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BOUNDS FOR THE FABER COEFFICIENTS
OF CERTAIN CLASSES OF FUNCTIONS

ANALYTIC IN AN ELLIPSE

E. HALILOGLU AND E.H. JOHNSTON

ABSTRACT. Let Ω be a bounded, simply connected do-
main in C with 0 ∈ Ω and ∂Ω analytic. Let S(Ω) denote the
class of functions F (z) which are analytic and univalent in Ω
with F (0) = 0 and F ′(0) = 1. Let {Φn(z)}∞n=0 be the Faber
polynomials associated with Ω. If F (z) ∈ S(Ω), then F (z)
can be expanded in a series of the form

F (z) =

∞∑
n=0

AnΦn(z), z ∈ Ω

in terms of the Faber polynomials. Let

Er =

{
(x, y) ∈ R2 :

x2

(1 + (1/r2))2
+

y2

(1 − (1/r2))2
< 1

}
,

where r > 1. In this paper we obtain sharp bounds for the
Faber coefficients A0, A1 and A2 of functions F (z) in S(Er)
and in certain related classes.

1. Introduction. Let S denote the class of functions f analytic and
univalent in the unit disk D = {z : |z| < 1} such that

(1.1) f(z) = z +
∞∑

n=2

anzn.

The Bieberbach conjecture [2] asserts that if f ∈ S, then |an| ≤ n,
n ≥ 2. This famous conjecture was proved by de Branges [3] in 1984.
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It was also shown that equality holds if and only if f is a rotation of
the Koebe function

(1.2) k(z) =
z

(1 − z)2
.

In this paper, we investigate bounds for the Faber coefficients in
domains other than the unit disk D, especially an elliptical domain.

Let Ω be a bounded, simply connected domain in C with 0 ∈ Ω. Let
g(z) be the unique, one-to-one, analytic mapping of ∆ = {z : |z| > 1}
onto C \ Ω with

(1.3) g(z) = cz +
∞∑

n=0

cn

zn
, c > 0, z ∈ ∆.

Suppose that Ω has capacity 1, so that c = 1 in (1.3). The Faber
polynomials, {Φn(z)}∞n=0, associated with Ω, or g(z), are defined by
the generating function relation [5, p. 218]

(1.4)
ηg′(η)

g(η) − z
=

∞∑
n=0

Φn(z)η−n, η ∈ ∆.

Faber polynomials play an important role in the theory of functions
of a complex variable and in approximation theory. On a domain Ω
the Faber polynomials, {Φn(z)}∞n=0, play a role analogous to that of
{zn}∞n=0 in D. If ∂Ω is analytic and F (z) is analytic in Ω, then F (z)
can be expanded into a series of the form

(1.5) F (z) =
∞∑

n=0

AnΦn(z), z ∈ Ω

in terms of the Faber polynomials. This series is called the Faber series,
and it converges uniformly on compact subsets of Ω. The coefficients
An, which can be computed via the formula

An =
1

2πi

∫
|z|=ρ

F (g(z))z−n−1 dz
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with ρ < 1 and close to 1 are called the Faber coefficients of F (z)
[12, p. 42].

Let φ(z) be the unique, one-to-one, analytic mapping of Ω onto D
with φ(0) = 0 and φ′(0) > 0. Thus a function F (z) which is analytic
and univalent in Ω and normalized by the conditions F (0) = 0 and
F ′(0) = 1 may be written as

(1.6) F (z) =
f(φ(z))
φ′(0)

for some f ∈ S. The Faber coefficients {An}∞n=0 of a function F (z)
of the form (1.6) will be denoted by {An(f)}∞n=0 to indicate the
dependence on f ∈ S.

In order to investigate the Faber coefficients An(f), it will be conve-
nient to work with a domain Ω for which the Faber polynomials Φn(z)
may be computed via the formula (1.4) in terms of the exterior mapping
g(z) given by (1.3) with c = 1. We then express the interior functions
F (z) given by (1.6) in terms of the interior mapping φ(z). However,
it is not easy to deal with both exterior and interior mappings at the
same time, so we restrict our interest to the elliptical domain

Er =
{

(x, y) ∈ R2 :
x2

(1 + (1/r2))2
+

y2

(1 − (1/r2))2
< 1

}
,

where r > 1, for which both of these functions are manageable.

The function g(z) = z + (1/r2z), r > 1, is analytic and univalent in
∆ and maps ∆ onto C \ Er. After doing necessary calculations, we
obtain from (1.4) that the Faber polynomials, {Φn(z)}∞n=0, associated
with Er are given by

Φn(z) = 2nr−nPn

(rz

2

)
, n = 0, 1, 2, . . . .

Here {Pn(z)}∞n=0 are the monic Chebyshev polynomials of degree n,
which are given by

P0(z) = 1

and

Pn(z) = 2−n

{ [
z +

√
z2 − 1

]n

+
[
z −

√
z2 − 1

]n
}

, n = 1, 2, 3, . . . .
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Let sn(z; q) be the Jacobi elliptic sine function with nome q, and
modulus k0, and let

K =
∫ 1

0

1√
1 − t2

√
1 − k2

0t
2

dt,

[8, Chapter 2]. Then the function

ϕ(z) =
√

k0

(
2K

π
sin−1 rz

2
;

1
r4

)

is the one-to-one mapping of Er onto D with ϕ(0) = 0 and ϕ′(0) =
(rK

√
k0/π) > 0 [10, p. 296].

We define S(Er) as the class of functions F (z) which are analytic
and univalent in Er and normalized by the conditions F (0) = 0 and
F ′(0) = 1. We define two subclasses of S(Er) as

C(Er) = {F (z) ∈ S(Er) : F (Er) is convex},

and
S(2)(Er) = {F (z) ∈ S(Er) : F (z) is odd}.

In addition, we let P (Er) denote the class of functions analytic in
Er and satisfying the conditions F (0) = (1/ϕ′(0)) = (π/rK

√
k0)

and Re{F (z)} > 0. (The condition F (0) = (1/ϕ′(0)) is imposed for
convenience.)

Note that if F (z) is in one of the classes S(Er), C(Er), S(2)(Er)
or P (Er), then F (z) may be written as in (1.6) for some f(z) in the
classes S, convex functions C, odd functions S(2) or functions with
positive real part P defined for D.

It has been conjectured in [7] that if F (z) ∈ S(Er), then

|A0(f)| ≤ A0(k) =
π3

8rK3
√

k0(1 − k0)2 ln r
,

and

|An(f)| ≤ An(k) =
π3n

4rK3
√

k0(1 − k0)2(1 − r−2n)
, n ≥ 1,
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whose special case for r → ∞ is the famous Bieberbach conjecture.

In this paper we show that the conjecture is true for n = 0, 1, 2 and
the extremal functions are given by

f(z) = k(z)

or

f(z) = −k(−z),

where k(z) is the Koebe function given by (1.2). Also similar sharp
upper bounds are obtained for the Faber coefficients A0(f), A1(f) and
A2(f) for functions in the classes C(Er) and P (Er). In each case, there
are two extremal functions that are given by

f(z) = c(z) =
z

1 − z
(1.7)

or

f(z) = −c(−z) =
z

1 + z

and

f(z) = p(z) =
1 + z

1 − z
(1.8)

or

f(z) = p(−z) =
1 − z

1 + z
,

respectively. Here it is important that the number of extremal functions
is the same as the number of invariant rotations of the elliptical domain
Er. Although the results for the classes C(Er) and P (Er) are contained
in [7], the method used in this paper is different from that of [7].
Moreover, the results for the class S(Er) cannot be obtained by the
method of [7], since the extreme points of the closed convex hull of S
are not known at this time. For functions in S(2)(Er) a sharp bound
for A1(f) is obtained and the corresponding extremal function in S(2)

is shown to be

(1.9) o(z) =
z

1 − z2
.
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Similar results were obtained in [11], but our approach is completely
different from that of [11].

2. Main results. We begin with a

Lemma 1. Let F (z) be analytic in Er and the Faber series given
by (1.5). Then the Faber coefficients {An}∞n=0 of F (z) are given by the
formula

An =
rn

π

∫ π

0

F

(
2 cos θ

r

)
cos nθ dθ, n = 0, 1, 2, . . . .

Proof. Letting z = (2 cos θ/r) in (1.5) and using Φn (2 cos θ/r) =
2r−n cos nθ yields

(2.1) F

(
2 cos θ

r

)
= 2

∞∑
n=0

Anr−n cos nθ.

Multiplying (2.1) by cosmθ and then integrating from 0 to π gives
the desired result.

As a consequence of this representation it can be shown that if F (z)
has the representation (1.6) and belongs to one of the classes S(Er),
C(Er), S(2)(Er) and P (Er), then the Faber coefficients are given by

(2.2)

An(f) =
rn−1

K
√

k0

∫ π

0

f

(
ϕ

(
2 cos θ

r

) )
cos nθ dθ, n = 0, 1, 2, . . . .

In addition, as it was shown in [6] that if F (z) ∈ S(2)(Er), then

A2n(f) = 0, n = 0, 1, 2, . . . .

Another representation formula for the Faber coefficients, {An(f)}∞n=0,
is given in the following corollary.
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Corollary 1. The Faber coefficients, {An(f)}∞n=0, of functions in
the classes S(Er), C(Er), S(2)(Er) and P (Er) are given by

(2.3)
An(f) =

2nn!rn−1

K
√

k0(2n)!

∫ π

0

(f(ϕ(x)))(n)|x=(2 cos θ/r) sin2n θ dθ,

n = 0, 1, 2, . . . .

Proof. Since Pn(cos θ) = 21−n cos nθ, formula (2.2) becomes

An(f) =
2n−1rn−1

K
√

k0

∫ π

0

f

(
ϕ

(
2 cos θ

r

))
cos nθ dθ, n = 0, 1, 2, . . . .

Making the change of variable x = cos θ yields

An(f) =
2n−1rn−1

K
√

k0

∫ 1

−1

f

(
ϕ

(
2x

r

))
Pn(x)√
1 − x2

dx.

Multiplying the identity

Pn(x)√
1 − x2

=
(−1)n21−n

1.3 · · · (2n − 1)
dn

dxn

[(
1 − x2

)n−(1/2)
]

[1, p. 785] by f (ϕ (2x/r)) and then integrating from −1 to 1 we obtain

(2.4)
∫ 1

−1

Pn(x)√
1 − x2

f

(
ϕ

(
2x

r

))
dx

=
(−1)n21−n

1.3 · · · (2n−1)

∫ 1

−1

dn

dxn

[ (
1−x2

)n−(1/2) ](
f

(
ϕ

(
2x

r

)))
dx.

Integrating the righthand side of (2.4) by parts results in

∫ 1

−1

Pn(x)√
1 − x2

f

(
ϕ

(
2x

r

))
dx

=
(−1)n21−n

1.3 · · · (2n−1)

∫ 1

−1

dn−1

dxn−1

[ (
1−x2

)n−(1/2) ](
f

(
ϕ

(
2x

r

)))′
dx.
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Continuing this process n-times yields

(2.5)
∫ 1

−1

Pn(x)√
1 − x2

f

(
ϕ

(
2x

r

))
dx

=
(−1)n21−n

1.3 · · · (2n−1)

∫ 1

−1

(
1−x2

)n−(1/2)
(

f

(
ϕ

(
2x

r

)))(n)

dx.

The result follows from (2.2) by letting x = cos θ in (2.5), reverting the
change of variables.

Theorem 1. If k(z), c(z) and p(z) are given by (1.2), (1.8) and
(1.9), respectively, then

|A0(f)| ≤ A0(k), f ∈ S,(2.6)
|A0(f)| ≤ A0(c), f ∈ C,(2.7)

and

|A0(f)| ≤ A0(p), f ∈ P.(2.8)

Equalities occur in (2.6), (2.7) and (2.8) if and only if f(z) = k(z)
or f(z) = −k(−z), f(z) = c(z) or f(z) = −c(−z) and f(z) = p(z) or
f(z) = p(−z), respectively.

Proof. From (2.2) we have

A0(f) =
1

rK
√

k0

∫ π

0

f

(
ϕ

(
2 cos θ

r

))
dθ.

Since ϕ(z) is an odd function we may write

(2.9)

A0(f) =
1

rK
√

k0

∫ π/2

0

[
f

(
ϕ

(
2 cos θ

r

))
+ f

(
− ϕ

(
2 cos θ

r

))]
dθ.

Substituting (1.1) into (2.9) yields

A0(f) =
2

rK
√

k0

∫ π/2

0

( ∞∑
n=1

a2nϕ2n

(
2 cos θ

r

))
dθ.
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Thus

|A0(f)| ≤ 2
rK

√
k0

∫ π/2

0

( ∞∑
n=1

|a2n|ϕ2n

(
2 cos θ

r

))
dθ

since ϕ(x) ≥ 0 for x ∈ [0, (2/r)]. Hence (2.6) follows from the proof of
the de Branges’ theorem [3] as

|A0(f)| ≤ 2
rK

√
k0

∫ π/2

0

( ∞∑
n=1

2nϕ2n

(
2 cos θ

r

))
dθ

= A0(k) = −A0(−k(−z)).

Note that the value of A0(k) is given in (1.7).

In a similar way, the proof of (2.7) follows from the coefficient estimate
for the class C [9].

Substituting

(2.10) f(z) = 1 +
∞∑

n=1

bnzn

into (2.9) gives

A0(f) =
2

rK
√

k0

∫ π/2

0

[
1 +

∞∑
n=1

b2nϕ2n

(
2 cos θ

r

)]
dθ.

Thus

(2.11) |A0(f)| ≤ 2
rK

√
k0

∫ π/2

0

[
1 +

∞∑
n=1

|b2n|ϕ2n

(
2 cos θ

r

)]
dθ,

since ϕ(x) ≥ 0 for x ∈ [0, (2/r)]. Using the coefficient estimate |bn| ≤ 2
for the class P [4] in (2.11) gives (2.8) as

|A0(f)| ≤ 2
rK

√
k0

∫ π/2

0

[
1 + 2

∞∑
n=1

ϕ2n

(
2 cos θ

r

)]
dθ

= A0(p) = A0(p(−z)).
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Theorem 2. If k(z), c(z) and p(z) are defined as in Theorem 1 and
o(z) is given by (1.9), then

|A1(f)| ≤ A1(k), f ∈ S,(2.12)
|A1(f)| ≤ A1(c), f ∈ C,(2.13)
|A1(f)| ≤ A1(p), f ∈ P,(2.14)

and

|A1(f)| ≤ A1(o), f ∈ S(2).(2.15)

The extremal functions in (2.12), (2.13) and (2.14) are identical to those
given in the statement of Theorem 1. In (2.15) equality holds if and
only if f(z) = o(z).

Proof. From (2.2) we have

(2.16)

A1(f) =
1

K
√

k0

∫ π/2

0

[
f

(
ϕ

(
2 cos θ

r

))
−f

(
− ϕ

(
2 cos θ

r

))]
cos θ dθ,

since ϕ(x) is an odd function. Substituting (1.1) into (2.16) gives

A1(f) =
2

K
√

k0

∫ π/2

0

[
ϕ
(

2 cos θ
r

)
+

∞∑
n=1

a2n+1ϕ
2n+1

(
2 cos θ

r

)]
cos θ dθ.

Hence

|A1(f)| ≤ 2
K
√

k0

∫ π/2

0

[
ϕ
(

2 cos θ
r

)
+

∞∑
n=1

|a2n+1|ϕ2n+1
(

2 cos θ
r

)]
cos θ dθ,

since ϕ(x) ≥ 0 for x ∈ [0, (2/r)]. As in the proof of Theorem 1, inequal-
ities (2.12) and (2.13) result from applying the coefficient estimates for
the classes S and C, respectively. Similarly, if f(z) ∈ P is given by
(2.10), then

(2.17) |A1(f)| ≤ 2
K
√

k0

∫ π/2

0

[ ∞∑
n=1

|b2n−1|ϕ2n−1

(
2 cos θ

r

)]
cos θ dθ,
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since ϕ(x) ≥ 0 for x ∈ [0, (2/r)]. Hence, using the coefficient estimate
for the class P in (2.17) results in (2.14).

For f ∈ S(2), (2.16) gives

A1(f) =
2

K
√

k0

∫ π/2

0

f

(
ϕ

(
2 cos θ

r

))
cos θ dθ.

Thus

(2.18) |A1(f)| ≤ 2
K
√

k0

∫ π/2

0

∣∣∣∣f
(

ϕ

(
2 cos θ

r

))∣∣∣∣ cos θ dθ.

By the distortion theorem

|f(z)| ≤ |z|
1 − |z|2 , f ∈ S(2),

[5, p. 70], it follows from (2.18) that

|A1(f)| ≤ 2
K
√

k0

∫ π/2

0

ϕ
(
(2 cos θ)/r

)
1 − ϕ2

(
(2 cos θ)/r

) cos θ dθ = A1(o),

because 0 ≤ ϕ(x) < 1 for x ∈ [0, (2/r)].

Remark 1. We can also obtain (2.12), (2.13) and (2.14) in the same
way, by using (2.3) instead of (2.2) and noting that ϕ′(x) ≥ 0, since
ϕ(x) is increasing for x ∈ [−(2/r), (2/r)]. Also using ϕ′(x) ≥ 0 for
x ∈ [−(2/r), (2/r)] and the distortion theorem,

|f ′(z)| ≤ 1 + |z|2(
1 − |z|2 )2 , f ∈ S(2)

[5, p. 70] in (2.3) leads to (2.15).

Theorem 3. If k(z), c(z) and p(z) are defined as in Theorem 1,
then

|A2(f)| ≤ A2(k), f ∈ S,(2.19)
|A2(f)| ≤ A2(c), f ∈ C,(2.20)
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and

|A2(f)| ≤ A2(p), f ∈ P.(2.21)

The extremal functions are identical to those given in the statement of
Theorem 1.

Proof. From (2.2) we have

A2(f) =
r

K
√

k0

∫ π

0

f

(
ϕ

(
2 cos θ

r

))
cos 2θ dθ

or

A2(f) =
r

K
√

k0

∫ π/2

0

[
f

(
ϕ

(
2 cos θ

r

))
+ f

(
− ϕ

(
2 cos θ

r

))]
cos 2θ dθ

since ϕ(z) is an odd function. Then

(2.22)

A2(f) =
r

K
√

k0

∫ π/4

0

{[
f

(
ϕ

(
2 cos θ

r

))
+ f

(
− ϕ

(
2 cos θ

r

))]

−
[
f

(
ϕ

(
2 sin θ

r

))
+ f

(
− ϕ

(
2 sin θ

r

))]}
cos 2θ dθ.

Substituting (1.1) into (2.22) gives

A2(f) = 2r
K

√
k0

∫ π/4

0

[ ∞∑
n=1

a2n

(
ϕ2n

(
2 cos θ

r

)
− ϕ2n

(
2 sin θ

r

))]
cos 2θ dθ.

Since ϕ(x) ≥ 0 and ϕ(x) is increasing for x ∈ [0, (2/r)], we have

ϕ2n

(
2 cos θ

r

)
− ϕ2n

(
2 sin θ

r

)
≥ 0, n = 1, 2, 3, . . . , 0 ≤ θ ≤ π

4
.

Thus

|A2(f)| ≤ 2r
K

√
k0

∫ π/4

0

[ ∞∑
n=1

|a2n|
(

ϕ2n
(

2 cos θ
r

)
−ϕ2n

(
2 sin θ

r

))]
cos 2θ dθ.
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Hence (2.19) and (2.20) are obtained from the coefficient estimates for
the classes S and C, respectively.

If f(z) ∈ P is given by (2.10), then (2.21) follows from

|A2(f)| ≤ 4
K
√

k0

∫ π/4

0

[ ∞∑
n=1

|b2n|
(

ϕ2n
(

2 cos θ
r

)
−ϕ2n

(
2 sin θ

r

))]
cos 2θ dθ

by using the coefficient estimate for the class P .
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