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SPACES L2(λ) OF A POSITIVE VECTOR
MEASURE λ AND GENERALIZED

FOURIER COEFFICIENTS

S. OLTRA, E.A. SÁNCHEZ PÉREZ AND O. VALERO

ABSTRACT. Let L be a Banach lattice and consider a
countably additive vector measure λ with values on L. Let
L2(λ) be the Banach lattice of square integrable functions
with respect to λ. In this paper we obtain several structure
results for this space and the Fourier coefficients related to
orthonormal sequences under the assumption that λ is posi-
tive. However, L2(λ) is not in general isomorphic to a Hilbert
space. In fact, the norm of this space depends on the norm
of L.

1. Introduction and basic results. Let L be a Banach lattice
and let (Ω, Σ) be a measurable space. Let λ : Σ → L be a countably
additive vector measure. If f is a measurable function, it is said that
it is scalarly integrable if it is integrable with respect to each scalar
measure like λx′ for every x′ ∈ L′, where λx′(A) := 〈λ(A), x′〉, A ∈ Σ.
If f is scalarly integrable, it is said that it is integrable with respect to λ
(λ-integrable for short) if for every A ∈ Σ there is a vector

∫
A

f dλ ∈ L
such that 〈∫

A
f dλ, x′〉 =

∫
A

f dλx′ . The definition of integrability of
scalar functions with respect to a vector measure was first given by
Bartle, Dunford and Schwartz [1] and studied by Lewis [11] and [12].

The Banach lattice L1(λ), see for example [4], is defined by the
equivalence classes of λ-integrable functions such that the set where
they differ has zero semi-variation, with the natural order and the norm

‖f‖λ = sup
{ ∫

Ω

|f | d|〈λ, x′〉| : x′ ∈ BX′
}
, f ∈ L1(λ),

where |〈λ, x′〉| denotes the variation of the scalar measure λx′ . The
following expression gives an equivalent norm,

|‖f‖|λ = sup
A∈Σ

‖
∫

A

f dλ‖, f ∈ L1(λ),
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that satisfies the inequality |‖f‖|λ ≤ ‖f‖λ ≤ 2|‖f‖|λ for every f ∈
L1(λ).

In this paper we obtain several properties of the space L2(λ) of
square integrable functions with respect to λ, i.e., classes of measurable
functions f such that f2 are λ-integrable. It is a particular case of an
Lp(λ) space. These spaces can be defined for any countably additive
vector measure λ and each 1 ≤ p < ∞ and have been studied in [16].
They can be considered as Banach function spaces over a Rybakov
measure for λ.

The geometric structure of the space L2(λ) is up to a point similar
to the Hilbert space, but the definition of the norm on L2(λ) depends
on the norm of L. Under the assumption that the linear span of the
range of λ contains an unconditional basis of L, we prove that it is
possible to obtain a basis of functions for L2(λ) that are orthonormal
with respect to the vector measure λ, in a sense that we will clarify
through the paper. A Fourier calculus is also obtained for this function
space in a natural way. In this context, we will define what we call
the generalized Fourier coefficients of a function, that provide the
projection of a function that minimizes a distance defined by the norm
of L2(λ).

In all the paper, (Ω, Σ) will denote a measurable space. If L is a
Banach lattice, L+ will denote its positive cone. The reader can find
information about measure spaces, scalar measures and integration
with respect to scalar measures in [8] or in [6] and [7]. General
vector measure theoretical questions with no explicit explanation can
be answered with the help of [5]. Our main reference about Banach
lattices and Banach (Köthe) function spaces are [14] and [10]. The
results about the unconditional basis of Banach spaces that we use can
be found in [13]. We refer to [17] for general questions about Banach
space theory. More information about vector measure integration and
related questions can be found in [2 4, 9, 11, 12] and [15]. If V is a
linear space we will write [v] to denote the linear space generated by
the single vector v ∈ V .

The following definition gives a particular example of functions that
are p-integrable with respect to a vector measure. In this paper we
restrict our attention in order to obtain particular geometric results for
the case of L2(λ) when λ is a positive measure.
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Definition 1. Let X be a (real) Banach space and λ : Σ → X a
countably additive vector measure. We say that a measurable function
f is square integrable with respect to λ (square λ-integrable for short)
if f2 is a λ-integrable function.

In the rest of the paper, if λ is a countably additive vector measure, we
will write µ for a finite measure that controls λ such that µ(A) ≤ ‖λ‖(A)
for every A ∈ Σ. Such a measure always exists. For instance, we can
define it as a Rybakov measure for λ, see [5].

We will use the following results throughout the paper. They are
satisfied for countably additive vector measures and their proofs can be
found or follow directly from the results of [16]. The proof of Lemma 2
can be found in Remark 3 of [16].

Lemma 2. Every square λ-integrable function is λ-integrable.

The proof of Proposition 3 follows directly from the inequality 2|fg| ≤
f2 + g2 that holds for measurable functions f and g and the fact that
L1(λ) is an ideal of measurable functions.

Proposition 3. Let X be a (real) Banach space and λ : Σ → X a
countably additive vector measure. If f, g are square λ-integrable, then
the pointwise product function fg is λ-integrable. Consequently, the set
of all the square λ-integrable functions defines a linear space.

We will denote the linear space of square λ-integrable functions by
L2(λ). In fact, L2(λ) endowed with the norm given by the expression

sup
A∈Σ

∥∥∥
∫

A

f2 dλ
∥∥∥1/2

, f ∈ L2(λ),

is a Banach lattice, see [16].

Definition 4. Let L be a Banach lattice. We will say that a
countably additive vector measure λ : Σ → L that satisfies that
λ(A) ∈ L+ for every A ∈ Σ is a positive vector measure.
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From now on we restrict our attention to the case of positive vector
measures, since in this case we can obtain a simple representation of
the natural norm of the space L2(λ). Note that a vector measure is
positive if and only if every positive function f ∈ L1(λ) has a positive
integral

∫
Ω

f dλ ∈ L+.

Definition 5. If λ is a positive vector measure, we denote by ‖.‖λ,2

to the nonnegative function ‖.‖λ,2 : L2(λ) → R defined by the formula

‖f‖λ,2 :=
∥∥∥

∫
Ω

f2 dλ
∥∥∥1/2

, f ∈ L2(λ).

It is clear that ‖f‖λ,2 = supA∈Σ ‖ ∫
A

f2 dλ‖1/2 for every f ∈ L2(λ) if
λ is a positive measure. Thus, Lemma 6 and Proposition 7 are direct
consequences of the results of [16].

Lemma 6. Let λ be a positive vector measure. The function ‖.‖λ,2

is a norm on L2(λ).

Proposition 7. Let λ be a positive vector measure. The space
(L2(λ), ‖.‖λ,2) is a Banach function space over µ, where µ is a positive
finite control measure for λ that satisfies µ(A) ≤ ‖λ‖(A) for every
A ∈ Σ. Moreover, the set of simple functions is dense in L2(λ).

In the rest of the paper we will consider the set R+
L′ = {x′ ∈ (L′)+ : x′

defines a Rybakov measure}. It is easy to check that R+
L′ is dense in

(L′)+ using the fact that the set of Rybakov measures is dense in X ′,
see [5]. Since λ is positive we directly obtain the equality

sup
{(∫

Ω

h2 d〈λ, x′〉
)1/2

: x′ ∈ R+
L′ ∩ BL′

}
= ‖h‖λ,2, f ∈ L2(λ).

Note that each x′ ∈ R+
L′ ∩ BL′ defines a norm of a Hilbert space of

classes of µ-a.e. equal functions L2(〈λ, x′〉), since the µ-null sets are the
same as the 〈λ, x′〉-null sets.

We finish this section with an example of the structure with which
we are dealing. We will dedicate Section 3 to the study of particular
cases as the following one.
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Example 8. Let 1 < p < ∞ and consider the sequence space
(lp, ‖.‖p) with its natural coordinatewise order. Let us denote by (ei)∞i=1

to the canonical basis of lp. Consider a measurable space ([0,∞), Σ0),
where Σ0 is a σ-algebra, and a set of probability measures µi, i ∈ N ,
that are zero on measurable subsets which do not intersect the interval
[i − 1, i], for every i ∈ N . Then, a direct calculation shows that the
vector measure

λ0(A) :=
∞∑

i=1

µi(A ∩ [i − 1, i])
2i/p

ei, A ∈ Σ,

is countably additive. In fact, it is positive. Thus we can define the
space (L2(λ0), ‖.‖λ0,2). In this case the norm of the space is given by

‖f‖λ0,2 =
∥∥∥

∫
[0,∞)

f2 dλ0

∥∥∥1/2

=
( ∞∑

i=1

| ∫
[i−1,i]

f2 dµi|p
2i

)1/2p

,

f ∈ L2(λ0).

Thus, it is clear that (L2(λ0), ‖.‖λ0,2) is not isomorphic to a Hilbert
space. However, note that for each x′ ∈ l+p′ that defines a Rybakov
measure the Hilbert space L2(〈λ0, x

′〉) is well-defined.

2. Projections and generalized Fourier coefficients for func-
tions in L2(λ). Although the spaces of square λ-integrable functions
are not in general isomorphic to Hilbert spaces, they have several prop-
erties that are similar to the ones that follow for Hilbert spaces. In
particular, it is possible to establish an analogue of the classical pro-
jection procedure via the Fourier coefficients related to an orthonormal
basis. In fact, we can obtain an approximation technique for the spaces
L2(λ) that follows the lines of the classical functional analysis related
to Hilbert spaces.

From now on we will deal with positive vector measures. This
assumption is necessary if we want the following definition to make
sense. Moreover, the use of the simpler expression ‖.‖λ,2 for the norm
of L2(λ) is only possible if λ is positive, see Lemma 6. Let λ : Σ → L
be a positive vector measure defined on the Banach lattice L.

Definition 9. Let (fi)∞i=1 be a sequence of square λ-integrable
functions. We say that it is a λ-orthonormal sequence if
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1) ‖fi‖λ,2 = 1 for every i ∈ N .

2)
∫

Ω

fifj dλ = 0 if i 	= j.

We use this kind of sequence in order to obtain the approximation
results for certain functions in L2(λ). Let g ∈ L2(λ) and consider a
λ-orthonormal sequence (fi)∞i=1. An element x′ ∈ (L′)+ that defines a
Rybakov measure also defines a Hilbert space L2(〈λ, x′〉). Moreover,
since for each x′ ∈ (L′)+ ∩ BL′

∣∣∣
∫

Ω

fifj d〈λ, x′〉
∣∣∣ ≤ ∥∥∥

∫
Ω

fifj dλ
∥∥∥ i, j ∈ N,

and
∫
Ω

f2
i d〈λ, x′〉 	= 0 for every i ∈ N , we obtain that the sequence

(fi)∞i=1 is orthogonal in L2(〈λ, x′〉). This motivates the following
definition.

Definition 10. Let g ∈ L2(λ) and let (fi)∞i=1 be a λ-orthonormal
sequence. Consider an element x′ ∈ (L′)+ that defines a Rybakov
measure, i.e., x′ ∈ R+

L′ , following the notation of Section 1. We denote
by αi(x′) the Fourier coefficient of g in L2(〈λ, x′〉),

αi(x′) :=

∫
Ω

gfi d〈λ, x′〉∫
Ω

f2
i d〈λ, x′〉 .

Thus, we can consider αi(.) as functions from R+
L′ into R. We will say

that the function αi(.), i ∈ N , is a generalized Fourier coefficient of
g ∈ L2(λ) with respect to the sequence (fi)∞i=1.

Definition 11. We will say that a function g is projectable with
respect to the λ-orthonormal sequence (fi)∞i=1 if

∫
Ω

gfi dλ ∈
[ ∫

Ω

f2
i dλ

]
for all i ∈ N.

Note that a projectable function g satisfies that for every finite
subsequence (fik

)m
k=1 of the λ-orthonormal sequence (fi)∞i=1 there are
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scalars βk such that

∫
Ω

fik

(
g −

m∑
k=1

βkfik

)
dλ = 0, k = 1, . . . , m.

In the case that λ is a positive scalar measure, this is exactly the
orthogonality condition that is satisfied for the Fourier coefficients
and defines the best approximation to the function g in the finite
dimensional subspace span {fik

: k = 1, . . . , m} with respect to the
norm of the corresponding Hilbert space. In this section we show that
this also holds for positive vector measures.

Proposition 12. Let g ∈ L2(λ) and consider a λ-orthonormal
sequence (fi)∞i=1. Then g is projectable with respect to (fi)∞i=1 if and
only if αi(.) is a constant function in R+

L′ , for every i ∈ N .

Proof. Suppose that g is projectable and take an element x′ ∈ R+
L′ .

Then, if i ∈ N , there is a real number βi such that
∫
Ω

gfi dλ =
βi

∫
Ω

f2
i dλ. Thus,

αi(x′) =

∫
Ω

gfi d〈λ, x′〉∫
Ω

f2
i d〈λ, x′〉 =

〈∫
Ω

gfi dλ, x′〉
〈∫

Ω
f2

i dλ, x′〉 = βi.

Since βi does not depend on the element x′ ∈ R+
L′ , we obtain that αi(.)

is a constant function.

Conversely, suppose that αi(.) is a constant function. Then, we have
that there is a constant βi such that

〈∫
Ω

gfi dλ − βi

∫
Ω

f2
i dλ, x′

〉
= 0 for all x′ ∈ R+

L′ .

Since span {x′ : x′ ∈ R+
L′} is dense in L′, we obtain the result

∥∥∥
∫

Ω

gfi dλ − βi

∫
Ω

f2
i dλ

∥∥∥ = 0.

Theorem 13. Let L be a weakly sequentially complete Banach
lattice. Let λ : Σ → L be a positive vector measure. If g ∈ L2(λ)
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is projectable with respect to the λ-orthonormal sequence (fi)∞i=1, and
αi, i ∈ N , are its (constant) Fourier coefficients, then

1) The sequence of the partial sums gn :=
∑n

i=1 αifi, converges in
L2(λ) to a function that we denote by

∑∞
i=1 αifi.

2) The function
∑∞

i=1 αifi is the unique function of the set

S =
{

h ∈ L2(λ) : lim
n

∥∥∥h −
n∑

i=1

βifi

∥∥∥
λ,2

= 0, (βi)∞i=1 ∈ RN
}

that satisfies that

inf
h∈S

‖g − h‖λ,2 =
∥∥∥g −

∞∑
i=1

αifi

∥∥∥
λ,2

.

Proof. 1) Let g ∈ L2(λ) be a projectable function. We just need
to show that the sequence (gn)∞n=1 is Cauchy. Since L is weakly
sequentially complete the Banach lattice L1(λ) is so by Theorem 3
of [4]. Consider a natural number n and a real number ε > 0. Then
there is an element x′

ε ∈ R+
L′ ∩ BX′ such that

∥∥∥
∫

Ω

g2
n dλ

∥∥∥ ≤
∫

Ω

g2
n d〈λ, x′

ε〉 + ε,

since λ is positive. Moreover, since (fi)∞i=1 is λ-orthonormal and
L2(〈λ, x′

ε〉) is a Hilbert space, we obtain

∥∥∥
∫

Ω

g2
n dλ

∥∥∥ =
∫

Ω

n∑
i=1

α2
i f

2
i d〈λ, x′

ε〉 + ε

=
n∑

i=1

(
∫
Ω

gfi d〈λ, x′
ε〉)2∫

Ω
f2

i d〈λ, x′
ε〉

+ ε

≤
∫

Ω

g2 d〈λ, x′
ε〉 + ε

≤
∥∥∥

∫
Ω

g2 dλ
∥∥∥ + ε < ∞.

Since these inequalities hold for every natural number n, we obtain that
the increasing sequence (

∑n
i=1 α2

i f
2
i )∞n=1 of λ-integrable functions is
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norm-bounded in L1(λ). But this Banach lattice is weakly sequentially
complete, and then the sequence has a strong limit by Theorem 1.c.4
of [14].

Now note that, for each pair of natural numbers m > n, gm − gn =∑m
i=n+1 αifi, and

∫
Ω

(gm − gn)2 dλ =
∫

Ω

m∑
i=n+1

α2
i f

2
i dλ.

Since (
∑n

i=1 α2
i f

2
i )∞n=1 converges in L1(λ), it is clear that for each ε > 0

there is a natural number n0 such that for every n, m ≥ n0, m > n,

∥∥∥
∫

Ω

m∑
i=n+1

α2
i f

2
i dλ

∥∥∥ < ε.

This means that (gn)∞n=1 is a Cauchy sequence in L2(λ).

To prove 2), suppose that there is another sequence (βi)∞i=1 ∈ RN

such that
∑∞

i=1 βifi ∈ L2(λ) and

∥∥∥g −
∞∑

i=1

βifi

∥∥∥
λ,2

<
∥∥∥g −

∞∑
i=1

αifi

∥∥∥
λ,2

.

Then there is a natural number n such that

∥∥∥g −
n∑

i=1

βifi

∥∥∥
λ,2

<
∥∥∥g −

n∑
i=1

αifi

∥∥∥
λ,2

.

But
∑n

i=1 αifi defines the best approximation to the subspace gener-
ated by (fi)n

i=1 in each Hilbert space L2(〈λ, x′〉), x′ ∈ R+
L′ ∩BX′ , since

αi(x′) = αi for every i = 1, . . . , n. This contradicts the above inequal-
ity. A similar argument shows that

∑∞
i=1 αifi is the unique function

that satisfies this property.

Note that we only need weak sequential completeness to assure the
convergence of the series defined by the λ-orthonormal sequence (fi)∞i=1

and the associated Fourier coefficients. Thus, we do not need this
property for finite sequences (fi)n

i=1, n ∈ N .
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3. Applications. Positive vector measures with values
in Banach spaces with an unconditional basis. Let L be a
reflexive Banach space with a (normalized) unconditional basis (ei)∞i=1

that has an unconditional constant equal to one. Let (e′i)
∞
i=1 be the

corresponding biorthogonal functionals. It is well-known that L is a
Banach lattice when we consider the order defined by the positive cone

L+ :=
{ ∞∑

i=1

ηiei : ηi ≥ 0 for every i ∈ N
}

,

see Chapter 1.a in [14]. In particular, the basis constant of the sequence
(ei)∞i=1 is also one, and then the basis is monotone. Since the space L
is reflexive, we obtain that the basis (ei)∞i=1 is shrinking, and then the
biorthogonal functionals (e′i)

∞
i=1 form a basis of L′ (Theorems 1.c.9 and

1.c.13 of [13]). Moreover, the basis is boundedly complete, and then L
is weakly sequentially complete, and we can apply the approximation
results of Section 2, see Theorems 1.c.10 and 1.c.13 of [13]. Examples
of such spaces are of course the spaces of sequences lp, 1 < p < ∞. For
the aim of simplicity we will suppose that the biorthogonal functionals
also have norm one.

In this section we deal with positive vector measures with values in
such spaces L. We will show that in this case we can construct a λ-
orthonormal sequence that is complete, in the sense that we can write
each element of the space L2(λ) as a series defined by elements of the
sequence. As a consequence, we directly obtain that each function
g ∈ L2(λ) is projectable with respect to this λ-orthonormal sequence.

Definition 14. Consider a positive vector measure λ : Σ → L. Let
us denote by Rg(L2(λ)) the set

Rg(L2(λ)) :=
{∫

Ω

f2 dλ : f ∈ L2(λ)
}
.

We will say that the vector measure λ is range complete if (ei)∞i=1 ⊂
Rg(L2(λ)). If the corresponding spaces L2(〈λ, e′i〉), i ∈ N , are separable
we will say that λ is coordinatewise separable.

Lemma 15. Let λ be a positive range complete vector measure.
Consider the class of sets Bi := {g :

∫
Ω

g2 dλ ∈ [ei]}, i ∈ N . Then
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1) the set Bi is a closed subspace of L2(λ).

2) If f ∈ Bi and g ∈ Bj for i 	= j, then

∫
Ω

fg d〈λ, e′k〉 = 0

for every k ∈ N . Thus,
∫
Ω

fg dλ = 0.

3) If λ is a coordinatewise separable vector measure, then Bi is a
complemented subspace of L2(λ).

Proof. 1) Let us show first that Bi is a linear space. Let f, g ∈ Bi.
Consider j ∈ N such that i 	= j. Then, by the Hölder inequality related
to the positive scalar measure 〈λ, e′j〉, we obtain

∣∣∣〈
∫

Ω

gf dλ, e′j
〉∣∣∣ =

∣∣∣
∫

Ω

gf d〈λ, e′j〉|

≤
( ∫

Ω

g2 d〈λ, e′j〉
)1/2( ∫

Ω

f2 d〈λ, e′j〉
)1/2

= 0.

Thus,
∫
Ω

gf dλ ∈ [ei] and consequently,
∫
Ω
(f + g)2 dλ ∈ [ei], and then

Bi is a linear space.

Now let us show that it is closed. Consider a convergent sequence
(gn)∞n=1 ⊂ Bi with limit g. Take j 	= i. Then we can consider (gn)∞n=1

as a sequence in the Hilbert space L2(〈λ, e′j〉). Then it is clear that

0 = lim
n

∫
Ω

g2
n d〈λ, e′j〉 =

∫
Ω

g2 d〈λ, e′j〉.

Since this holds for every j 	= i, we obtain that
∫
Ω

g2 dλ ∈ [ei].

The statement 2) has been implicitly proved above. For the proof of
3), consider i ∈ N . As a consequence of 2) it is easy to see that for every
g ∈ Bi, ‖g‖λ,2 = (

∫
Ω

g2 d〈λ, e′i〉)1/2. Now, let us define the inclusion
Ii : Bi → L2(〈λ, e′i〉), I(g) = g. The operator Ii is an isometry, and
then we can identify the subspace Bi with a closed subspace of the
separable Hilbert space L2(〈λ, e′i〉). Let (fi,j)∞j=1 be an orthonormal
basis of the (complemented) separable Hilbert subspace Ii(Bi). We can
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consider these functions as elements of L2(λ), and then the projection
Pi : L2(λ) → L2(λ), Pi(g) :=

∑∞
j=1 αi,jfi,j , where

αi,j :=
〈∫

Ω

gfi,j dλ, e′i
〉
,

is well-defined, since 〈∫
Ω

f2
i,j dλ, e′i〉 = 1 for every j ∈ N . Let us show

that Pi is continuous, and then the subspace Bi is complemented. Note
that

‖g‖L2(〈λ,e′
i
〉) =

( ∞∑
j=1

〈∫
Ω

gfi,j dλ, e′i
〉)1/2

for every g ∈ L2(λ). We can apply Parseval’s equality for the space
L2(〈λ, e′i〉) to prove the inequalities

‖Pi(g)‖λ,2 =
( ∫

Ω

( ∞∑
j=1

αi,jfi,j

)2

d〈λ, e′i〉
)1/2

=
( ∞∑

j=1

〈∫
Ω

gfi,j dλ, e′i
〉2)1/2

≤ ‖g‖λ,2.

Therefore, the space Bi is complemented.

Theorem 16. Let λ be a positive range complete and coordinate-
wise separable vector measure. The sequence (fi,j)∞i,j=1 defines a λ-
orthonormal basis for the space L2(λ). In particular, each function
g ∈ L2(λ) can be written as a series

∞∑
i=1

∞∑
i=1

αi,jfi,j .

where αi,j are the generalized Fourier coefficients of the function g
defined in Section 2.

Proof. It is clear by the construction of the proof of Lemma 15 that
the functions fi,j , i, j ∈ N , define a λ-orthonormal sequence in L2(λ).
Then we just need to show that the limit

lim
n

n∑
i=1

n∑
j=1

αi,jfi,j
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with respect to the norm ‖.‖λ,2 exists and is the function g. An explicit
calculation of the norm of the difference between a partial sum of the
series above and g gives∥∥∥

n∑
i=1

n∑
j=1

αi,jfi,j − g
∥∥∥2

λ,2

=
∥∥∥

∫
Ω

( n∑
i=1

n∑
j=1

αi,jfi,j − g
)2

dλ
∥∥∥

=
∥∥∥

n∑
i=1

n∑
j=1

〈∫
Ω

gfi,j dλ, e′i
〉2

∫
Ω

f2
i,j dλ +

∫
Ω

g2 dλ

− 2
n∑

i=1

n∑
j=1

〈∫
Ω

gfi,j dλ, e′i
〉 ∫

Ω

gfi,j dλ
∥∥∥.

Note that each element of the space L′ can be written as a series∑∞
i=1 ηie

′
i since the basis (ei)∞i=1 is shrinking, and then we can write

the above expression as

sup
‖
∑∞

i=1
ηie′

i
‖≤1

{ n∑
i=1

( n∑
j=1

〈∫
Ω

gfi,j dλ, e′i
〉2)

ηi

+
∞∑

i=1

〈 ∫
Ω

g2 dλ, e′i
〉
ηi − 2

n∑
i=1

( n∑
j=1

〈∫
Ω

gfi,j dλ, e′i
〉2)

ηi

}

= sup
‖
∑∞

i=1
ηie′

i
‖≤1

{ n∑
i=1

(〈∫
Ω

g2 dλ, e′i
〉
−

n∑
j=1

〈∫
Ω

gfi,j dλ, e′i
〉2)

ηi

+
∞∑

i=n+1

〈∫
Ω

g2 dλ, e′i
〉
ηi

}
.

Let us denote

εi(n) =
〈∫

Ω

g2 dλ, e′i
〉
−

n∑
j=1

〈∫
Ω

gfi,j dλ, e′i
〉2

.

If i ∈ N , it is clear by the structure of the Hilbert space L2(〈λ, e′i〉)
that limn εi(n) = 0. Let δ > 0, and take an m0 such that

sup
‖
∑∞

i=1
ηie′

i
‖≤1

{〈∫
Ω

g2 dλ,
∞∑

i=m0+1

ηie
′
i

〉}
≤ δ

2
.
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Since εi(n) converges to 0, we can also find a natural number m1 such
that

sup
‖
∑∞

i=1
ηie′

i
‖≤1

{ m0∑
i=0

ηiεi(m1)
}
≤ δ

2
.

This implies the result.

Finally we can apply the results of Section 2 to each g ∈ L2(λ), since
every function in this space is obviously projectable with respect to
the λ-orthonormal sequence constructed in Theorem 16. Therefore,
we obtain the following approximation result as an application of
Theorem 16 and Theorem 13 for any subsequence of (fi,j)∞i,j=1, which
always defines a λ-orthonormal sequence. Note that L is weakly
sequentially complete, since it is reflexive.

Corollary 17. Under the conditions of Theorem 16, if (fik,jr
)∞k=1,r=1

is a subsequence of (fi,j)∞i,j=1, the minimum of the error

∥∥∥g −
∞∑

k=1

∞∑
r=1

βik,jr
fik,jr

∥∥∥
λ,2

is only obtained for βik,jr
= αik,jr

, k = 1, . . . ,∞, r = 1, . . . ,∞. The
same result holds for finite subsequences.
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