij − rjmεiδik)/2(n − 1).

Interchanging the indices k and m and subtracting the resulting equa-
tion from this, we obtain

Sijkm − Sijmk + Simjk − Sikjm = εi(rjkδim − rjmεik)/2(n − 1),

where we have used the property that rij is symmetric with respect to
i and j, because r is the function. Thus we have that the left side is
equivalent to

= (Sijkm − Sijmk) + (Simjk − Simkj) + (Simkj − Sikjm)
= (Sijkm − Sijmk) + (Simjk − Simkj)

+
[{Sikmj + εi(rkjδim − rmjδik)/2(n − 1)} − Sikjm

]

= −
∑

r
εr(RmkirSrj + RmkjrSir) −

∑
r
εr(RkjirSrm + RkjmrSir)

−
∑

r
εr(RjmirSrk + RjmkrSir) + εi(rkjδim − rmjδik)/2(n − 1)

= −
∑

r
εr(RmkirSrj + RjmirSrk + RkjirSrm

+ εi(rkjδim − rmjδik)/2(n − 1)

where the second equality follows from (3.2), the third equality is
derived from the Ricci identity for the Ricci tensor Sij and the fourth
equality follows from the first Bianchi identity. It yields that we have
(3.4). It completes the proof.

Lemma 3.3. Let M be an (n≥4)-dimensional semi-Riemannian
manifold. If M is conformally recurrent and if S is the Weyl tensor,
then we obtain

∑
r
εr(CrikmSrj + CrimjSrk + CrijkSrm) = 0,(3.6)

∑
r
εr(CrikmSrjn + CrimjSrkn + CrijkSrmn) = 0.(3.7)

Proof. Substituting the components Rijkm of (2.1) into the lefthand
side of (3.4) and calculating directly, we get the equation (3.6).
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Now differentiating (3.6) covariantly and taking account of (3.6), then
the conformal recurrence implies (3.7). This completes the proof.

Theorem 3.4. Let M be an n(≥4)-dimensional semi-Riemannian
manifold of index s, 0≤s≤n, with Riemannian connection ∇. Assume
that M is conformally recurrent and has a harmonic conformal curva-
ture tensor. If the scalar curvature is constant, then it satisfies

‖α‖2‖C‖2‖∇S − αS‖2 = 0,

where ‖ ∗ ‖2 denotes the squared norm of the scalar product on M .

Proof. Let Cijkmnp be the components of the covariant derivative
∇2C of ∇C. They are given by

(3.8) Cijkmnp = (αnαp + αnp)Cijkm.

Now we define by f the scalar product of C, namely we put f = 〈C, C〉.
Let M ′ be the subset of M consisting of points x in M such that
f(x) = 0. Then we have

∇f = 2〈∇C, C〉 = 2αf

on the open subset M −M ′ and hence we have α = ∇f/2f , from which
it follows that

2α = ∇log|f |.
This implies that

(3.9) αij = αji on M − M ′.

So, on M − M ′, by (3.8) and (3.9) we have Cijkmnp = Cijkmpn.
Accordingly, by the Ricci identity we get
(3.10)

∑
r
εr(RpnirCrjkm+ RpnjrCirkm+ RpnkrCijrm+ RpnmrCijkr) = 0.

Differentiating the above equation covariantly and taking account of
Cijkmn = αnCijkm, we have
∑

r
εr

{
(RpnirqCrjkm+RpnjrqCirkm+RpnkrqCijrm+RpnmrqCijkr)

+ αq(RpnirCrjkm+RpnjrCirkm+RpnkrCijrm+RpnmrCijkr)
}

= 0.
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Hence we have by (3.10)

(3.11)∑
r
εr(RpnirqCrjkm+ RpnjrqCirkm+ RpnkrqCijrm+ RpnmrqCijkr) = 0.

On the other hand, by (2.1), (3.2) and αhCijkl = Cijklh we have

αn[Rijkm − {εi(Sjkδim − Sjmδik) + εj(δjkSim − δjmSik)}/(n−2)
+ rεi(δjkδim − δjmδik)/(n − 1)(n − 2)]

= Rijkmn− {εi(Sjknδim− Sjmnδik) + εj(δjkSimn− δjmSikn)}/(n−2)
+ rnεij(δjkδim − δjmδik)/(n − 1)(n − 2)

and hence we get
(3.12)
Rijkmn

= αnRijkm +εi{(Sjknδim− Sjmnδik) − αn(Sjkδim− Sjmδik)}/(n−2)
+εj{(δjkSimn− δjmSikn) − αn(δjkSim− δjmSik)}/(n−2)
+(rαn − rn)εij(δjkδim − δjmδik)/(n − 1)(n − 2).

From (3.11) and (3.12) it follows that

αq

∑
r
εr(RpnirCrjkm + RpnjrCirkm + RpnkrCijrm + RpnmrCijkr)

+
∑

r
εrp[{Sniqδpr − Snrqδpi) − αq(Sniδpr − Snrδpi)}Crjkm

+ {(Snjqδpr − Snrqδpj) − αq(Snjδpr − Snrδpj)}Cirkm

+ {(Snkqδpr − Snrqδpk) − αq(Snkδpr − Snrδpk)}Cijrm

+ {(Snmqδpr − Snrqδpm) − αq(Snmδpr − Snrδpm)}Cijkr]/(n−2)

+
∑

r
εrn[{(δniSprq − δnrSpiq) − αq(δniSpr − δnrSpi)}Crjkm

+ {(δnjSprq − δnrSpjq) − αq(δnjSpr − δnrSpj)}Cirkm

+ {(δnkSprq − δnrSpkq) − αq(δnkSpr − δnrSpk)}Cijrm

+ {(δnmSprq − δnrSpmq) − αq(δnmSpr − δnrSpm)}Cijkr]/(n−2)
+ (rαq − rq){εn(δniCpjkm + δnjCipkm + δnkCijpm + δnmCijkp)
− εp(δpiCnjkm + δpjCinkm + δpkCijnm + δpmCijkn)

}
/(n−1)(n−2)

= 0
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which can be reformed by (3.10) as

∑
r
εrp[{Sniqδpr − Snrqδpi)Crjkm + (Snjqδpr − Snrqδpj)Cirkm

+ {(Snkqδpr − Snrqδpk)Cijrm − (Snmqδpr − Snrqδpm)Cijkr}
− αq{(Sniδpr − Snrδpi)Crjkm + (Snjδpr − Snrδpj)Cirkm

+ (Snkδpr − Snrδpk)Cijrm + (Snmδpr − Snrδpm)Cijkr]/(n−2)

+
∑

r
εrn[{δniSprq − δnrSpiq) − αq(δniSpr − δnrSpi)}Crjkm

+ {(δnjSprq − δnrSpjq) − αq(δnjSpr − δnrSpj)}Cirkm

+ {(δnkSprq − δnrSpkq) − αq(δnkSpr − δnrSpk)}Cijrm

+ {(δnmSprq − δnrSpmq) − αq(δnmSpr − δnrSpm)}Cijkr]/(n−2)

+ (rαq − rq){εn(δniCpjkm + δnjCipkm + δnkCijpm + δnmCijkp)

− εp(δpiCnjkm + δpjCinkm + δpkCijnm + δpmCijkn)}/(n−1)(n−2)

= 0,

and hence by multiplying both sides by (n − 2) we obtain

(SniqCpjkm + SnjqCipkm + SnkqCijpm + SnmqCijkp)

− (SpiqCnjkm + SpjqCinkm + SpkqCijnm + SpmqCijkn)

−
∑

r
εrp(δpiCrjkm + δpjCirkm + δpkCijrm + δpmCijkr)Snrq

+
∑

r
εrn(δniCrjkm + δnjCirkm + δnkCijrm + δnmCijkr)Sprq

− αq

{
(SniCpjkm + SnjCipkm + SnkCijpm + SnmCijkp)

− (SpiCnjkm + SpjCinkm + SpkCijnm + SpmCijkn)}
+ αq

{∑
r
εrp(δpiCrjkm + δpjCirkm + δpkCijrm + δpmCijkr)Snr

−
∑

r
εrn(δniCpjkm + δnjCirkm + δnkCijpm + δnmCijkr)Spr

}

+ (rαq − rq){εn(δniCpjkm + δnjCipkm + δnkCijpm + δnmCijkp)

− εp(δpiCnjkm + δpjCinkm + δpkCijnm + δpmCijkn)}/(n − 1)

= 0.



296 Y.J. SUH AND J.-H. KWON

Accordingly, we have
(3.13)

{(Sniq − αqSni)Cpjkm + (Snjq − αqSnj)Cipkm

+ (Snkq − αqSnk)Cijpm + (Snmq − αqSnm)Cijkp}
− {(Spiq − αq)Cnjkm + (Spjq − αqSpj)Cinkm

+ (Spkq − αq)Cijnm + (Spmq − αqSpm)Cijkn)}
−

∑
r
εrp(δpiCrjkm + δpjCirkm + δpkCijrm + δpmCijkr)

· (Snrq − αqSnr)

+
∑

r
εrn(δniCrjkm + δnjCirkm + δnkCijrm + δnmCijkr)

· (Sprq − αqSpr)
+ (rαq−rq){εn(δniCpjkm + δnjCipkm + δnkCijpm + δnmCijkp)
− εp(δpiCnjkm + δpjCinkm + δpkCijnm + δpmCijkn)}/(n − 1)

= 0.

Now putting i = r in (3.13), summing up with respect to
∑

i and taking
account of (2.6), Lemma 2.1 and the first Bianchi identity for C, we
have
(3.14)
∑

r
εr

[
(n−2)(Snrq − αqSnr)Crjkm + (Sjrq − αqSjr)Crnkm

+ (Skrq − αqSkr)Crjnm + (Smrq − αqSmr)Crjkn

+
∑

s
εs

{
εnδnk(Srsq−αqSrs)Crjms−εnδnm(Srsq−αqSrs)Crjks}

]

= 0.

Next we assume that M is conformally recurrent and M has a har-
monic conformal curvature tensor, namely, it satisfies

∑
rεrCrjkmr = 0.

Then we have

(3.15)
∑

r
εrαrCrjkm = 0.

Putting m = q in (3.14), summing up with respect to m and taking
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account of (3.15) and (3.5), we have

(3.16)
∑

r,s
εrs{(n−2)SnrsCrjks + SjrsCrnks + SkrsCrjns − αsSrsCrjkn}

+
∑

r
εrrrCrjkn/2 +

∑
r,s,t

εnεrstδnkSrstCrjts

−
∑

rs
εrs(Srsn − αnSrs)Crjks = 0.

The third term of (3.16) vanishes identically, since it satisfies

the third term =
∑

r,s,t
εnεrstδnk(Srst − Srts)Crjts/2

=
∑

r,s,t
εrstεnδnkεr(rtδrs − rsδrt)Crjts/4(n−1) = 0

where the first equality follows from (2.2), the second one is derived by
(3.5) and the last one is derived from (2.6).

On the other hand, we get
∑

r,s
εrst(Srns − Srsn)Crjks =

∑
r,s

εrsεr(rsδrn − rnδrs)Crjks/2(n−1)

=
∑

s
εsrsCnjks/2(n − 1)

where the first equality is derived by (3.4) and the second one follows
from (2.6). Thus (3.16) is deformed as

(3.17)
∑

r,s
εrs{(n−3)SnrsCrjks + SjrsCrnks + SkrsCrjns − αsSrsCrjkn}

+
∑

r
rrεrCrjkn/2 +

∑
r
rrεrCnjkr/2(n−1) +

∑
r,s

αnSrsCrjks = 0.

Since M is conformally recurrent and M has a harmonic conformal
curvature tensor, by (3.7) we have

∑
r
εr(CrikmSrjn + CrimjSrkn + CrijkSrmn) = 0.

Putting m and n by s in (3.7) and multiplying εl and summing up with
respect to s, we have

(3.18)
∑

r,s
εrs(SjrsCriks − SkrsCrijs) +

1
2

∑
s
εsrsCsijk = 0.
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By (3.17) and (3.18) we have
∑

r,s
εrs{(n−1)SnrsCrjks − αsSrsCrjkn} −

∑
r
rrεrCrjkn/2

+
∑

r
rrεrCnjkr/2(n−1) +

∑
r,s

εrsαnSrsCrjks = 0

Then from this by using the conformal recurrence and the assumption
of constant scalar curvature we have

(n − 1)
∑

rs
SnrsCrjks +

∑
rs

Srs(Crjkns − Crjksn) = 0.

Here we note that the indices j and k in the first and the third terms
are symmetric with each other, because Snrs and Srs are symmetric
with respect to the indices r and s. From such a fact, if take a skew-
symmetric part to the above equation, then it follows that

0 =
∑

r,s
εrsSrs(Crjkns − Crkjns) =

∑
r,s

εrsSrs(Crjkns + Crknjs)

= −
∑

r,s
εrsSrsCrnjks.

Hence we are able to assert that

(3.19)
∑

r,s
εrsSnrsCrjks =

∑
r,s

εrsSrsnCrjks = 0.

Transvecting (3.14) to αmαnαq, summing up with respect to m, n and
q, and taking account of (3.15) and (3.19), we have

(3.20) ‖α‖2
∑

r,s
εrsSrsCrjks = 0,

where ‖α‖2 = ‖∑rεrαrαr‖. By (3.14), (3.19) and (3.20) we have

‖α‖2
∑

r
εr[{(n−2)(Snrq − αqSnr)Crjkm + (Sjrq − αqSjr)Crnkm}

+ (Skrq − αqSkr)Crjnm + (Smrq − αqSmr)Crjkn] = 0.

By Lemma 3.3 we have
∑

r
εr{(Skrq − αqSkr)Crjnm + (Smrq − αqSmr)Crjkn}

=
∑

r
εr{(Skrq − αqSkr)Crjnm − (Skrq − αqSkr)Crjnm

− (Snrq − αqSnr)Crjmk}
= −

∑
r
εr(Snrq − αqSnr)Crjmk.
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From the above two equations we obtain

‖α‖2
∑

r
εr{(n−1)(Snrq−αqSnr)Crjkm+(Sjrq−αqSjr)Crnkm} = 0

which implies that

‖α‖2
∑

r
εr(Sjrq−αqSjr)Crnkm =−(n−1)‖α‖2

∑
r
εr(Snrq−αqSnr)Crjkm.

From this it follows that

(3.21) ‖α‖
∑

r
εr(Sjrq − αqSjr)Crnkm = 0.

Transvecting Sniq − αqSni or Cpjkm to (3.13) and applying equations
(3.20) and (3.21), we can obtain

(3.22) ‖α‖2‖∇S − α⊗S‖2C = 0 or ‖α‖2‖C‖2(∇S − α⊗S) = 0

on M − M ′. It completes the proof.

From this and Theorem 3.4 we want to give the following lemma
which will be useful to prove our main theorem

Lemma 3.5. Let M be an n(≥4)-dimensional Riemannian manifold
with Riemannian connection ∇. If M is conformally recurrent and
if M has a harmonic conformal curvature tensor and constant scalar
curvature, we have

C⊗(∇R − α⊗R) = 0.

Proof. By Theorem 3.4 we have

α⊗C⊗(∇S − α⊗S) = 0.

Let M1 be the subsets consisting of points x in M at which α(x) = 0.

First we suppose that M1 is not empty. If Int M1 is empty, the
nonvanishing 1-form α gives C = 0 or ∇S − α⊗S = 0. Then by the
assumption of conformal recurrence we know that ∇R − α⊗R = 0. So
in such a subcase the conclusion is given by the continuity of C and
∇R − α⊗R.
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Suppose that IntM1 is not empty. Then in such a subcase M is
conformal symmetric. Then by Theorem A due to Derdzinski and
Roter [5] and Miyazawa [9] we have C = 0 or ∇R = 0 on Int M1.
Hence it follows that we have C = 0 or ∇R = α⊗R on Int M1. Thus
we have C⊗(∇R − α⊗R) = 0 on M .

Now we suppose that M1 is empty. Then nonvanishing 1-form α
implies C = 0 or ∇S − α⊗S = 0. When ∇S − α⊗S = 0, we also have
∇R − α⊗R = 0, because M is conformally recurrent.

By virtue of Lemma 3.5 we have the following

Theorem 3.6. Let M be an n(≥4)-dimensional Riemannian man-
ifold with Riemannian connection ∇. Suppose that M is conformally
recurrent and has a harmonic conformal curvature tensor. If the scalar
curvature is a nonzero constant, then M is conformally flat or M is
locally symmetric.

Proof. Let M ′′ be the subset of points x in M at which

(∇R − α⊗R)(x) = 0.

Then we have (∇r − αr)(x) = 0 on M ′′. Since we have assumed that
the scalar curvature is nonzero constant, we get α(x) = 0 on M ′′. Then
from this together with Lemma 3.5 it follows that α = 0 or C = 0, that
is, α⊗C = 0 on M .

Now let us consider the open subset M∗ consisting of points x at
which C(x) = 0. Then on such an open subset we have ∇C = 0 and
hence the inner product 〈C, C〉 is constant. By the continuity of 〈C, C〉,
if M∗ is not empty, then 〈C, C〉 = 0 on M , namely C = 0 on M . That
is, M is conformally flat. If M∗ is empty, then the fact α⊗C = 0
implies α = 0 on M . In such a case we know that M is conformally
symmetric. From this together with Theorem A we complete the proof
of our theorem.

Remark 3.1. In their paper [8] Goldberg and Okumura proved that in
an n(≥4)-dimensional compact conformally flat Riemannian manifold,
if the length of the Ricci tensor is constant and less than r/

√
n − 1,

then M is a space of constant curvature.
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Remark 3.2. In the next section we will show that the assumption
that the scalar curvature is a nonzero constant in Theorem 3.6 is
essential when we consider an indefinite version of Theorem 3.6. That
is, we will show a class of an indefinite complex hypersurfaces which is
neither conformally flat nor locally symmetric, but its scalar curvature
is vanishing.

Remark 3.3. But in a Riemannian version the referee suggests that the
assumption concerned with the scalar curvature will not be necessary.
Namely, one can verify that any conformally recurrent Riemannian
manifold of dimension n≥4 which has harmonic conformal curvature
tensor is conformally symmetric in the sense that ∇C = 0 (and
Theorem A gives conformally flat or locally symmetric). Namely, he
has given us another possible argument which is much more shorter
than our proof as follows.

First, let g be a Riemannian-product metric, positive-definite or not,
on a product manifold of dimension n ≥ 4, with both factor manifolds
of positive dimensions. If C(X, ·, ·, ·) = 0 for all vectors X tangent to
the first factor, and ∇C = α⊗C with a 1-form α such that the vector
X obtained from α by index-raising (Xj = gjkαk) is tangent to the first
factor, then ∇C = 0 identically on M . (Here C(X, ·, ·, ·) = 0 means
that C(X, Y, Z, U) = 0 for all vectors Y, Z, U).

In fact, in product coordinates obtained from coordinates xa in the
first factor manifold and xλ in the second factor, our assumptions mean
that all components of C vanish except, possibly, those of the form
Cλµνξ, while αλ = 0. (We let λ, µ, ν, ξ, ρ vary through one index range,
and a, b through the other.) Due to the definition of C (formula (1.1)
in the paper), relations Caλbµ = 0, contracted against gab or gλµ, show
that both factor metrics are Einstein, even if one or both of them
happen to be two-dimensional. In particular, they both have constant
scalar curvatures, which now easily implies that the only (possibly)
nonzero components of ∇C are Cλµνξ,ρ. As ∇C = α ⊗ C and αρ = 0,
this gives ∇C = 0.

It follows now that a Riemannian manifold of dimension n ≥ 4 with
δC = 0 and ∇C = α ⊗ C must have ∇C = 0 everywhere.
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In fact, suppose on the contrary that ∇C �= 0 somewhere. Thus,
we can pick a nonempty connected open set M ′ such that C �= 0 and
∇C �= 0, everywhere in M ′. Since ∇C = α ⊗ C, defining the norm
|C| of C by the usual formula |C|2 = gipgjqgksgltCijklCpqst we obtain
∇T = 0 on M ′, where T is the tensor field on M ′ given by T = C/|C|.
(To see this, first note that, by transvecting both sides of ∇C = α⊗C
with C, we obtain α = d log |C| on M ′). The tangent vectors X such
that T (X, ·, ·, ·) = 0, i.e., T (X, Y, Z, U) = 0 for all Y, Z, U , form a
distribution D on M ′ which is parallel (since so is T ). Its dimension
dimD satisfies 0 < dimD < n since not all vectors lie in D, as C �= 0,
but some nonzero vectors do (namely, the vector X obtained from α
by index-raising, at any point of M ′, is in D, due to the assumption
that ∇C = α ⊗ C and δC = 0. The parallel distributions D and
D⊥ are, locally in M ′, tangent to the factors of a Riemannian-product
decomposition of the original metric which satisfies all the hypotheses
of the preceding paragraph. Therefore, ∇C = 0 on M ′, contradicting
our very choice of M ′.

4. Example. For any integer p(≥2) and any complex number c such
that |c|≥1 we define an indefinite complex Euclidean space C2n+1

n of
index 2n is defined as follows.

Let {zj , zj∗
, z2n+1} = {z1, · · ·, z2n+1} be a complex coordinate of

C2n+1
n . Then M = M(p, c) is an indefinite complete complex hyper-

surface of index 2n defined by

z2n+1 =
∑

j
hj(zj + czj∗

), hj(z) = zp,

where c is any complex number such that |c|≥1. The range of indices
are given as follows:

i, j, · · · = 1, · · ·, n, A, B, · · · = 1, · · ·, 2n, α, β, · · · = 1, · · ·, 4n,

j∗ = n + j, A∗ = 2n + A.

Usually in a semi-Kaehler manifold M we are able to choose a
local field of orthonormal frame {E1, · · ·, En, E1∗, · · ·, En∗ = JEn}
on a neighborhood of M . Then Uj = 1/

√
2(Ej − iEj∗) and Uj̄ =

1/
√

2(Ej + iEj∗) constitute a local field of unitary frames on M .
Moreover, its semi-Kaehler metric is given by g = 2

∑
εjωj⊗ω̄j , where

ωj = θj + iθj∗ , and ω̄j = θj − iθj∗ .
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Then the components hAB of the second fundamental form, see
Aiyama, Ikawa, Kwon and Nakagawa [1], are given by

(4.1)
hij = p(p − 1)δijz

p−2, hi∗j = p(p − 1)cδijz
p−2,

hi∗j∗ = p(p − 1)c2δijz
p−2.

Let SAB̄ be the components of the extended Ricci tensor S of M with
respect to the complex coordinate {zj , zj∗}. Then from the formula due
to Aiyama, Nakagawa and Suh [2] and Choi, Kwon and Suh [4, 5] we
obtain that

Sij̄ = −
∑

R
hiRh̄Rj

= −
∑

k
εkhikh̄kj −

∑
k∗hik∗ h̄k∗j

=
∑

k
hikh̄kj −

∑
k
hik∗ h̄k∗j

= (1 − |c|2)p2(p − 1)2δij |z|2(p−2).

Similarly, the other components are given by

Sij̄∗ = −
∑

R
εRhiRh̄Rj∗ = (1 − |c|2)p2(p − 1)2δij |z|2(p−2),

Si∗ j̄∗ = −
∑

R
εRhiRh̄Rj∗ = (1 − |c|2)p2(p − 1)2δij |z|2(p−2)

which means that if |c|2 = 1, then the Ricci tensor S on M is flat.
Then by (3.2) and (3.13) we know that the conformal curvature tensor
is harmonic, that is, coclosed δC = 0.

Next for the components hABC of the covariant derivatives of the
second fundamental form we have

(4.2)

hijk = p(p − 1)(p − 2)δijδikzp−3,

hi∗jk = p(p − 1)(p − 2)cδijδikzp−3,

hi∗j∗k = p(p − 1)(p − 2)c2δijδikzp−3,

hi∗j∗k∗ = p(p − 1)(p − 2)c3δijδikzp−3.

We should note that the expression is by the complex coordinates.
Let

{xA, yA, x2n+1, y2n+1}
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be the real coordinate of C2n+1
n . Let KABCD be the components of

the extended Riemannian curvature tensor R of M with respect to the
complex coordinate {zj , zj∗} defined by

KABCD = g(R(UA, UB)UC , UD),

and let
Rαβγδ = g(R(Eα, Eβ)Eγ , Eδ)

be the components of the Riemannian curvature tensor R of M with
respect to the real coordinates {xA, yA}. Then by the theory of complex
hypersurfaces, see Aiyama, Nakagawa and Suh [2], in an indefinite
Kaehler manifold we have

(4.3) KABCD = −hBC h̄AD, KABCDE = −hBCE h̄AD,

(4.4) KABCD = −{RABCD + RA∗BC∗D + i(RA∗BCD − RABC∗D)}.

By (4.1) and (4.3) we have

(∗) Kījkm̄ = −hjkh̄im = −p2(p − 1)2δjkδim|z|2(p−2),

Kījkm̄∗ = −hjkh̄im∗ = −cp2(p − 1)2δjkδim|z|2(p−2).

Others are similarly given, from which it follows that M is not neces-
sarily flat. Furthermore we have

Kījkm̄n = −hjknh̄im = −p2(p − 1)2(p − 2)δjmδik|z|2(p−2)z−1

= (p − 2)δjnz−1Kij̄km̄ = αjδjnKījkm̄,

where αj = dβj and the smooth function βj is defined by

βj = log
hj(z)
z2

= log zp−2, p≥3,

from which it follows that

Kījkm̄n = αjδjnKījkm̄.

Similarly, we get
Kījkm̄∗n = αjδjnKījkm̄∗ .
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Accordingly, if p≥3, then M is not locally symmetric and we are able
to get

(4.5) KABCDE = αEKABCD.

On the other hand, by (4.4) and the expression of Rαβγδ we have

(4.6) Kīiīi = −Ri∗ii∗i = Rii∗i∗i = g(R(Ei, JEi)JEi, Ei).

In general, since M is the semi-Kaehler manifold, the components
Rαβγδ of the Riemannian curvature tensor R satisfy

(4.7) RA∗BCD = −RAB∗CD, RA∗B∗CD = RABCD.

For indices i, j such that i�=j, we have known KījCD = 0 from the
formula (∗). By (4.4) we get

(4.8) Rijkm + Rij∗km∗ = 0, Ri∗jkm − Rijk∗m = 0.

Accordingly, the first equation of (4.8) is deformed as

RijCD + Rij∗CD∗ = RijCD − Rj∗iCD∗ = RijCD − RjiC∗D∗

= RijCD − RjiCD = 2RijCD

= 0,

where the first equality is derived by the general property of the
Riemannian curvature tensor, the second one follows from (4.8) and the
general property of the Riemannian curvature tensor, and the third one
is also derived from (4.7) and the general property of the Riemannian
curvature tensor. Thus we have

(4.9) RijCD = 0, i�=j.

On the relation between the real natural frame and the complex
natural frame we have (4.4) and by the definition of the covariant
derivative the components KĀBCD̄E are given by

(4.10)

KABCDE

= −{RABCDE+RAB∗CD∗E +i(RA∗BCDE−RABCD∗E)}/2
+ i{RABCDE∗ +RAB∗CD∗E∗ +i(RA∗BCDE∗−RABCD∗E∗)}/2.
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On the other hand, from (4.5) we get Kīiīii = αiKīiīi. Then from
this together with (4.8) and (4.10) it follows that

(4.11) Ri∗iii∗E = 2αERi∗iii∗ .

Similarly, we get
RABCDE = 2αERABCD.

In such a case the Ricci tensor is flat if |c| = 1 and the complex hy-
persurface M of index 2n in a (2n + 1)-dimensional indefinite complex
Euclidean space C2n+1

n of index 2n defined above is conformally re-
current. Of course its conformal curvature tensor is coclosed, which
is neither locally symmetric nor conformally flat if p≥3. Moreover,
we know that the scalar curvature is identically vanishing, because its
Ricci tensor is vanishing on M .

This example shows that in an indefinite version of Theorem 3.6 the
assumption that the scalar curvature is a nonzero constant is essential.
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