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GENERALIZATIONS AND REFINEMENTS OF
HERMITE-HADAMARD’S INEQUALITY

FENG QI, ZONG-LI WEI AND QIAO YANG

ABSTRACT. In this article, with the help of the concept
of the harmonic sequence of polynomials, the well known
Hermite-Hadamard’s inequality for convex functions is gen-
eralized to cases with bounded derivatives of nth order, in-
cluding the so-called n-convex functions, from which Hermite-
Hadamard’s inequality is extended and refined.

1. Introduction. Let f(x) be a convex function on the closed
interval [a, b], the well known Hermite-Hadamard’s inequality [6] can
be expressed as:

(1) 0 ≤
∫ b

a

f(t) dt−(b−a)f
(
a+b

2

)
≤ (b−a)f(a)+f(b)

2
−

∫ b

a

f(t) dt.

It is well known that Hermite-Hadamard’s inequality is an important
cornerstone in mathematical analysis and optimization. There is a
growing literature considering its refinements and interpolations now.

A function f(x) is said to be r-convex on [a, b] with r ≥ 2 if and only
if f (r)(x) exists and f (r)(x) ≥ 0.

In terms of a trapezoidal formula and a midpoint formula for a real
function f(x) defined and integrable on [a, b], using the first and second
Euler-Maclaurin summation formulas, inequality (1) was generalized
for (2r)-convex functions on [a, b] with r ≥ 1 in [2].

In this paper, for our own convenience, we adopt the following
notation

(2) Sn =
f (n−1)(b) − f (n−1)(a)

b− a
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for any n-times differentiable function f defined on the closed interval
[a, b].

In [3, 4], the following double integral inequalities were obtained.

Theorem A. Let f : [a, b] → R be a twice differentiable mapping
and suppose that γ ≤ f ′′(t) ≤ Γ for all t ∈ (a, b). Then we have

γ(b− a)2

24
≤ 1
b− a

∫ b

a

f(t) dt− f

(
a+ b

2

)
≤ Γ(b− a)2

24
,(3)

γ(b− a)2

12
≤ f(a) + f(b)

2
− 1
b− a

∫ b

a

f(t) dt ≤ Γ(b− a)2

12
.(4)

In [11], the above inequalities were refined as follows.

Theorem B. Let f : [a, b] → R be a twice differentiable mapping
and suppose that γ ≤ f ′′(t) ≤ Γ for all t ∈ (a, b). Then we have

3S2 − 2Γ
24

(b− a)2 ≤ 1
b− a

∫ b

a

f(t) dt− f

(
a+ b

2

)
(5)

≤ 3S2 − 2γ
24

(b− a)2,

3S2 − Γ
24

(b− a)2 ≤ f(a) + f(b)
2

− 1
b− a

∫ b

a

f(t) dt(6)

≤ 3S2 − γ

24
(b− a)2.

If f ′′(t) ≤ 0, or f ′′(t) ≥ 0, then we can set Γ = 0, or γ = 0, in
Theorem A and Theorem B. Then Hermite-Hadamard’s inequality (1)
and those similar to the Hermite-Hadamard’s inequality (1) can be
obtained.

In this article, using the concept of the harmonic sequence of polyno-
mials, the well known Hermite-Hadamard’s inequality for convex func-
tions is generalized to the cases with bounded derivatives of nth or-
der, including the so-called n-convex functions, from which Hermite-
Hadamard’s inequality is extended and refined.
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2. Some simple generalizations. In this section, we will gener-
alize results above to the cases that the nth derivative of integrand is
bounded for n ∈ N.

Theorem 1. Let f(t) be n-times differentiable on the closed interval
[a, b] such that γ ≤ f (n)(t) ≤ Γ for t ∈ [a, b] and n ∈ N. Further, let
u ∈ [a, b] be a parameter. Then

(7) (b− a)Sn max
{

(u− a)n

n!
,
(b− u)n

n!

}

+
[
(u−a)n+1 − (u−b)n+1

(n+ 1)!
− (b− a) max

{
(u−a)n

n!
,
(b−u)n

n!

}]
Γ

≤ (−1)n

∫ b

a

f(t) dt+
n−1∑
i=0

(u− a)n−i − (u− b)n−i

(n− i)!
(−1)if (n−i−1)(u)

≤ (b− a)Sn max
{

(u− a)n

n!
,
(b− u)n

n!

}

+
[
(u−a)n+1 − (u−b)n+1

(n+ 1)!
− (b− a) max

{
(u−a)n

n!
,
(b−u)n

n!

}]
γ.

Proof. Define

(8) pn(t) =
{

(t− a)n/n!, t ∈ [a, u],
(t− b)n/n!, t ∈ (u, b].

By direct computation, we have

(9)
∫ b

a

pn(t) dt =
(u− a)n+1 − (u− b)n+1

(n+ 1)!
.

Integrating by parts and using mathematical induction yields

(10)

∫ b

a

pn(t)f (n)(t) dt =
(u− a)n − (u− b)n

n!
f (n−1)(u)

−
∫ b

a

pn−1(t)f (n−1)(t) dt,
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and then

(11)

∫ b

a

pn(t)f (n)(t) dt+ (−1)n+1

∫ b

a

f(t) dt

=
n−1∑
i=0

(u− a)n−i − (u− b)n−i

(n− i)!
(−1)if (n−i−1)(u).

Utilization of (9) and (11) yields

(12)

∫ b

a

pn(t)
[
f (n)(t) − γ

]
dt

= (−1)n

∫ b

a

f(t) dt− (u− a)n+1 − (u− b)n+1

(n+ 1)!
γ

+
n−1∑
i=0

(u− a)n−i − (u− b)n−i

(n− i)!
(−1)if (n−i−1)(u).

Meanwhile,

(13)
∫ b

a

pn(t)
[
f (n)(t) − γ

]
dt

≤
∫ b

a

|pn(t)| ∣∣f (n)(t) − γ
∣∣ dt

≤ max
t∈[a,b]

|pn(t)|
∫ b

a

(
f (n)(t) − γ

)
dt

≤ max
{

(u−a)n

n!
,
(b−u)n

n!

}[
f (n−1)(b)−f (n−1)(a)

b− a
− γ

]
(b−a).

The right inequality in (7) follows from combining (12) with (13).

The left inequality in (7) follows from similar arguments as above.
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Theorem 2. Let f(t) be n-times differentiable on the closed interval
[a, b] such that γ ≤ f (n)(t) ≤ Γ for t ∈ [a, b] and n ∈ N. Then

(14)

1
2n

(b− a)n+1

n!

[
Sn +

(
1 + (−1)n

2(n+ 1)
− 1

)
Γ
]

≤ (−1)n

∫ b

a

f(t) dt

+
n−1∑
i=0

(b−a)n−i

(n− i)!
(−1)n+1 + (−1)i

2n−i
f (n−i−1)

(
a+b

2

)

≤ 1
2n

(b− a)n+1

n!

[
Sn +

(
1 + (−1)n

2(n+ 1)
− 1

)
γ

]
.

Proof. This follows from taking u = (a+ b)/2 in inequality (7).

Remark 1. If taking n = 2 in (14), the double inequality (5) follows.

Theorem 3. Let f(t) be n-times differentiable on the closed interval
[a, b] such that γ ≤ f (n)(t) ≤ Γ for t ∈ [a, b] and n ∈ N, and u ∈ R.
Then[

(b− a) max
{ |a− u|n

n!
,
|b− u|n
n!

}
+

(b− u)n+1 − (a− u)n+1

(n+ 1)!

]
γ

− (b− a)Sn max
{ |a− u|n

n!
,
|b− u|n
n!

}

≤ (−1)n

∫ b

a

f(t) dt

+
n−1∑
i=0

(−1)i (b− u)n−if (n−i−1)(b) − (a− u)n−if (n−i−1)(a)
(n− i)!

≤
[
(b− a) max

{ |a− u|n
n!

,
|b− u|n
n!

}
+

(b− u)n+1 − (a− u)n+1

(n+ 1)!

]
Γ

− (b− a)Sn max
{ |a− u|n

n!
,
|b− u|n
n!

}
.
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Proof. Define

(16) qn(t) =
(t− u)n

n!
, u ∈ R.

By direct computation, we have

(17)
∫ b

a

qn(t) dt =
(b− u)n+1 − (a− u)n+1

(n+ 1)!
.

Integrating by parts and using mathematical induction yields

(18)

∫ b

a

qn(t)f (n)(t) dt+
∫ b

a

qn−1(t)f (n−1)(t) dt

=
(b−u)nf (n−1)(b) − (a−u)nf (n−1)(a)

n!
,

and then

(19)

∫ b

a

qn(t)f (n)(t) dt+ (−1)n+1

∫ b

a

f(t) dt

=
n−1∑
i=0

(−1)i (b−u)n−if (n−i−1)(b)−(a−u)n−if (n−i−1)(a)
(n− i)!

.

Making use of (17) and (19) and direct calculation yields

(20)

∫ b

a

qn(t)
[
γ − f (n)(t)

]
dt

= (−1)n+1

∫ b

a

f(t) dt+
(b−u)n+1 − (a−u)n+1

(n+ 1)!
γ

+
n−1∑
i=0

(−1)i+1 (b−u)n−if (n−i−1)(b)−(a−u)n−if (n−i−1)(a)
(n− i)!

.

It is easy to see that

(21)

∫ b

a

qn(t)
[
γ − f (n)(t)

]
dt

≤ max
t∈[a,b]

|qn(t)|
∫ b

a

(
f (n)(t) − γ

)
dt

≤ max
{ |a−un|

n!
,
|b−un|
n!

}[
f (n−1)(b)−f (n−1)(a)

b− a
− γ

]
(b−a).
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The left inequality in (15) follows from combining (20) with (21).

The right inequality in (15) follows from similar arguments as above.

Theorem 4. Let f(t) be n-times differentiable on the closed interval
[a, b] such that γ ≤ f (n)(t) ≤ Γ for t ∈ [a, b] and n ∈ N. Then

(22)

1
2n

(b− a)n+1

n!

[(
1 +

1 + (−1)n

2(n+ 1)

)
γ − Sn

]

≤ (−1)n

∫ b

a

f(t) dt

+
n−1∑
i=0

(b− a)n−i

(n− i)!
(−1)n+1f (n−i−1)(a) + (−1)if (n−i−1)(b)

2n−i

≤ 1
2n

(b− a)n+1

n!

[(
1 +

1 + (−1)n

2(n+ 1)

)
Γ − Sn

]
.

Proof. This follows from taking u = (a+ b)/2 in (15).

Corollary 1. Let f : [a, b] → R be a twice differentiable mapping on
[a, b] and suppose that γ ≤ f ′′(t) ≤ Γ for t ∈ (a, b). Then we have

(23)

2γ−3S2

12
(b−a)2 ≤ 1

b−a
∫ b

a

f(t) dt− f(a)+f(b)
2

≤ 2Γ−3S2

12
(b−a)2.

Proof. If setting n = 2 in (22), then inequality (23) follows.

3. More general generalizations. In this section, we will
generalize Hermite-Hadamard’s inequality to more general cases with
the help of the concept of harmonic sequence of polynomials.
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Definition 1. A sequence of polynomials {Pi(t, x)}∞i=0 is called
harmonic if it satisfies the following Appell condition

(24) P ′
i (t) � ∂Pi(t, x)

∂t
= Pi−1(t, x) � Pi−1(t)

and P0(t, x) = 1 for all defined (t, x) and i ∈ N.

It is well-known that Bernoulli’s polynomials Bi(t) can be defined by
the following expansion

(25)
xetx

ex − 1
=

∞∑
i=0

Bi(t)
i!

xi, |x| < 2π, t ∈ R,

and are uniquely determined by the following formulae

B′
i(t) = iBi−1(t), B0(t) = 1;(26)
Bi(t+ 1) −Bi(t) = iti−1.(27)

Similarly, Euler’s polynomials can be defined by

(28)
2etx

ex + 1
=

∞∑
i=0

Ei(t)
i!

xi, |x| < π, t ∈ R,

and are uniquely determined by the following properties

E′
i(t) = iEi−1(t), E0(t) = 1;(29)
Ei(t+ 1) +Ei(t) = 2ti.(30)

For further details about Bernoulli’s polynomials and Euler’s polyno-
mials, please refer to [1, 23.1.5 and 23.1.6] or [12]. Moreover, some new
generalizations of Bernoulli’s numbers and polynomials can be found
in [7, 8, 9, 10].

There are many examples of harmonic sequences of polynomials. For
instance, for i being a nonnegative integer, t, τ, θ ∈ R and τ �= θ,

Pi,λ(t) � Pi,λ(t; τ ; θ) =
[t− (λθ + (1 − λ)τ )]i

i!
,(31)

Pi,B(t) � Pi,B(t; τ ; θ) =
(τ − θ)i

i!
Bi

(
t− θ

τ − θ

)
,(32)

Pi,E(t) � Pi,E(t; τ ; θ) =
(τ − θ)i

i!
Ei

(
t− θ

τ − θ

)
.(33)
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As usual, let Bi = Bi(0), i ∈ N, denote Bernoulli’s numbers. From
properties (26) and (27), (29) and (30) of Bernoulli’s and Euler’s
polynomials respectively, we can obtain easily that, for i ≥ 1,

(34) Bi+1(0) = Bi+1(1) = Bi+1, B1(0) = −B1(1) = −1
2
,

and, for j ∈ N,

(35) Ej(0) = −Ej(1) = − 2
j + 1

(2j+1 − 1)Bj+1.

It is also a well-known fact that B2i+1 = 0 for all i ∈ N.

Theorem 5. Let {Pi(t)}∞i=0 be a harmonic sequence of polynomials,
let f(t) be n-times differentiable on the closed interval [a, b] such that
γ ≤ f (n)(t) ≤ Γ for t ∈ [a, b] and n ∈ N. Let α be a real constant.
Then

(36)
[
α+ max

t∈[a,b]
|Pn(t) + α|

]
Sn

−
(

max
t∈[a,b]

|Pn(t) + α| + Pn+1(b) − Pn+1(a)
b− a

+ α

)
Γ

≤ (−1)n+1

[
1

b−a

∫ b

a

f(t) dt+
n∑

i=1

(−1)i Pi(b)f
(i−1)(b)−Pi(a)f(i−1)(a)

b−a

]

≤
[
α− max

t∈[a,b]
|Pn(t) + α|

]
Sn

+
(

max
t∈[a,b]

|Pn(t) + α| − Pn+1(b) − Pn+1(a)
b− a

− α

)
Γ

and

(37)
[
α− max

t∈[a,b]
|Pn(t) + α|

]
Sn

+
(

max
t∈[a,b]

|Pn(t) + α| − Pn+1(b) − Pn+1(a)
b− a

− α

)
γ

≤ (−1)n+1

[
1

b−a

∫ b

a

f(t) dt+
n∑

i=1

(−1)i Pi(b)f
(i−1)(b)−Pi(a)f(i−1)(a)

b−a

]

≤
[
α+ max

t∈[a,b]
|Pn(t) + α|

]
Sn

−
(

max
t∈[a,b]

|Pn(t) + α| + Pn+1(b) − Pn+1(a)
b− a

+ α

)
γ.
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Proof. By successive integration by parts and mathematical induction
we obtain

(38)

(−1)n

∫ b

a

Pn(t)f (n)(t) dt−
∫ b

a

f(t) dt

=
n∑

i=1

(−1)i
[
Pi(b)f (i−1)(b) − Pi(a)f (i−1)(a)

]
.

Using the definition of the harmonic sequence of polynomials yields

(39)
∫ b

a

Pn(t) dt = Pn+1(b) − Pn+1(a).

Using (38) and (39) gives us

(40)

1
b−a

∫ b

a

[
Pn(t) + α

][
Γ − f (n)(t)

]
dt

=
(−1)n+1

b− a

∫ b

a

f(t) dt+
(
Pn+1(b) − Pn+1(a)

b− a
+ α

)
Γ

+
n∑

i=1

(−1)n+i+1Pi(b)f (i−1)(b) − Pi(a)f (i−1)(a)
b− a

− αSn.

Direct calculation shows

(41)

∣∣∣∣ 1
b−a

∫ b

a

[
Pn(t) + α

][
Γ − f (n)(t)

]
dt

∣∣∣∣
≤ 1
b− a

max
t∈[a,b]

|Pn(t) + α|
∫ b

a

[
Γ − f (n)(t)

]
dt

= max
t∈[a,b]

|Pn(t) + α|
[
Γ − f (n−1)(b) − f (n−1)(a)

b− a

]
.
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From combining (40) with (41), it follows that

(42)

[
α+ max

t∈[a,b]
|Pn(t) + α| ]Sn

−
(

max
t∈[a,b]

|Pn(t) + α| + Pn+1(b) − Pn+1(a)
b− a

+ α

)
Γ

≤ (−1)n+1

b− a

∫ b

a

f(t) dt

+
n∑

i=1

(−1)n+i+1Pi(b)f (i−1)(b) − Pi(a)f (i−1)(a)
b− a

≤ [
α− max

t∈[a,b]
|Pn(t) + α| ]Sn

+
(

max
t∈[a,b]

|Pn(t) + α| − Pn+1(b) − Pn+1(a)
b− a

− α

)
Γ.

The inequality (36) follows.

Similarly, we can obtain the inequality (37).

Remark 2. If taking P2(t) = (t− (a+ b)/2)2/2, α = −(b−a)2/8, and
n = 2 in (36) and (37), then the inequality (6) follows easily.

Remark 3. If setting Pn(t) = qn(t) and α = 0 in (36) and (37), then
we can deduce Theorem 3 from Theorem 5.

Theorem 6. Let {Ei(t)}∞i=0 be the Euler’s polynomials and {Bi}∞i=0

the Bernoulli’s numbers. Let f(t) be n-times differentiable on the closed
interval [a, b] such that γ ≤ f (n)(t) ≤ Γ for t ∈ [a, b] and n ∈ N. Then
(43)

(a−b)n

n!

[(
max

t∈[0,1]
|En(t)| + 4(2n+2 − 1)

(n+1)(n+2)
Bn+2

)
Γ − max

t∈[0,1]
|En(t)|Sn

]

≤ 1
b−a

∫ b

a

f(t) dt

+ 2
[(n+1)/2]∑

i=1

(b−a)2(i−1)

(2i)!

[
f (2(i−1))(a) + f (2(i−1))(b)

]
(1 − 4i)B2i

≤ (a−b)n

n!

[
max

t∈[0,1]
|En(t)|Sn −

(
max

t∈[0,1]
|En(t)| − 4(2n+2 − 1)

(n+1)(n+2)
Bn+2

)
Γ
]
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and
(44)

(a−b)n

n!

[
max

t∈[0,1]
|En(t)|Sn −

(
max

t∈[0,1]
|En(t)| − 4(2n+2 − 1)

(n+1)(n+2)
Bn+2

)
γ

]

≤ 1
b−a

∫ b

a

f(t) dt

+ 2
[(n+1)/2]∑

i=1

(1−4i)
(b−a)2(i−1)

(2i)!

[
f (2(i−1))(a) + f (2(i−1))(b)

]
B2i

≤ (a−b)n

n!

[(
max
t∈[0,1]

|En(t)|+ 4(2n+2 − 1)
(n+1)(n+2)

Bn+2

)
γ − max

t∈[0,1]
|En(t)|Sn

]
,

where [x] denotes the Gauss function, whose value is the largest integer
not more than x.

Proof. Let

(45) Pi(t) = Pi,E(t; b; a) =
(b− a)i

i!
Ei

(
t− a

b− a

)
.

Then, we have

(46) max
t∈[a,b]

|Pn(t)| =
(b− a)n

n!
max

t∈[0,1]
|En(t)|,

and

(47)
Pn+1(b) − Pn+1(a)

b− a
=

4(2n+2 − 1)
n+ 2

(b− a)n

(n+ 1)!
Bn+2.

Using formulae (35) and straightforward calculation yields

n∑
i=1

(−1)i Pi(b)f (i−1)(b) − Pi(a)f (i−1)(a)
b− a

(48)

=
n∑

i=1

(−1)i (b−a)i−1

i!

[
Ei(1)f (i−1)(b) − Ei(0)f (i−1)(a)

]
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=
n∑

i=1

(−1)i (b−a)i−1

i!
Ei(1)

[
f (i−1)(a) + f (i−1)(b)

]

= 2
n∑

i=1

(−1)i (b−a)i−1

(i+ 1)!

[
f (i−1)(a) + f (i−1)(b)

]
(2i+1 − 1)Bi+1

= 2
[(n+1)/2]∑

i=1

(1−4i)
(b−a)2(i−1)

(2i)!

[
f (2(i−1))(a) + f (2(i−1))(b)

]
B2i.

Substituting (45), (46), (47) and (48) into (36) and (37) and taking
α = 0 leads to (43) and (44). The proof is complete.

Theorem 7. Let {Pi(t)}∞i=0 and {Qi(t)}∞i=0 be two harmonic se-
quences of polynomials, α and β two real constants, u ∈ [a, b]. Let
f(t) be n-times differentiable on the closed interval [a, b] such that
γ ≤ f (n)(t) ≤ Γ for t ∈ [a, b] and n ∈ N. Then

(49)

[
Qn+1(b) − Pn+1(a)

b− a
+
Pn+1(u) −Qn+1(u)

b− a

+
(α− β)u+ (bβ − aα)

b− a
+ C(u)

]
γ − C(u)Sn

≤ (−1)n

b− a

∫ b

a

f(t) dt

+
n∑

i=1

(−1)n+iQi(b)f (i−1)(b) − Pi(a)f (i−1)(a)
b− a

+
n∑

i=1

(−1)n+iPi(u) −Qi(u)
b− a

f (i−1)(u)

+
βf (n−1)(b) − αf (n−1)(a)

b− a
+

(α− β)f (n−1)(u)
b− a

≤
[
Qn+1(b) − Pn+1(a)

b− a
+
Pn+1(u) −Qn+1(u)

b− a

+
(α− β)u+ (bβ − aα)

b− a
− C(u)

]
γ + C(u)Sn
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and

(50)

[
Qn+1(b) − Pn+1(a)

b− a
+
Pn+1(u) −Qn+1(u)

b− a

+
(α− β)u+ (bβ − aα)

b− a
− C(u)

]
Γ + C(u)Sn

≤ (−1)n

b− a

∫ b

a

f(t) dt

+
n∑

i=1

(−1)n+iQi(b)f (i−1)(b) − Pi(a)f (i−1)(a)
b− a

+
n∑

i=1

(−1)n+iPi(u) −Qi(u)
b− a

f (i−1)(u)

+
βf (n−1)(b) − αf (n−1)(a)

b− a
+

(α− β)f (n−1)(u)
b− a

≤
[
Qn+1(b) − Pn+1(a)

b− a
+
Pn+1(u) −Qn+1(u)

b− a

+
(α− β)u+ (bβ − aα)

b− a
+ C(u)

]
Γ − C(u)Sn,

where

(51) C(u) = max
{

max
t∈[a,u]

|Pn(t) + α|, max
t∈(u,b]

|Qn(t) + β|
}
.

Proof. Define

(52) ψn(t) =
{
Pn(t) + α, t ∈ [a, u],
Qn(t) + β, t ∈ (u, b].

It is easy to see that

(53)

∫ b

a

ψn(t) dt =
∫ u

a

ψn(t) dt+
∫ b

u

ψn(t) dt

= [Qn+1(b) − Pn+1(a)] + [Pn+1(u) −Qn+1(u)]
+ (α− β)u+ (bβ − aα).
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Direct computation produces

(54)∫ b

a

ψn(t)f (n)(t) dt =
∫ u

a

ψn(t)f (n)(t) dt+
∫ b

u

ψn(t)f (n)(t) dt

= (−1)n

∫ b

a

f(t) dt+ (α− β)f (n−1)(u)

+
n∑

i=1

(−1)n+i
[
Qi(b)f (i−1)(b) − Pi(a)f (i−1)(a)

]

+
n∑

i=1

(−1)n+i [Pi(u) −Qi(u)] f (i−1)(u)

+
[
βf (n−1)(b) − αf (n−1)(a)

]
,

and

(55)

∣∣∣∣
∫ b

a

ψn(t)
[
f (n)(t) − γ

]
dt

∣∣∣∣
≤ max

t∈[a,b]
|ψn(t)|

∫ b

a

(
f (n)(t) − γ

)
dt

≤ C(u)
[
f (n−1)(b) − f (n−1)(a) − γ(b− a)

]
.

Combining (53), (54), (55) and rearranging leads to (49).

The inequality (50) follows from the same arguments. The proof is
complete.

Remark 4. If taking u = b in Theorem 7, then Theorem 5 is derived.

Remark 5. If taking α = β = 0, Pi(t) = ((t− a)i/i!) and Qi(t) =
(t− b)i/i! in Theorem 7, then Theorem 1 follows.

Remark 6. If f (n)(t) ≥ 0, or f (n)(t) ≤ 0, for t ∈ [a, b], then we can set
γ = 0, or Γ = 0, and so some inequalities for the so-called n-convex, or
n-concave, functions are obtained as consequences of theorems in this
paper, which generalize or refine the well-known Hermite-Hadamard’s
inequality.
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