BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 35, Number 1, 2005

ON POINT VALUES OF BOEHMIANS

V. KARUNAKARAN AND R. VEMBU

ABSTRACT. The notion of a value of a Boehmian at a point, its properties and the concept of regular delta sequences are available in the literature. Let \mathcal{E} be a Banach space. Denote by $C(\mathbf{R}^N, \mathcal{E})$ the space of all continuous \mathcal{E} -valued functions on \mathbf{R}^N and by $\mathcal{D}(\mathbf{R}^N)$ the space of all infinitely differentiable real-valued functions with compact support in \mathbf{R}^{N} . Using $C(\mathbf{R}^{N}, \mathcal{E})$ as the top space and the usual delta sequences from $\mathcal{D}(\mathbf{R}^{\acute{N}})$ we can construct in a canonical way a Boehmian space $\mathcal{B} = \mathcal{B}(\mathbf{R}^N, \mathcal{E})$. In 1994, Piotr Mikusiński and Mourad Tighiouart asserted that, if for every representation $[f_n/\phi_n]$ of $F \in \mathcal{B}$ where (ϕ_n) is regular delta sequence we have $\lim_{n\to\infty} f_n(x_0) = a$, then $F(x_0) = a$. In this paper we shall point out that the proof of this theorem contains an error, produce a counterexample to show that the theorem is not valid and obtain modified conditions for its validity. As a consequence we shall also show that if $F = [f_n/\phi_n]$ where (ϕ_n) is a delta sequence made of one function and if $\lim_{n\to\infty} f_n(x_0) = a$ for every such representation, then F need not have a value at x_0 . Incidentally, this observation settles one of the questions raised by Piotr Mikusiński and Mourad Tighiouart.

1. Introduction. The concept of Boehmians was first introduced and studied in [3]. Various spaces of Boehmians and their properties were available in the literature, for example, see [2]. In [4] the notion of a value of a Boehmian at a point was defined and its properties were studied. Further related results can be found in [1]. An equivalent condition for a Boehmian to have a value at a point is claimed in Theorem 2.4 of [4]. We shall first point out that the proof of this theorem contains an error. In addition we shall produce a counterexample and establish that this theorem is not valid. We shall also explain how the hypothesis of this theorem must be modified for

Copyright ©2005 Rocky Mountain Mathematics Consortium

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 44A40, Secondary 46F05, 44A35.

Key words and phrases. Boehmians, convolution quotient, Schwartz distributions, point value. The work of the second author is supported by an FIP Fellowship from UGC,

India. Received by the editors on July 24, 2001, and in revised form on October 26,

^{2001.}

V. KARUNAKARAN AND R. VEMBU

its validity. We shall also provide yet another characterization for a Boehmian to have a value at a point. Further, we shall answer one of the questions posed in the concluding remarks of [4].

In Section 2 we give the preliminary definitions and results. In Section 3 we shall point out the error in the proof of Theorem 2.4 of [4] and give a counterexample to show that the theorem is not valid. In Section 4 we shall provide a characterization for a Boehmian to have a value at a point and use this to modify the hypothesis of Theorem 2.4 of [4] and prove its validity under the new hypothesis. In the last section we shall prove that in the definition of the value of a Boehmian at a point it is not sufficient to assume that $\lim_{n\to\infty} f_n(x_0) = a$ exists for every representation $[f_n/\phi_n]$ such that (ϕ_n) is a *delta sequence made* of one function. We shall also obtain a few more results in the context of the existence of point values for Boehmians.

2. Preliminaries. The space \mathcal{B} of Boehmians is defined in a canonical way as in [2] having $C(\mathbf{R}^N)$, the space of all complexvalued continuous functions defined on \mathbf{R}^N , as the top space and delta sequences from $\mathcal{D}(\mathbf{R}^N)$, the Schwartz testing function space of all complex-valued infinitely differentiable functions defined on \mathbf{R}^N with compact support. For simplicity we shall always be concerned with functions having complex values instead of functions having values in a Banach space as in [4].

Let $\sup \phi$ denote the support of ϕ , the closure of $\{x \in \mathbf{R}^N / \phi(x) \neq 0\}$. Let $\mathcal{D}'(\mathbf{R}^N)$ denote the Schwartz distribution space. The convolution of two functions f and g is defined as $(f * g)(x) = \int_{\mathbf{R}^N} f(t)g(x - t) dt$ whenever the integral exists. The convolution of a distribution $f \in$ $\mathcal{D}'(\mathbf{R}^N)$ and a testing function $\phi \in \mathcal{D}(\mathbf{R}^N)$ is defined as $(f * \phi)(x) =$ $\langle f(t), \phi(x - t) \rangle$.

Definition 2.1. A sequence (ϕ_n) in $\mathcal{D}(\mathbf{R}^N)$ is called a delta sequence if

- (i) $\int_{\mathbf{R}^N} \phi_n(x) \, dx = 1$ for all n.
- (ii) There is an M such that $\int_{\mathbf{R}^N} |\phi_n(x)| dx \leq M$ for all n.
- (iii) supp $\phi_n \to \{0\}$ as $n \to \infty$.

Definition 2.2 [4]. Let F be a Boehmian, and let $x \in \mathbf{R}^N$. If, for every representation $F = [f_n/\phi_n]$, we have $\lim_{n\to\infty} f_n(x) = a$, then we say that F has a value a at x and denote this by F(x) = a.

Definition 2.3. A delta sequence (ϕ_n) is called ρ -regular if, for every multi-index $k = (k_1, k_2, \ldots, k_N)$ where k_1, k_2, \ldots, k_N are nonnegative integers, there exists a positive constant M_k such that

$$\left(\rho(\phi_n)\right)^{|k|} \int_{\mathbf{R}^N} \left| \frac{\partial^{|k|}}{\partial x^k} \phi_n(x) \right| dx \le M_k \quad \text{for all } n$$

where $\rho(\phi) = \inf\{s > 0 / \phi(t) = 0 \text{ if } ||t|| > s\}$ and $|k| = k_1 + k_2 + \dots + k_N$.

What we have defined as a ρ -regular delta sequence here is termed as a regular delta sequence in [4].

Definition 2.4. A delta sequence (ϕ_n) is called *r*-regular if, for every multi-index $k = (k_1, k_2, \ldots, k_N)$, there exists a positive constant M_k such that

$$(r(\phi_n))^{|k|} \int_{\mathbf{R}^N} \left| \frac{\partial^{|k|}}{\partial x^k} \phi_n(x) \right| dx \le M_k \quad \text{for all } n$$

where $r(\phi) = \sup\{\|x - y\| / x, y \in \operatorname{supp} \phi\}/2$.

Note that, as $r(\phi) \leq \rho(\phi)$, we have every ρ -regular delta sequence is *r*-regular but not conversely. We shall give an example of a delta sequence which is *r*-regular but not ρ -regular.

Example 2.5. On R define

$$f_1(t) = \begin{cases} e^{(1/(t^2 - 1))} & \text{if } |t| < 1\\ 0 & \text{if } |t| \ge 1, \end{cases}$$

and let $f(t) = f_1(t) / \int_{\mathbf{R}} f_1(t) dt$. Let $\delta_n(t) = n^2 f(n^2 t - n)$. Then (δ_n) is a delta sequence with $\operatorname{supp} \delta_n = [(1/n) - (1/n^2), (1/n) + (1/n^2)]$. Also

$$\begin{split} \rho(\delta_n) &= (1/n) + (1/n^2) \text{ and } r(\delta_n) = (1/n^2). \text{ Now} \\ (\rho(\delta_n))^k \int_{\mathbf{R}} |\delta_n^{(k)}(t)| \, dt &= \left(\frac{1}{n} + \frac{1}{n^2}\right)^k (n^2)^{k+1} \int_{\mathbf{R}} |(f^{(k)})(n^2t - n)| \, dt \\ &= \left(\frac{1}{n} + \frac{1}{n^2}\right)^k (n^2)^k \int_{\mathbf{R}} |f^{(k)}(s)| \, ds \\ &= (n+1)^k C \text{ where } C = \int_{\mathbf{R}} |f^{(k)}(s)| \, ds > 0. \end{split}$$

Thus $(\rho(\delta_n))^k \int_{\mathbf{R}} |\delta_n^{(k)}(t)| dt$ cannot be bounded by any M_k . So (δ_n) is not ρ -regular. But

$$(r(\delta_n))^k \int_{\mathbf{R}} |\delta_n^{(k)}(t)| \, dt = (1/n^2)^k (n^2)^k \int_{\mathbf{R}} |f^{(k)}(s)| \, ds = M_k,$$

say. Thus (δ_n) is *r*-regular. \Box

We shall now give an example of a delta sequence which is not r-regular. Thus the class of r-regular delta sequences is not the whole of Δ . Thus this example establishes the significance of our Theorem 4.4 later.

Example 2.6. Let f be as in Example 2.5. Let $\phi_n(t) = (n^2/2) \times (f(n^2t-n)+f(n^2t+n))$. Then (ϕ_n) is a delta sequence with $\operatorname{supp} \phi_n = [-(1/n) - (1/n^2), -(1/n) + (1/n^2)] \cup [(1/n) - (1/n^2), (1/n) + (1/n^2)]$ and $r(\phi_n) = (1/n) + (1/n^2)$. Now

$$\begin{split} (r(\phi_n))^k \int_{\mathbf{R}} |\phi_n^{(k)}(t)| \, dt \\ &\geq \left[\left(\frac{1}{n}\right) + \left(\frac{1}{n^2}\right) \right]^k \int_0^\infty |\phi_n^{(k)}(t)| \, dt \\ &= \left[\left(\frac{1}{n}\right) + \left(\frac{1}{n^2}\right) \right]^k \int_0^\infty \frac{(n^2)^{k+1}}{2} \left| (f^{(k)})(n^2t - n) \right| \, dt \end{split}$$

(when t > 0, $n^2t + n > 1$ and hence $f^{(k)}(n^2 + n) = 0$ for all k and n)

$$= (n+1)^k / 2 \int_0^\infty |f^{(k)}(s)| \, ds.$$

184

Thus, if $k \ge 1$, then $(r(\phi_n))^k \int_{\mathbf{R}} |\phi_n^{(k)}(t)| dt$ cannot be bounded (by any M_k). So (ϕ_n) is not r-regular. \Box

Lemma 2.7. If (ϕ_n) and (ψ_n) are r-regular delta sequences, then $(\phi_n * \psi_n)$ is also an r-regular delta sequence.

Proof. Since (ϕ_n) and (ψ_n) are *r*-regular delta sequences, for every multi-index k, there exist M_k and N_k such that, for all n,

$$(r(\phi_n))^{|k|} \int_{\mathbf{R}^N} |(\partial^{|k|}/\partial x^k)\phi_n(x)| \, dx \le M_k$$

and

$$(r(\psi_n))^{|k|} \int_{\mathbf{R}^N} |(\partial^{|k|}/\partial x^k)\psi_n(x)| dx \le N_k.$$

Now

$$\begin{split} (r(\phi_n * \psi_n))^{|k|} &\int_{\mathbf{R}^N} \left| \frac{\partial^{|k|}}{\partial x^k} (\phi_n * \psi_n)(x) \right| dx \\ &\leq (r(\phi_n) + r(\psi_n))^{|k|} \int_{\mathbf{R}^N} \left| \frac{\partial^{|k|}}{\partial x^k} (\phi_n * \psi_n)(x) \right| dx \\ &\leq 2^{|k|-1} ((r(\phi_n))^{|k|} + (r(\psi_n))^{|k|}) \int_{\mathbf{R}^N} \left| \frac{\partial^{|k|}}{\partial x^k} (\phi_n * \psi_n)(x) \right| dx \\ &\leq 2^{|k|-1} (r(\phi_n))^{|k|} \int_{\mathbf{R}^N} \left| \left(\left(\frac{\partial^{|k|}}{\partial x^k} \phi_n \right) * \psi_n \right)(x) \right| dx \\ &\quad + 2^{|k|-1} (r(\psi_n))^{|k|} \int_{\mathbf{R}^N} \left| \left(\phi_n * \left(\frac{\partial^{|k|}}{\partial x^k} \psi_n \right) \right)(x) \right| dx \\ &\leq 2^{|k|-1} (r(\phi_n))^{|k|} \int_{\mathbf{R}^N} \left| \frac{\partial^{|k|}}{\partial x^k} \phi_n(x) \right| dx \int_{\mathbf{R}^N} \left| \psi_n(x) \right| dx \\ &\quad + 2^{|k|-1} (r(\psi_n))^{|k|} \int_{\mathbf{R}^N} \left| \phi_n(x) \right| dx \int_{\mathbf{R}^N} \left| \frac{\partial^{|k|}}{\partial x^k} \psi_n(x) \right| dx \\ &\quad + 2^{|k|-1} (r(\psi_n))^{|k|} \int_{\mathbf{R}^N} \left| \phi_n(x) \right| dx \int_{\mathbf{R}^N} \left| \frac{\partial^{|k|}}{\partial x^k} \psi_n(x) \right| dx \\ &\leq 2^{|k|-1} (M_k N_0 + M_0 N_k). \end{split}$$

This completes the proof as the other properties of a delta sequence can be easily verified. $\hfill\square$

V. KARUNAKARAN AND R. VEMBU

3. Counter Example. In Theorem 2.4 of [4] it has been claimed that a Boehmian F has a value at a point x_0 if and only if, for all representation $[f_n/\phi_n]$ of F with ρ -regular delta sequence (ϕ_n) , $\lim_{n\to\infty} f_n(x_0)$ exists. There is an error in the proof. On page 1045 of [4], the existence of a sequence of positive numbers $\gamma_1, \gamma_2, \ldots$ satisfying

$$||f_{p_n}(x) - f_{p_n}(0)|| < \varepsilon$$
 whenever $||x|| < \gamma_n$

is proved. To be more specific, as γ_n depends on f_{p_n} , we shall write γ_n as γ_{p_n} . However, the array of inequalities on page 1046 [4] assumes

$$\sup_{\|x\| \le \gamma_{p_n}} \|f_{q_n}(x) - f_{q_n}(0)\| < \varepsilon$$

where $\{q_n\}$ is a subsequence of $\{p_n\}$. This assumption is not valid because we only know that

$$\sup \|f_{q_n}(x) - f_{q_n}(0)\| < \varepsilon$$

when the supremum is taken over $\{x \mid ||x|| \leq \gamma_{q_n}\}$ and not over $\{x \mid ||x|| \leq \gamma_{p_n}\}$.

We shall now give an example of a Boehmian F not admitting a value at $x_0 = 0$ even though for every representation $[f_n/\phi_n]$ of F with ρ -regular delta sequence (ϕ_n) we have $\lim_{n\to\infty} f_n(0) = 0$.

Example 3.1. Let $A_n = [-(3/n) - (1/n^2), -(3/n)], n = 1, 2, ...,$ and let $A = \bigcup_{n=1}^{\infty} A_n$. Define

$$G(t) = \begin{cases} -|t|\sqrt{|t|} & \text{if } t \in A\\ |t|\sqrt{|t|} & \text{if } t \notin A. \end{cases}$$

Then G is a locally integrable function and hence G can be identified in $\mathcal{D}'(\mathbf{R})$. Let G' be the distributional derivative of G. Let F be the Boehmian representing G'. Let (ϕ_n) be any ρ -regular delta sequence. Then there exists M_1 such that $\rho(\phi_n) \int_{\mathbf{R}} |\phi'_n(t)| dt \leq M_1$ for all n. We

186

know $[(G' * \phi_n)/\phi_n]$ is a representation of F. Now

$$\begin{aligned} |(G' * \phi_n)(0)| &= |(G * \phi'_n)(0)| = \left| \int_{-\rho(\phi_n)}^{\rho(\phi_n)} G(-t)\phi'_n(t) dt \right| \\ &\leq \int_{-\rho(\phi_n)}^{\rho(\phi_n)} |G(-t)| |\phi'_n(t)| dt \\ &= \int_{-\rho(\phi_n)}^{\rho(\phi_n)} |t| \sqrt{|t|} |\phi'_n(t)| dt \\ &\leq \sqrt{\rho(\phi_n)} \ \rho(\phi_n) \int_{\mathbf{R}} |\phi'_n(t)| dt \\ &\leq \sqrt{\rho(\phi_n)} \ M_1. \end{aligned}$$

Since $\rho(\phi_n) \to 0$, we have $(G' * \phi_n)(0) \to 0$ as $n \to \infty$.

Let $[f_n/\psi_n]$ be any representation of F with ρ -regular delta sequence (ψ_n) . Then $[f_n/\psi_n] = [(G' * \phi_n)/\phi_n]$. This implies $f_n * \phi_m = (G' * \phi_m) * \psi_n$. Taking limit as $m \to \infty$, we get $f_n(x) = (G' * \psi_n)(x)$ for all x. Since (ψ_n) is ρ -regular, as above, we can prove that $(G' * \psi_n)(0) \to 0$ as $n \to \infty$. Therefore, $f_n(0) \to 0$ as $n \to \infty$. Thus for every representation $[f_n/\psi_n]$ of F, with ρ -regular delta sequence (ψ_n) , we have $\lim_{n\to\infty} f_n(0) = 0$.

Let f be as in Example 2.5. Then $f \in C^{\infty}$, $\int_{\mathbf{R}} f(t) dt = 1$, supp f = [-1, 1], $f(t) \ge 0$ for all $t \in \mathbf{R}$ and f(-x) = f(x). Moreover $f'(t) \ge 0$ if t < 0 and $f'(t) \le 0$ if $t \ge 0$. Let $\delta_n(t) = n^2 f(n^2 t - 3n)$. Then (δ_n) is a delta sequence with supp $\delta_n = [(3/n) - (1/n^2), (3/n) + (1/n^2)]$.

Now

$$(G' * \delta_n)(0) = (G * \delta'_n)(0) = \int_{(3/n) - (1/n^2)}^{(3/n) + (1/n^2)} G(-t)\delta'_n(t) dt$$

= $n^4 \int_{(3/n) - (1/n^2)}^{(3/n) + (1/n^2)} G(-t)f'(n^2t - 3n) dt$
= $n^2 \int_{-1}^1 G\left(-\left(\frac{s+3n}{n^2}\right)\right)f'(s) ds$
= $n^2 \int_{-1}^0 \left(\frac{s+3n}{n^2}\right)^{3/2} f'(s) ds + n^2 \int_0^1 -\left(\frac{s+3n}{n^2}\right)^{3/2} f'(s) ds$

$$= n^{2} \int_{-1}^{1} \left(\frac{s+3n}{n^{2}}\right)^{3/2} |f'(s)| ds$$
$$\geq n^{2} \left(\frac{1}{n}\right)^{3/2} \int_{-1}^{1} |f'(s)| ds$$
$$= \sqrt{n} C$$

where

$$C = \int_{-1}^{1} |f'(s)| \, ds.$$

Since C > 0, $(G' * \delta_n)(0) \to \infty$ as $n \to \infty$. But $[(G' * \delta_n)/\delta_n]$ is a representation of F. Thus F cannot have a value at 0.

4. Characterizations for the existence of point values of Boehmians.

Lemma 4.1. If a Boehmian F has a value at x_0 and if $[f_n/\phi_n]$ is any representation of F, then $\{f_n\}$ is equicontinuous at x_0 .

Proof. Let F(x) = a and let $\varepsilon > 0$. Then, by Theorem 2.5 of [4], there exists $\delta_0 > 0$ and $n_0 \in \mathbf{N}$ such that $|f_n(x) - a| \le \varepsilon/2$ whenever $||x - x_0|| \le \delta_0$ and for all $n \ge n_0$. Thus $|f_n(x) - f_n(x_0)| \le |f_n(x) - a| + |f_n(x_0) - a| < \varepsilon$ for all $n \ge n_0$ and for all x such that $||x - x_0|| \le \delta_0$. As the functions $f_i(x)$, $1 \le i < n_0$, are continuous at x_0 , there exist $\delta_i > 0$, $1 \le i < n_0$, such that $|f_i(x) - f_i(x_0)| \le \varepsilon$ whenever $||x - x_0|| \le \delta_i$ for $1 \le i < n_0$. Let $\delta = \min\{\delta_i / 0 \le i < n_0\}$. Then $\delta > 0$ and $|f_n(x) - f_n(x_0)| \le \varepsilon$ for all n and for all x with $||x - x_0|| \le \delta$. This implies that $\{f_n\}$ is equicontinuous at x_0 .

Lemma 4.2. If F is a Boehmian and $x_0 \in \mathbf{R}^N$ and if there exists at least one representation $[f_n/\delta_n]$ of F satisfying

i) $\lim_{n\to\infty} f_n(x_0)$ exists

ii) $\{f_n\}$ is equicontinuous at x_0 ,

then F has a value at x_0 .

Proof. Let $\lim_{n\to\infty} f_n(x_0) = a$. Let $[g_n/\phi_n]$ be any representation of F. Since $[f_n/\delta_n] = [g_n/\phi_n]$ we have $g_n * \delta_m = f_m * \phi_n$. Let $a_{m,n} =$

 $(g_n * \delta_m)(x_0)$. Then $a_{m,n} = (f_m * \phi_n)(x_0)$. Since $\lim_{m \to \infty} (g_n * \delta_m) = g_n$ pointwise for all n, we have

$$\lim_{m \to \infty} a_{m,n} = g_n(x_0) \quad \text{for all } n$$

Since (ϕ_n) is a delta sequence, there is a positive number M such that $\int_{\mathbf{R}^N} |\phi_n(t)| dt \leq M$ for all n. Let $\varepsilon > 0$ be given. Since $\{f_n\}$ is equicontinuous at x_0 , there exists $\delta > 0$ such that $|f_m(x_0 - t) - f_m(x_0)| < \varepsilon/(2M)$ whenever $||t|| < \delta$ for all m. By definition of delta sequence, there exists n_1 such that $\rho(\delta_n) < \delta$ for all $n \geq n_1$. Since $f_m(x_0) \to a$, as $m \to \infty$ there exists n_2 such that $|f_m(x_0) - a| < \varepsilon/2$ for all $m \geq n_2$.

Let $n_0 = \max\{n_1, n_2\}$. If $m, n \ge n_0$, then we have

$$\begin{aligned} |a_{m,n} - a| &= |(f_m * \phi_n)(x_0) - a| \\ &\leq |(f_m * \phi_n)(x_0) - f_m(x_0)| + |f_m(x_0) - a| \\ &\leq \int_{\mathbf{R}^N} |f_m(x_0 - t) - f_m(x_0)| |\phi_n(t)| dt + \frac{\varepsilon}{2} \\ &\leq \frac{\varepsilon}{2M} M + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

This implies that the double limit $\lim_{m,n\to\infty} a_{m,n} = a$. Hence we have $\lim_{n\to\infty} \lim_{m\to\infty} a_{m,n} = a$. Thus by (1) we get $\lim_{n\to\infty} g_n(x_0) = a$.

Remark 4.3. If F is a Boehmian having at least one representation $[f_n/\delta_n]$ satisfying (i) and (ii) of Lemma 4.2, then by Lemma 4.1 every representation of F satisfies (i) and (ii) of Lemma 4.2. Thus the existence of one representation of F satisfying (i) and (ii) of Lemma 4.2 is a necessary and sufficient condition for F to have a value at x_0 .

Another necessary and sufficient condition is given in the following theorem. This theorem shows how the hypothesis of Theorem 2.4 of [4] must be modified.

Theorem 4.4. Let F be a Boehmian and $x_0 \in \mathbf{R}^N$. Then F has a value at x_0 if and only if, for all representation $[f_n/\phi_n]$ of F with r-regular delta sequence (ϕ_n) , $\lim_{n\to\infty} f_n(x_0)$ exists.

V. KARUNAKARAN AND R. VEMBU

190

Proof. If F has a value at x_0 , then, by definition, for all representation $[f_n/\phi_n]$ of F, $\lim_{n\to\infty} f_n(x_0)$ exists. To prove the converse, let $[f_n/\phi_n]$ be any representation of F with r-regular delta sequence (ϕ_n) . Such delta sequences actually exist. Indeed we can always represent Boehmians with a corresponding delta sequence being ρ -regular, see Lemma 2.3 of [4]. Then $\lim_{n\to\infty} f_n(x_0)$ exists, say a. Suppose $\{f_n\}$ is not equicontinuous at x_0 . Then there exists $\varepsilon > 0$ such that, for any $\eta > 0$, there are infinitely many n such that

(1)
$$\sup_{\|x-x_0\| \le \eta} |f_n(x) - f_n(x_0)| > 3\varepsilon$$

We can further prove that, for the same ε , for any $\eta > 0$, there are infinitely many n such that

(2)
$$\sup_{\|x-x_0\| \le \eta} |f_n(x) - a| > 2\varepsilon.$$

Indeed, since $\lim_{n\to\infty} f_n(x_0) = a$, there exists n_0 such that

(3)
$$|f_n(x_0) - a| < \varepsilon \text{ for all } n \ge n_0.$$

As there are infinitely many n satisfying (1), using (3) and the fact $|f_n(x) - a| \ge |f_n(x) - f_n(x_0)| - |f_n(x_0) - a|$ we get (2). Thus, by (2), there exists a sequence $n_1 < n_2 < \ldots$ of positive integers and a sequence x_1, x_2, \ldots of points of \mathbf{R}^N such that

(4)
$$|f_{n_k}(x_k) - a| > 2\varepsilon$$
 and $||x_k - x_0|| < \frac{1}{k}$ for $k = 1, 2, ...$

As each f_{n_k} is continuous at x_k , there exists $\gamma_k > 0$ such that

(5)
$$|f_{n_k}(x) - f_{n_k}(x_k)| < \varepsilon \quad \text{whenever } ||x - x_k|| < \gamma_k.$$

We may assume γ_k decreases to 0. Let

$$f_1(t) = \begin{cases} e^{(1/(\|t\|^2 - 1))} & \text{if } \|t\| < 1\\ 0 & \text{if } \|t\| \ge 1 \end{cases}$$

and let $f(t) = (f_1(t)) / \int_{\mathbf{R}^N} f_1(t) dt$. Let $\delta_k(t) = 1/(\gamma_k^N) f[(t/\gamma_k) - ((x_k - x_0)/\gamma_k)]$. Then $\operatorname{supp} \delta_k = B_{\gamma_k}(x_k - x_0)$, the ball of radius γ_k

and center $(x_k - x_0)$, and (δ_k) is a delta sequence with $r(\delta_k) = \gamma_k$. Also it is easy to see that (δ_k) is *r*-regular. Consider

$$\left| \int_{\mathbf{R}^N} (f_{n_k}(x) - f_{n_k}(x_k)) \delta_k(x - x_0) \, dx \right|$$

$$\leq \int_{\mathbf{R}^N} \left| f_{n_k}(x) - f_{n_k}(x_k) \left| \delta_k(x - x_0) \, dx \right| < \varepsilon,$$

because of (5) whenever $x - x_0 \in \operatorname{supp} \delta_k$. That is,

(6)
$$\left| \int_{\mathbf{R}^N} (f_{n_k}(x) - f_{n_k}(x_k)) \delta_k(x - x_0) \, dx \right| < \varepsilon \quad \text{for all } k.$$

Let $\check{\delta}_n(t) = \delta_n(-t)$. Now using (4) and (6), we get

$$\begin{aligned} |(f_{n_k} * \check{\delta_k})(x_0) - a| &= \left| \int_{\mathbf{R}^N} f_{n_k}(x) \delta_k(x - x_0) \, dx - a \right| \\ &\geq \left| \int_{\mathbf{R}^N} f_{n_k}(x_k) \delta_k(x - x_0) \, dx - a \right| \\ &- \left| \int_{\mathbf{R}^N} (f_{n_k}(x) - f_{n_k}(x_k)) \delta_k(x - x_0) \, dx \right| \\ &\geq |f_{n_k}(x_k) - a| - \varepsilon \geq \varepsilon. \end{aligned}$$

That is $|(f_{n_k} * \check{\delta_k})(x_0) - a| \ge \varepsilon$ for all k. Thus, $(f_{n_k} * \check{\delta_k})(x_0)$ cannot converge to a. Since (δ_k) is an r-regular delta sequence, $(\check{\delta_k})$, and hence $(\phi_{n_k} * \check{\delta_k})$ are r-regular delta sequences. Now we have a representation $[(f_{n_k} * \check{\delta_k})/(\phi_{n_k} * \check{\delta_k})]$ of F, with r-regular delta sequence $(\phi_{n_k} * \check{\delta_k})$ such that $(f_{n_k} * \check{\delta_k})(x_0)$ do not converge to a. This is a contradiction. Thus $\{f_n\}$ is equicontinuous. The theorem follows from Lemma 2.7.

5. Miscellaneous results. In the sequel we shall give two more results on point value of Boehmians.

Theorem 5.1. If a Boehmian F has a value at each point of a compact set $K \subseteq \mathbf{R}^N$, then for every representation $[f_n/\phi_n]$ of F we have

i) $\lim_{n\to\infty} f_n(x)$ exists for all $x \in K$.

ii) $\{f_n\}$ is equicontinuous on K.

Proof. Since F has a value at all points of K, $\lim_{n\to\infty} f_n(x)$ exists for all $x \in K$. To prove $\{f_n\}$ is equicontinuous on K, let $\varepsilon > 0$ be given. By Theorem 4.1 $\{f_n\}$ is equicontinuous at each point x of K. Therefore, for every fixed x, there exists $\delta_x > 0$ such that $|f_n(t) - f_n(x)| \le \varepsilon/2$ whenever $||x - t|| \le 2\delta_x$ for all n. Then $\{B_{\delta_x}(x)\}_{x\in K}$ is an open cover for K having a finite subcover, say $B_{\delta_{x_1}}(x_1), \ldots, B_{\delta_{x_k}}(x_k)$. Let $\delta = \min\{\delta_{x_1}, \ldots, \delta_{x_k}\}$. Then $\delta > 0$. Let $s, t \in K$ be such that $||s - t|| < \delta$. Then $s \in B_{\delta_{x_i}}(x_i)$ for some i. Thus $||s - x_i|| < \delta_{x_i}$, and hence $|f_n(s) - f_n(x_i)| < \varepsilon/2$ for all n. Now $||s - t|| < \delta$ implies $||t - x_i|| < 2\delta_{x_i}$, and hence $|f_n(t) - f_n(x_i)| < \varepsilon/2$ for all n. Thus we get $||f_n(s) - f_n(t)|| < \varepsilon$ for all n whenever $||s - t|| < \delta$. Hence $\{f_n\}$ is equicontinuous on K.

Theorem 5.2. Let F be a Boehmian and $K \subseteq \mathbf{R}^N$ a compact set. If F has a representation $[f_n/\phi_n]$ such that

i) $\lim_{n\to\infty} f_n(x)$ exists for all $x \in K$

ii) $\{f_n\}$ is equicontinuous on K.

Then F has a value at each point of the interior of K.

Proof. Let $x_0 \in K^0$, the interior of K. Then, by (i), $\lim_{n\to\infty} f_n(x_0)$ exists. Let $\varepsilon > 0$ be given. Since $x_0 \in K^0$, there exists $\delta_1 > 0$ such that $x \in K$ whenever $||x - x_0|| < \delta_1$. By (ii), there exists $\delta_2 > 0$ such that, for all n, $|f_n(x) - f_n(x_0)| < \varepsilon$ whenever $||x - x_0|| < \delta_2$ and $x \in K$. Let $\delta = \min\{\delta_1, \delta_2\}$. Then $\delta > 0$ and we have $|f_n(x) - f_n(x_0)| < \varepsilon$ whenever $||x - x_0|| < \delta$. Thus $\{f_n\}$ is equicontinuous at x_0 . Hence, by Theorem 4.2, F has a value at x_0 .

Remark 5.3. A delta sequence (ϕ_n) , where each ϕ_n has the form $\phi_n(x) = (\alpha_n)^N \phi(\alpha_n x)$, is called a *delta sequence made of one function*. In the concluding remarks of [4], it is asked whether the condition in the definition of value of a Boehmian be replaced by the condition " $\lim_{n\to\infty} f_n(x) = a$ for all representation $[f_n/\phi_n]$ with (ϕ_n) made of one function." As every delta sequence made of one function is ρ -regular,

the counter example given in Section 3 shows that the answer to this question is negative.

REFERENCES

1. V. Karunakaran and N.V. Kalpakam, *Boehmians representing measures*, Houston J. Math. **26** (2000), 377–386.

2. P. Mikusiński, Convergence of Boehmians, Japan J. Math. 9 (1983).

3. J. Mikusiński and P. Mikusiński, *Quotients de suites et leurs applications dans l'analyse fonctionnelle*, C.R. Acad. Sci., Paris Ser. I Math. **293** (1981), 463–464.

4. P. Mikusiński and M. Tighiouart, Value of a Boehmian at a point and at infinity, Rocky Mountain J. Math. 24 (1994), 1039–1054.

School of Mathematics, Madurai Kamaraj University, Madurai - 625 021, India

 $E\text{-}mail \ address: \texttt{vkarun_mku@yahoo.co.in}$

SBK College, Aruppukottai - 626 101, India *E-mail address:* msrvembu@yahoo.co.in