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ON POINT VALUES OF BOEHMIANS

V. KARUNAKARAN AND R. VEMBU

ABSTRACT. The notion of a value of a Boehmian at a
point, its properties and the concept of regular delta sequences
are available in the literature. Let E be a Banach space.
Denote by C(RN , E) the space of all continuous E-valued
functions on RN and by D(RN ) the space of all infinitely
differentiable real-valued functions with compact support in
RN . Using C(RN , E) as the top space and the usual delta
sequences from D(RN ) we can construct in a canonical way
a Boehmian space B = B(RN , E). In 1994, Piotr Mikusiński
and Mourad Tighiouart asserted that, if for every representa-
tion [fn/φn] of F ∈ B where (φn) is regular delta sequence
we have limn→∞ fn(x0) = a, then F (x0) = a. In this pa-
per we shall point out that the proof of this theorem contains
an error, produce a counterexample to show that the theo-
rem is not valid and obtain modified conditions for its valid-
ity. As a consequence we shall also show that if F =[fn/φn]
where (φn) is a delta sequence made of one function and if
limn→∞ fn(x0) = a for every such representation, then F
need not have a value at x0. Incidentally, this observation
settles one of the questions raised by Piotr Mikusiński and
Mourad Tighiouart.

1. Introduction. The concept of Boehmians was first introduced
and studied in [3]. Various spaces of Boehmians and their properties
were available in the literature, for example, see [2]. In [4] the
notion of a value of a Boehmian at a point was defined and its
properties were studied. Further related results can be found in [1].
An equivalent condition for a Boehmian to have a value at a point
is claimed in Theorem 2.4 of [4]. We shall first point out that the
proof of this theorem contains an error. In addition we shall produce a
counterexample and establish that this theorem is not valid. We shall
also explain how the hypothesis of this theorem must be modified for
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its validity. We shall also provide yet another characterization for a
Boehmian to have a value at a point. Further, we shall answer one of
the questions posed in the concluding remarks of [4].

In Section 2 we give the preliminary definitions and results. In
Section 3 we shall point out the error in the proof of Theorem 2.4 of [4]
and give a counterexample to show that the theorem is not valid. In
Section 4 we shall provide a characterization for a Boehmian to have a
value at a point and use this to modify the hypothesis of Theorem 2.4 of
[4] and prove its validity under the new hypothesis. In the last section
we shall prove that in the definition of the value of a Boehmian at a
point it is not sufficient to assume that limn→∞fn(x0) = a exists for
every representation [fn/φn] such that (φn) is a delta sequence made
of one function. We shall also obtain a few more results in the context
of the existence of point values for Boehmians.

2. Preliminaries. The space B of Boehmians is defined in a
canonical way as in [2] having C(RN ), the space of all complex-
valued continuous functions defined on RN , as the top space and
delta sequences from D(RN ), the Schwartz testing function space of all
complex-valued infinitely differentiable functions defined on RN with
compact support. For simplicity we shall always be concerned with
functions having complex values instead of functions having values in
a Banach space as in [4].

Let suppφ denote the support of φ, the closure of {x∈RN/φ(x) �=0}.
Let D ′(RN ) denote the Schwartz distribution space. The convolution
of two functions f and g is defined as (f ∗ g)(x) =

∫
RN f(t)g(x− t) dt

whenever the integral exists. The convolution of a distribution f ∈
D ′(RN ) and a testing function φ ∈ D(RN ) is defined as (f ∗ φ)(x) =
〈f(t), φ(x− t)〉.

Definition 2.1. A sequence (φn) in D(RN ) is called a delta sequence
if

(i)
∫
RN

φn(x) dx = 1 for all n.

(ii) There is an M such that
∫
RN

|φn(x) | dx ≤M for all n.

(iii) suppφn → {0} as n→ ∞.



ON POINT VALUES OF BOEHMIANS 183

Definition 2.2 [4]. Let F be a Boehmian, and let x ∈ RN . If, for
every representation F = [fn/φn] , we have limn→∞fn(x) = a, then we
say that F has a value a at x and denote this by F (x) = a.

Definition 2.3. A delta sequence (φn) is called ρ-regular if, for every
multi-index k = (k1, k2, . . . , kN ) where k1, k2, . . . , kN are nonnegative
integers, there exists a positive constant Mk such that

(ρ(φn))|k|
∫
RN

∣∣∣ ∂|k|
∂xk

φn(x)
∣∣∣ dx ≤Mk for all n

where ρ(φ) = inf{s > 0 /φ(t) = 0 if ‖t‖ > s} and |k | = k1 + k2 + · · ·+
kN .

What we have defined as a ρ-regular delta sequence here is termed as
a regular delta sequence in [4].

Definition 2.4. A delta sequence (φn) is called r-regular if, for every
multi-index k = (k1, k2, . . . , kN ), there exists a positive constant Mk

such that

(r(φn))|k|
∫
RN

∣∣∣ ∂|k|
∂xk

φn(x)
∣∣∣ dx ≤Mk for all n

where r(φ) = sup{‖x− y‖/x, y ∈ suppφ}/2.

Note that, as r(φ) ≤ ρ(φ), we have every ρ-regular delta sequence
is r-regular but not conversely. We shall give an example of a delta
sequence which is r-regular but not ρ-regular.

Example 2.5. On R define

f1(t) =
{
e(1/(t2−1)) if |t | < 1
0 if |t | ≥ 1,

and let f(t) = f1(t)/
∫
R
f1(t) dt. Let δn(t) = n2f(n2t−n). Then (δn) is

a delta sequence with supp δn = [(1/n)− (1/n2), (1/n) + (1/n2)]. Also
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ρ(δn) = (1/n) + (1/n2) and r(δn) = (1/n2). Now

(ρ(δn))k

∫
R

|δ(k)
n (t) | dt =

( 1
n

+
1
n2

)k

(n2)k+1

∫
R

|(f (k))(n2t− n) | dt

=
( 1
n

+
1
n2

)k

(n2)k

∫
R

|f (k)(s) |ds

= (n+ 1)kC where C =
∫
R

|f (k)(s) |ds > 0.

Thus (ρ(δn))k
∫
R

|δ(k)
n (t) |dt cannot be bounded by any Mk. So (δn) is

not ρ-regular. But

(r(δn))k

∫
R

|δ(k)
n (t) | dt = (1/n2)k(n2)k

∫
R

|f (k)(s) | ds = Mk,

say. Thus (δn) is r-regular.

We shall now give an example of a delta sequence which is not r-
regular. Thus the class of r-regular delta sequences is not the whole of
∆. Thus this example establishes the significance of our Theorem 4.4
later.

Example 2.6. Let f be as in Example 2.5. Let φn(t) = (n2/2)×
(f(n2t−n)+f(n2t+n)). Then (φn) is a delta sequence with suppφn =
[−(1/n) − (1/n2),−(1/n) + (1/n2)] ∪ [(1/n) − (1/n2), (1/n) + (1/n2)]
and r(φn) = (1/n) + (1/n2). Now

(r(φn))k

∫
R

|φ(k)
n (t) | dt

≥
[( 1
n

)
+

( 1
n2

)]k
∫ ∞

0

|φ(k)
n (t) | dt

=
[( 1
n

)
+

( 1
n2

)]k
∫ ∞

0

(n2)k+1

2
|(f (k))(n2t−n) | dt

(when t > 0, n2t+ n > 1 and hence f (k)(n2 + n) = 0 for all k and n)

= (n+ 1)k/2
∫ ∞

0

|f (k)(s) | ds.
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Thus, if k ≥ 1, then (r(φn))k
∫
R

|φ(k)
n (t) | dt cannot be bounded (by

any Mk). So (φn) is not r-regular.

Lemma 2.7. If (φn) and (ψn) are r-regular delta sequences, then
(φn ∗ ψn) is also an r-regular delta sequence.

Proof. Since (φn) and (ψn) are r-regular delta sequences, for every
multi-index k, there exist Mk and Nk such that, for all n,

(r(φn))|k|
∫
RN

|(∂|k|/∂xk)φn(x) | dx ≤Mk

and

(r(ψn))|k|
∫
RN

|(∂|k|/∂xk)ψn(x) |dx ≤ Nk.

Now

(r(φn ∗ ψn))|k|
∫
RN

∣∣∣ ∂|k|
∂xk

(φn ∗ ψn)(x)
∣∣∣ dx

≤ (r(φn) + r(ψn))|k|
∫
RN

∣∣∣ ∂|k|
∂xk

(φn ∗ ψn)(x)
∣∣∣ dx

≤ 2|k|−1((r(φn))|k| + (r(ψn))|k|)
∫
RN

∣∣∣ ∂|k|
∂xk

(φn ∗ ψn)(x)
∣∣∣ dx

≤ 2|k|−1(r(φn))|k|
∫
RN

∣∣∣(( ∂|k|
∂xk

φn

)
∗ ψn

)
(x)

∣∣∣ dx
+ 2|k|−1(r(ψn))|k|

∫
RN

∣∣∣(φn ∗
( ∂|k|
∂xk

ψn

))
(x)

∣∣∣ dx
≤ 2|k|−1(r(φn))|k|

∫
RN

∣∣∣ ∂|k|
∂xk

φn(x)
∣∣∣ dx ∫

RN

|ψn(x) | dx

+ 2|k|−1(r(ψn))|k|
∫
RN

|φn(x) | dx
∫
RN

∣∣∣ ∂|k|
∂xk

ψn(x)
∣∣∣ dx

≤ 2|k|−1(MkN0 +M0Nk).

This completes the proof as the other properties of a delta sequence
can be easily verified.
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3. Counter Example. In Theorem 2.4 of [4] it has been claimed
that a Boehmian F has a value at a point x0 if and only if, for
all representation [fn/φn] of F with ρ-regular delta sequence (φn),
limn→∞fn(x0) exists. There is an error in the proof. On page 1045 of
[4], the existence of a sequence of positive numbers γ1, γ2, . . . satisfying

‖fpn
(x) − fpn

(0)‖ < ε whenever ‖x‖ < γn

is proved. To be more specific, as γn depends on fpn
, we shall write γn

as γpn
. However, the array of inequalities on page 1046 [4] assumes

sup
‖x‖≤γpn

‖fqn
(x) − fqn

(0)‖ < ε

where {qn} is a subsequence of {pn}. This assumption is not valid
because we only know that

sup ‖fqn
(x) − fqn

(0)‖ < ε

when the supremum is taken over {x / ‖x‖ ≤ γqn
} and not over

{x / ‖x‖ ≤ γpn
}.

We shall now give an example of a Boehmian F not admitting a
value at x0 = 0 even though for every representation [fn/φn] of F with
ρ-regular delta sequence (φn) we have limn→∞fn(0) = 0.

Example 3.1. Let An = [−(3/n) − (1/n2),−(3/n)], n = 1, 2, . . . ,
and let A = ∪∞

n=1An. Define

G(t) =

{
− |t |√ |t | if t ∈ A

|t |√ |t | if t /∈ A.

Then G is a locally integrable function and hence G can be identified
in D ′(R). Let G′ be the distributional derivative of G. Let F be the
Boehmian representing G′. Let (φn) be any ρ-regular delta sequence.
Then there exists M1 such that ρ(φn)

∫
R

|φ′n(t) | dt ≤M1 for all n. We
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know [(G ′ ∗ φn)/φn] is a representation of F . Now

|(G ′ ∗ φn)(0) | = |(G ∗ φ′n)(0) | =
∣∣∣∫ ρ(φn)

−ρ(φn)

G(−t)φ′n(t) dt
∣∣∣

≤
∫ ρ(φn)

−ρ(φn)

|G(−t) | |φ′n(t) | dt

=
∫ ρ(φn)

−ρ(φn)

|t |
√

|t | |φ′n(t) | dt

≤
√
ρ(φn) ρ(φn)

∫
R

|φ′n(t) | dt

≤
√
ρ(φn) M1.

Since ρ(φn) → 0, we have (G ′ ∗ φn)(0) → 0 as n→ ∞.

Let [fn/ψn] be any representation of F with ρ-regular delta sequence
(ψn). Then [fn/ψn] = [(G ′ ∗ φn)/φn]. This implies fn ∗ φm = (G ′ ∗
φm) ∗ ψn. Taking limit as m→ ∞, we get fn(x) = (G ′ ∗ ψn)(x) for all
x. Since (ψn) is ρ-regular, as above, we can prove that (G ′∗ψn)(0) → 0
as n → ∞. Therefore, fn(0) → 0 as n → ∞. Thus for every
representation [fn/ψn] of F , with ρ-regular delta sequence (ψn), we
have limn→∞fn(0) = 0.

Let f be as in Example 2.5. Then f ∈ C∞,
∫
R
f(t) dt = 1, supp f =

[−1, 1], f(t) ≥ 0 for all t ∈ R and f(−x) = f(x). Moreover f ′(t) ≥ 0
if t < 0 and f ′(t) ≤ 0 if t ≥ 0. Let δn(t) = n2f(n2t − 3n). Then (δn)
is a delta sequence with supp δn = [(3/n) − (1/n2), (3/n) + (1/n2)].

Now

(G ′ ∗ δn)(0) = (G ∗ δ′n)(0) =
∫ (3/n)+(1/n2)

(3/n)−(1/n2)

G(−t)δ′n(t) dt

= n4

∫ (3/n)+(1/n2)

(3/n)−(1/n2)

G(−t)f ′(n2t− 3n) dt

= n2

∫ 1

−1

G
(
−

(s+ 3n
n2

))
f ′(s) ds

= n2

∫ 0

−1

(s+3n
n2

)3/2

f ′(s) ds+n2

∫ 1

0

−
(s+3n

n2

)3/2

f ′(s) ds
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= n2

∫ 1

−1

(s+ 3n
n2

)3/2

|f ′(s) | ds

≥ n2
( 1
n

)3/2
∫ 1

−1

|f ′(s) | ds

=
√
nC

where

C =
∫ 1

−1

|f ′(s) | ds.

Since C > 0, (G ′ ∗ δn)(0) → ∞ as n → ∞. But [(G ′ ∗ δn)/δn]is a
representation of F . Thus F cannot have a value at 0.

4. Characterizations for the existence of point values of
Boehmians.

Lemma 4.1. If a Boehmian F has a value at x0 and if [fn/φn] is
any representation of F , then {fn} is equicontinuous at x0.

Proof. Let F (x) = a and let ε > 0. Then, by Theorem 2.5 of
[4], there exists δ0 > 0 and n0 ∈ N such that |fn(x) − a | ≤ ε/2
whenever ‖x − x0‖ ≤ δ0 and for all n ≥ n0. Thus |fn(x) − fn(x0) | ≤
|fn(x) − a | + |fn(x0) − a | < ε for all n ≥ n0 and for all x such that
‖x−x0‖ ≤ δ0. As the functions fi(x), 1 ≤ i < n0, are continuous at x0,
there exist δi > 0, 1 ≤ i < n0, such that |fi(x)− fi(x0) | ≤ ε whenever
‖x−x0‖ ≤ δi for 1 ≤ i < n0. Let δ = min{δi/ 0 ≤ i < n0}. Then δ > 0
and |fn(x)−fn(x0) | ≤ ε for all n and for all x with ‖x−x0‖ ≤ δ. This
implies that {fn} is equicontinuous at x0.

Lemma 4.2. If F is a Boehmian and x0 ∈ RN and if there exists
at least one representation [fn/δn] of F satisfying

i) limn→∞fn(x0) exists

ii) {fn} is equicontinuous at x0,

then F has a value at x0.

Proof. Let limn→∞fn(x0) = a. Let [gn/φn] be any representation of
F . Since [fn/δn] = [gn/φn] we have gn ∗ δm = fm ∗ φn. Let am,n =
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(gn∗δm)(x0). Then am,n = (fm∗φn)(x0). Since limm→∞(gn∗δm) = gn

pointwise for all n, we have

lim
m→∞am,n = gn(x0) for all n.

Since (φn) is a delta sequence, there is a positive number M such
that

∫
RN |φn(t) | dt ≤ M for all n. Let ε > 0 be given. Since {fn}

is equicontinuous at x0, there exists δ > 0 such that |fm(x0 − t) −
fm(x0) | < ε/(2M) whenever ‖t‖ < δ for all m. By definition of delta
sequence, there exists n1 such that ρ(δn) < δ for all n ≥ n1. Since
fm(x0) → a, as m → ∞ there exists n2 such that |fm(x0) − a | < ε/2
for all m ≥ n2.

Let n0 = max{n1, n2}. If m,n ≥ n0, then we have

|am,n − a | = |(fm ∗ φn)(x0) − a |
≤ |(fm ∗ φn)(x0) − fm(x0) | + |fm(x0) − a |
≤

∫
RN

|fm(x0 − t) − fm(x0) | |φn(t) | dt+
ε

2

≤ ε

2M
M +

ε

2
= ε.

This implies that the double limit limm,n→∞ am,n = a. Hence we have
limn→∞limm→∞am,n = a. Thus by (1) we get limn→∞gn(x0) = a.

Remark 4.3. If F is a Boehmian having at least one representation
[fn/δn] satisfying (i) and (ii) of Lemma 4.2, then by Lemma 4.1 every
representation of F satisfies (i) and (ii) of Lemma 4.2. Thus the
existence of one representation of F satisfying (i) and (ii) of Lemma 4.2
is a necessary and sufficient condition for F to have a value at x0.

Another necessary and sufficient condition is given in the following
theorem. This theorem shows how the hypothesis of Theorem 2.4 of
[4] must be modified.

Theorem 4.4. Let F be a Boehmian and x0 ∈ RN . Then F has
a value at x0 if and only if, for all representation [fn/φn] of F with
r-regular delta sequence (φn), limn→∞fn(x0) exists.
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Proof. If F has a value at x0, then, by definition, for all represen-
tation [fn/φn] of F , limn→∞fn(x0) exists. To prove the converse, let
[fn/φn] be any representation of F with r-regular delta sequence (φn).
Such delta sequences actually exist. Indeed we can always represent
Boehmians with a corresponding delta sequence being ρ-regular, see
Lemma 2.3 of [4]. Then limn→∞fn(x0) exists, say a. Suppose {fn} is
not equicontinuous at x0. Then there exists ε > 0 such that, for any
η > 0, there are infinitely many n such that

(1) sup
‖x−x0‖≤η

|fn(x) − fn(x0) | > 3ε.

We can further prove that, for the same ε, for any η > 0, there are
infinitely many n such that

(2) sup
‖x−x0‖≤η

|fn(x) − a | > 2ε.

Indeed, since limn→∞fn(x0) = a, there exists n0 such that

(3) |fn(x0) − a | < ε for all n ≥ n0.

As there are infinitely many n satisfying (1), using (3) and the fact
|fn(x) − a | ≥ |fn(x) − fn(x0) | − |fn(x0) − a | we get (2). Thus, by
(2), there exists a sequence n1 < n2 < . . . of positive integers and a
sequence x1, x2, . . . of points of RN such that

(4) |fnk
(xk) − a | > 2ε and ‖xk − x0‖ < 1

k
for k = 1, 2, . . . .

As each fnk
is continuous at xk, there exists γk > 0 such that

(5) |fnk
(x) − fnk

(xk) | < ε whenever ‖x− xk‖ < γk.

We may assume γk decreases to 0. Let

f1(t) =
{
e(1/(‖t‖2−1)) if ‖t‖ < 1
0 if ‖t‖ ≥ 1,

and let f(t) = (f1(t))/
∫
RN f1(t) dt. Let δk(t) = 1/(γN

k )f [(t/γk) −
((xk − x0)/γk)]. Then supp δk = Bγk

(xk − x0), the ball of radius γk
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and center (xk−x0), and (δk) is a delta sequence with r(δk) = γk. Also
it is easy to see that (δk) is r-regular. Consider

∣∣∣ ∫
RN

(fnk
(x) − fnk

(xk))δk(x− x0) dx
∣∣∣

≤
∫
RN

|fnk
(x) − fnk

(xk) |δk(x− x0) dx < ε,

because of (5) whenever x− x0 ∈ supp δk. That is,

(6)
∣∣∣ ∫

RN

(fnk
(x) − fnk

(xk))δk(x− x0) dx
∣∣∣ < ε for all k.

Let δ̌n(t) = δn(−t). Now using (4) and (6), we get

|(fnk
∗ δ̌k)(x0) − a | =

∣∣∣ ∫
RN

fnk
(x)δk(x− x0) dx− a

∣∣∣
≥

∣∣∣ ∫
RN

fnk
(xk)δk(x− x0) dx− a

∣∣∣
−

∣∣∣ ∫
RN

(fnk
(x) − fnk

(xk))δk(x− x0) dx
∣∣∣

≥ |fnk
(xk) − a | − ε ≥ ε.

That is |(fnk
∗ δ̌k)(x0) − a | ≥ ε for all k. Thus, (fnk

∗ δ̌k)(x0) cannot
converge to a. Since (δk) is an r-regular delta sequence, (δ̌k), and hence
(φnk

∗ δ̌k) are r-regular delta sequences. Now we have a representation[
(fnk

∗ δ̌k)/(φnk
∗ δ̌k)

]
of F , with r-regular delta sequence (φnk

∗ δ̌k)
such that (fnk

∗ δ̌k)(x0) do not converge to a. This is a contradiction.
Thus {fn} is equicontinuous. The theorem follows from Lemma 2.7.

5. Miscellaneous results. In the sequel we shall give two more
results on point value of Boehmians.

Theorem 5.1. If a Boehmian F has a value at each point of a
compact set K ⊆ RN , then for every representation [fn/φn] of F we
have



192 V. KARUNAKARAN AND R. VEMBU

i) limn→∞fn(x) exists for all x ∈ K.

ii) {fn} is equicontinuous on K.

Proof. Since F has a value at all points of K, limn→∞fn(x) exists for
all x ∈ K. To prove {fn} is equicontinuous onK, let ε > 0 be given. By
Theorem 4.1 {fn} is equicontinuous at each point x of K. Therefore,
for every fixed x, there exists δx > 0 such that |fn(t) − fn(x) | ≤ ε/2
whenever ‖x − t‖ ≤ 2δx for all n. Then {Bδx

(x)}x∈K is an open
cover for K having a finite subcover, say Bδx1

(x1), . . . , Bδxk
(xk). Let

δ = min{δx1 , . . . , δxk
}. Then δ > 0. Let s, t ∈ K be such that

‖s − t‖ < δ. Then s ∈ Bδxi
(xi) for some i. Thus ‖s − xi‖ < δxi

,
and hence |fn(s) − fn(xi) | < ε/2 for all n. Now ‖s − t‖ < δ implies
‖t − xi‖ < 2δxi

, and hence |fn(t) − fn(xi) | < ε/2 for all n. Thus we
get |fn(s) − fn(t) | < ε for all n whenever ‖s − t‖ < δ. Hence {fn} is
equicontinuous on K.

Theorem 5.2. Let F be a Boehmian and K ⊆ RN a compact set.
If F has a representation [fn/φn] such that

i) limn→∞fn(x) exists for all x ∈ K

ii) {fn} is equicontinuous on K.

Then F has a value at each point of the interior of K.

Proof. Let x0 ∈ K0, the interior of K. Then, by (i), limn→∞fn(x0)
exists. Let ε > 0 be given. Since x0 ∈ K0, there exists δ1 > 0 such that
x ∈ K whenever ‖x− x0‖ < δ1. By (ii), there exists δ2 > 0 such that,
for all n, |fn(x) − fn(x0) | < ε whenever ‖x − x0‖ < δ2 and x ∈ K.
Let δ = min{δ1, δ2}. Then δ > 0 and we have |fn(x) − fn(x0) | < ε
whenever ‖x− x0‖ < δ. Thus {fn} is equicontinuous at x0. Hence, by
Theorem 4.2, F has a value at x0.

Remark 5.3. A delta sequence (φn), where each φn has the form
φn(x) = (αn)Nφ(αnx), is called a delta sequence made of one function.
In the concluding remarks of [4], it is asked whether the condition
in the definition of value of a Boehmian be replaced by the condition
“limn→∞fn(x) = a for all representation [fn/φn] with (φn) made of one
function.” As every delta sequence made of one function is ρ-regular,
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the counter example given in Section 3 shows that the answer to this
question is negative.
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