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THE HYPERSPACES K(X)

PATRICIA PELLICER-COVARRUBIAS

ABSTRACT. Let C(X) denote the hyperspace of subcon-
tinua of a continuum X. For p ∈ X, define the hyperspaces
C(p, X) = {A ∈ C(X) : p ∈ A} and K(X) = {C(p, X) :
p ∈ X}. The hyperspace K(X) is not always a continuum.
Conditions under which it is compact, connected, arcwise con-
nected and locally connected are studied. A characterization
of hereditarily indecomposable continua is also given.

1. Introduction. All spaces are assumed to be metric. Let X be a
continuum. Throughout this paper C(X) will denote the hyperspace of
subcontinua of X equipped with the Hausdorff metric, see Definitions
1.6 and 2.1 in [6]. Also, for p ∈ X define the hyperspace C(p, X) =
{A ∈ C(X) : p ∈ A}. Further, define K(X) = {C(p, X) : p ∈ X}.

It is known that several properties of a continuum X can be deter-
mined in terms of the topological properties of C(X), and vice versa.
For more information on this subject, we refer the reader to [6]. Fol-
lowing this idea, the aim of this paper is to investigate and present
some relations between topological properties of a continuum X and
those of its hyperspaces K(X).

There are not many results in the literature concerning the hyper-
spaces C(p, X). For a continuum X and A ⊂ X in [5, Theorem 2],
Eberhart proves that the hyperspaces C(p, X) are absolute retracts. In
particular, K(A, X) = {C(p, X) : p ∈ A} ⊂ C(C(X)).

In [8], the author characterizes, among other classes of continua,
the arc and the simple closed curve in terms of their hyperspace
K(X). In [9] she also characterizes atriodic continua in terms of
the hyperspaces C(p, X). Moreover, in [11] she determines when the
hyperspaces C(p, X) contain n-cells. Finally, in [3, 4, 10] retractions
and contractibility related to these hyperspaces are studied.
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Further in [2], Charatonik considers a mapping F : 2X → C(C(X))
given by F (A) = {K ∈ C(X) : A ⊂ K}. In that paper relations be-
tween continuity of F and some topological properties of the continuum
X are studied, such as smoothness and connectedness. This mapping
is related to a particular mapping that we will use later.

In this paper characterizations are given for continua whose hyper-
space K(X) is compact or arcwise connected. Also conditions are given
under which K(X) is connected or locally connected. Finally, a char-
acterization of hereditarily indecomposable continua is given.

2. Preliminaries. A continuum means a compact, connected metric
space. We denote by I the unit interval, by I∞ the Hilbert cube and
by N the set of all positive integers. By C we mean the set of all
complex numbers, equipped with the natural topology, and by S1 the
unit circle, i.e., S1 = {z ∈ C : |z| = 1}. A ray is a homeomorphic copy
of the space [0, 1) with its usual topology.

Further, for a continuum X and A ⊂ B ⊂ X, we denote by clB(A) the
closure of A with respect to B. In case B = X, we shall simply write
cl (A). Let diam (A) denote the diameter of A. Also X ≈ Y means
that X is homeomorphic to Y . Moreover, H will denote the Hausdorff
metric for C(X) and by H2 we will mean the Hausdorff metric for
C(C(X)). Finally, if the continuum X has a metric d, x ∈ X and A
is a closed subset of X, let d(x, A) = inf {d(x, a) : a ∈ A}. Moreover,
Nd(ε, A) denotes the set {x ∈ X : d(x, A) < ε}. In case it is clear the
metric we are using, we will simply write N(ε, A).

Let A, B ∈ C(X). An order arc from A to B is a mapping
α : I → C(X) such that α(0) = A, α(1) = B and α(r) � α(s) whenever
r < s, see [7].

A Whitney map for C(X) is a mapping µ : C(X) → [0,∞) such that
µ(X) = 1, µ({p}) = 0 for each p ∈ X and µ(A) < µ(B) whenever
A � B, see [6, p. 105]. Similarly, we define a Whitney map for C(p, X)
as a mapping µ : C(p, X) → [0,∞) such that µ(X) = 1, µ({p}) = 0
and µ(A) < µ(B) whenever A � B.

Let X be a continuum, and let x ∈ X. Then, X is said to have
the property of Kelley at x provided that for each sequence {xn}∞n=1

converging to x, and for each A ∈ C(x, X), there exists a sequence
{An}∞n=1 which converges to A and such that An ∈ C(xn, X) for each



THE HYPERSPACES K(X) 657

n ∈ N. Furthermore, X has the property of Kelley if it has the property
of Kelley at every point.

A subcontinuum A of a continuum X is said to be terminal in X
provided that for any B ∈ C(X) such that A ∩ B �= ∅, we have that
either A ⊂ B or B ⊂ A. A continuum X is indecomposable if it cannot
be written as the union of two of its proper subcontinua. Moreover,
X is hereditarily indecomposable provided every subcontinuum of X is
indecomposable.

Let (X, T ) be a topological space, and let {Ai}∞i=1 be a sequence of
subsets of X. We define the limit inferior of {Ai}∞i=1 and the limit
superior of {Ai}∞i=1 as follows:

(1) lim inf Ai = {x∈X : for any U ∈T such that x∈U , U∩Ai �=∅

for all but finitely many i}.
(2) lim sup Ai = {x∈X : for any U ∈T such that x∈U , U∩Ai �= ∅

for infinitely many i}.
We will say that lim Ai = A if lim sup Ai = A = lim inf Ai. For more
information on this subject, we refer the reader to [6, pp. 20 24].

3. General properties. We devote this section to recall and present
some basic results on continua and the hyperspaces C(p, X).

Definition 3.1. Let X be a continuum. We say X is a triod provided
there exists K ∈ C(X) such that X \K has at least three components.

Definition 3.2. Let X be a continuum and A1, A2, A3 ∈ C(X). We
say that A1, A2 and A3 form a weak triod if A1 ∩ A2 ∩ A3 �= ∅ and
Ai \ (Aj ∪ Ak) �= ∅ whenever {i, j, k} = {1, 2, 3}.

Theorem 3.3 [12, Theorem 1.8]. Let X be a continuum, and let
A, B, C ∈ C(X) be such that they form a weak triod. Then X contains
a triod.

Observation 3.4. If X is a continuum such that C(p, X) is an arc,
then there exists a unique order arc α : I → C(p, X) from {p} to X
such that α(I) = C(p, X). By unique we mean that if α′ is an order
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arc from {p} to X, then α(I) = α′(I). Since order arcs are monotone,
any two elements of C(p, X) are comparable.

Lemma 3.5. Let X be a continuum. If p ∈ X is such that for any
A, B ∈ C(p, X), A and B are comparable, then C(p, X) is an arc.

Proof. Let α1 : I → C(p, X) be an order arc from p to X. Suppose
that C(p, X) is not an arc. Then there exists K ∈ C(p, X) \ α1(I).
Taking an order arc from {p} to K and then another one from K to X,
we obtain an order arc α2 from {p} to X containing K. Hence we have
two order arcs α1 and α2 from {p} to X such that α1(I) �= α2(I).
Then, it is not difficult to see that there exist s, t ∈ I such that
α1(s) \ α2(t) �= ∅ and α2(t) \ α1(s) �= ∅.

Lemma 3.6. Let X be a continuum. Then X is hereditarily
indecomposable if and only if C(p, X) is an arc for each p ∈ X.

Proof. Suppose that there exists p ∈ X such that C(p, X) is not an
arc. Then by Lemma 3.5 there exist K, K ′ ∈ C(p, X) such that K\K ′ �=
∅ �= K ′ \ K. However, p ∈ K ∩ K ′, thus K ∪ K ′ ∈ C(X) and K ∪ K ′

is decomposable. Therefore X is not hereditarily indecomposable.

Conversely, if C(p, X) is an arc for each p ∈ X, let K ∈ C(X) and
suppose that K = A∪B for some A, B ∈ C(X). Let p ∈ A∩B. Using
Observation 3.4 we get that either A ⊂ B or B ⊂ A. Hence K = A
or K = B. Therefore, K is indecomposable and X is hereditarily
indecomposable.

Lemma 3.7. Let Y be a compactification of the ray with remainder
X. If p ∈ X is such that C(p, X) is an arc, then C(p, Y ) is an arc.

Proof. Let A, B ∈ C(p, Y ). If A, B ⊂ X, according to Observation 3.4
we get that A and B are comparable. Now, since X is terminal in Y ,
in any other case it is easy to see that A and B are comparable. Thus,
by Lemma 3.5 we conclude that C(p, Y ) is an arc.

As a consequence of Lemma 3.5, we have the following result.
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Corollary 3.8. Let X be an arc. If p is an endpoint of X, then
C(p, X) is an arc.

4. Compactness.

Definition 4.1. Let X be a continuum and A ⊂ X. We define the
hyperspace K(A, X) = {C(p, X) : p ∈ A}. We will denote K(X, X)
simply by K(X).

It is well known that the hyperspaces C(X) are continua, so a natural
question that arises, regarding the hyperspaces K(X) is whether they
are continua too. We shall see that this is not always the case. In this
section we will find conditions for a continuum X, which are equivalent
to the compactness of K(X).

Definition 4.2. For a continuum X and A ⊂ X, let τA : A →
K(A, X) be given by τA(p) = C(p, X). For convenience, we will denote
τX simply by τ .

Observation 4.3. Let X be a continuum and A ⊂ X. Note that the
function τA : A → K(A, X) is bijective.

Lemma 4.4. If X is a continuum, then the function τ−1
A :

K(A, X) → A is continuous for every A ⊂ X.

Proof. Let C(p, X) ∈ K(A, X) and a sequence {C(pn, X)}∞n=1 ⊂
K(A, X) which converges to C(p, X).

We may suppose that there exists B ∈ C(p, X) such that the sequence
{{pn}}∞n=1 converges to B. Then B cannot have more than one point
so B = {p} and we can conclude that pn → p.

Lemma 4.5. Let X be a continuum, x ∈ X and {xn}∞n=1 a sequence
which converges to x. Then lim sup C(xn, X) ⊂ C(x, X).
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Proof. Let A ∈ lim sup C(xn, X). Then for every k ∈ N, there
exist nk ∈ N and Ank

∈ C(xnk
, X) such that H(A, Ank

) < 1/k.
In particular, the sequence {Ank

}∞k=1 converges to A. Since xnk
∈

Ank
for every k, we get that x ∈ A, thus A ∈ C(x, X). Hence

lim sup C(xn, X) ⊂ C(x, X).

Lemma 4.6. Let X be a continuum. Then the function τ is
continuous if and only if X has the property of Kelley.

Proof. Suppose that X has the property of Kelley. Let x ∈ X and
a sequence {xn}∞n=1 which converges to x. Since X has the property
of Kelley, for every B ∈ C(x, X) and for every n ∈ N, there exists
Bn ∈ C(xn, X) such that the sequence {Bn}∞n=1 converges to B.
Thus C(x, X) ⊂ lim inf C(xn, X). From Lemma 4.5 it follows that
C(xn, X) → C(x, X). Whence τ is continuous.

Conversely, suppose that τ is continuous and take x ∈ X, A ∈
C(x, X) and a sequence {xn}∞n=1 which converges to x. Then

C(xn, X) = τ (xn) −→ τ (x) = C(x, X).

Hence, for every n ∈ N, there exists An ∈ C(xn, X) such that the
sequence {An}∞n=1 converges to A. In other words X has the property
of Kelley at x.

The following lemma provides necessary and sufficient conditions on
a continuum X under which K(X) is compact.

Lemma 4.7. The following conditions are equivalent for a contin-
uum X:

i) K(X) is compact;

ii) τ : X → K(X) is continuous;

iii) X has the property of Kelley and

iv) X ≈ K(X).

Proof. Clearly ii) ⇒ i) and iv) ⇒ i). Moreover, from Lemma 4.4
and Observation 4.3 it follows that i) ⇒ ii) and i) ⇒ iv). Finally, by
Lemma 4.6 conditions ii) and iii) are equivalent.
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5. Local and arcwise connectedness.

Lemma 5.1. Let X be a continuum and B a locally connected
subspace of X. Then the function τB : B → K(B, X) is continuous.

Proof. Let p ∈ B and ε > 0. Since B is locally connected, we can
take a connected open subset U of B which contains p and such that
diam (U) < ε/2. Let q ∈ U , K ∈ C(p, X) and D = K ∪ cl (U). Then
clearly D ⊂ N(ε, K) and K ⊂ N(ε, D). Hence H(K, D) < ε. Now
it is easy to see that D ∈ C(q, X). Thus C(p, X) ⊂ NH(ε, C(q, X)).
Similarly, C(q, X) ⊂ NH(ε, C(p, X)). Therefore H2(τB(p), τB(q)) =
H2(C(p, X), C(q, X)) < ε.

Corollary 5.2. Let X be a continuum and B a locally connected
subspace of X. Then B ≈ K(B, X). In particular, K(B, X) is locally
connected.

Proof. By Observation 4.3, Lemma 4.4 and Lemma 5.1, we have that
τB is a homeomorphism. In particular, K(B, X) is locally connected.

Lemma 5.3. Let X be a continuum. Then B ⊂ X is arcwise
connected if and only if K(B, X) is arcwise connected.

Proof. Suppose that K(B, X) is arcwise connected. Then, by means
of Lemma 4.4, τ−1

B (K(B, X)) = B is arcwise connected.

Conversely, suppose that B is an arcwise connected subset of X.
Consider {C(p, X), C(q, X)} ⊂ K(B, X) and take an arc A in B which
contains p and q. Since A is a locally connected subspace of X, applying
Lemma 5.1 we get that τA is a mapping. In particular, τA(A) is an
arcwise connected subcontinuum of K(B, X), which contains C(p, X)
and C(q, X).

Example 5.4. There exists a continuum X which is not locally
connected but such that K(X) is locally connected.
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Let A = {(0, y) ∈ R2 : y ∈ [−2, 2]} and B = {(x, sin 1
x ) ∈ R2 : x ∈

(0, π]}. Define X = A ∪ B. Clearly X is a continuum, though it is not
locally connected. Let’s analyze K(X).

Since both A and B are locally connected, by Corollary 5.2 we have
that K(A, X) is an arc and K(B, X) is a ray. Clearly K(A, X) is
closed in K(X). If K(B, X) is not closed, there exists a sequence
{xn}∞n=1 ⊂ B converging to x for some x ∈ A such that the sequence
{C(xn, X)}∞n=1 converges to C(x, X). Let M = {0}× [−1, 1]. Consider
an arc K ∈ C(x, X) such that neither K is contained in M nor M
is contained in K. It is easy to see that K is not a limit point of
the sets C(xn, X), a contradiction. Hence K(B, X) is closed in K(X).
Finally, since K(X) is the disjoint union of the closed sets K(A, X)
and K(B, X), we get that K(X) is locally connected. Note, however,
that K(X) is not connected.

Example 5.5. There exists a continuum X which is not locally
connected but such that K(X) is connected and locally connected.

Let W be the continuum discussed in Example 5.4 and consider the
following equivalence relation in W :

(x, y) ∼ (z, w) if and only if
{

(x, y) = (z, w) or
(x, y) ∈ {(0,−2), (π, sin(1/π))}.

Let X = W/∼ and ρ : W → X be the natural projection. Note that
ρ(A) and ρ(B) are locally connected while X is not. Hence, according
to Corollary 5.2 we get that K(A, X) is an arc and K(B, X) is a ray.

Consider the point w ∈ ρ(A) ∩ ρ(B) and a small, open arc U
containing it. In the last example we saw that K(X\U) is disconnected,
whence K(ρ(A), X) ∩ cl (K(ρ(B), X)) = {C(w, X)}. In other words,
since K(X) = K(ρ(A), X) ∪ K(ρ(B), X), then K(X) is the one-point
union of an arc and a ray, joined in such a way that K(X) is a ray. In
particular, K(X) is connected and locally connected, though X is not
locally connected.

6. Compactifications and connectedness. In this section we
will analyze connectedness of the hyperspace K(Y ), when Y is a
compactification of the ray.
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Lemma 6.1. If any of the following conditions holds:

i) Y is a compactification of the ray with remainder X and X has a
point p such that C(p, X) is an arc, or

ii) Y is a continuum and p ∈ Y is such that C(p, Y ) is an arc,

and {pn}∞n=1⊂Y is a sequence converging to p, then limn→∞ C(pn, Y )
= C(p, Y ).

Proof. By Lemma 3.7, i) implies ii), so we will assume that ii) holds.
Let A ∈ C(p, Y ) and µ : C(Y ) → I be a Whitney map.

For every n ∈ N take An ∈ C(pn, Y ) such that µ(An) = µ(A).
Suppose that there exists B ∈ C(Y ) such that a subsequence {Ani

}∞i=1

of {An}∞n=1 converges to B. We know that pni
∈ Ani

for every
i ∈ N and pni

→ p, thence p ∈ B. Thus, by Observation 3.4, A
and B are comparable. On the other hand, since µ is continuous,
µ(A) = µ(Ani

) → µ(B). Since µ is strictly monotone, we obtain
that A = B. Therefore, An → A and A ∈ lim inf C(pn, Y ). Thus
C(p, Y ) ⊂ lim inf C(pn, Y ). According to this and Lemma 4.5, we get
that C(pn, Y ) → C(p, Y ).

Corollary 6.2. Let Y be a compactification of the ray with an arc
X as remainder. Then K(Y ) is connected.

Proof. By Corollary 5.2 we know that K(X, Y ) and K(Y \X, Y ) are
connected. Furthermore, if p is an endpoint of X and {pn}∞n=1 ⊂ Y \X
is a sequence converging to p, using Corollary 3.8 and Lemma 6.1 we
have that C(pn, Y ) → C(p, Y ). Thus C(p, Y ) ∈ cl (K(Y \ X, Y )) ∩
K(X, Y ). Hence K(Y ) = K(X, Y ) ∪ K(Y \ X, Y ) is connected.

Proposition 6.3. Let Y be a compactification of the ray with
remainder X. Then K(X, Y ) is closed in K(Y ).

Proof. Consider a sequence {C(xn, Y )}∞n=1 ⊂ K(X, Y ) which con-
verges to C(x, Y ) for some x ∈ Y . By Lemma 4.4 we have that
xn = τ−1(C(xn, Y )) → τ−1(C(x, Y )) = x. Whence x ∈ X and
K(X, Y ) is closed.
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In what follows we shall use the following notation. For a metric
space R, we shall denote by C(R) the family of compact, connected
and nonempty subsets of R.

Lemma 6.4. Let Y be a compactification of the ray R with remainder
X. If for every point x ∈ X there exists A ∈ C(x, X) such that
A /∈ cl (C(R)), then K(R, Y ) is closed in K(Y ). In particular, K(Y )
is not connected.

Proof. If we suppose that K(R, Y ) is not closed in K(Y ), then there
exists a sequence {C(yn, Y )}∞n=1 ⊂ K(R, Y ) converging to C(x, Y ) for
some x ∈ X. However, by hypothesis there exists A ∈ C(x, X) \
limC(yn, Y ), a contradiction. Thence, K(R, Y ) is closed in K(Y ).
According to this and Proposition 6.3, we can write K(Y ) as the disjoint
union of the closed, nonempty subsets K(X, Y ) and K(R, Y ).

Example 6.5. A compactification Y of the ray, such that the
remainder is a simple closed curve and K(Y ) is connected.

Let Y = S1 ∪ {(1 + 1
t )e

it ∈ C : t ∈ [1,∞)}. Then it is easy to see
that Y has the property of Kelley. Thus, by Lemma 4.7, Y ≈ K(Y ).
In particular, K(Y ) is connected.

Example 6.6. A compactification Y of the ray, having a simple
closed curve S as a remainder and such that K(Y ) is not connected.

Consider the space Y in Figure 1. Let x ∈ S and A be a subarc of
C(x, S) which contains the point a of the figure in its interior relative
to S. It is easy to see that A cannot be approximated by subcontinua
of R. Hence, according to Lemma 6.4, K(Y ) is not connected.

Definition 6.7. Let n ∈ N. An n-od is a continuum X with the
property that there exists K ∈ C(X) such that X \ K has at least n
components. The continuum K is called a core of the n-od.

Definition 6.8. Let n ∈ N. We say that X is a simple n-od provided
that X is an n-od with the following properties. The core of X is a one-
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FIGURE 1. Compactification Y of the ray such that K(Y ) is not connected.

point set {x} and X \ {x} has exactly n components A1, A2, . . . , An,
which satisfy that Ai ∪ {x} is an arc for each i ∈ {1, 2, . . . , n}.

Example 6.9. A compactification Y of the ray, with a 4-od as a
remainder and such that K(Y ) is not connected.

Consider the space Y represented in Figure 2. Note that for every
point x in the remainder X, there exists a proper subtriod T of X
in such a way that x is contained in the core of T . It is easy to see
that T can be chosen in such a way that it cannot be approximated by
subcontinua of the ray R. Applying Lemma 6.4 we obtain that K(Y )
is not connected.

We have seen that, even when K(Y ) is connected for every compact-
ification Y of the ray whose remainder is an arc, this is not always the
case for finite graphs. In fact, we shall see that, if the remainder is
almost any finite graph, then K(Y ) is not connected.

Definition 6.10. Let G be a finite graph, x ∈ G and n ∈ N \ {1, 2}.
A point x is a ramification point of G, if x is the core of a simple n-od
in G. In case n is maximal we say that the order of x in G is n and we
will write ord (x, G) = n.

Recall that a noose is the one-point union of an arc A and a simple
closed curve S such that A ∩ S is an endpoint of A.
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x

T

FIGURE 2. Compactification Y of the ray such that K(Y ) is not connected.

Proposition 6.11. Let G be a finite graph which is different from
an arc, a simple closed curve, a simple triod and a noose. Then all the
points of G are contained in the core of a triod.

Proof. Let x ∈ G. We will analyze two cases.

Case 1. G has a unique ramification point r.

It is easy to see that if ord (r, G) = 3, then G is either a simple triod
or a noose. Thus we may suppose that ord (r, G) = n ≥ 4 and {r} is
the core of a simple n-od W for some n ≥ 4, i.e., W = ∪{Ai : i ∈
{1, 2, . . . , n}}, where each Ai is an arc, r is an endpoint of each Ai and
Ai ∩ Aj = {r} whenever i �= j. Take an arc A in G such that x ∈ A
and A∩W = {ai}, where ai ∈ Ai for some i ∈ {1, 2, . . . , n} (A may be
degenerate).

Let K = A∪Ai. Then since n ≥ 4, we have that (W ∪A)\K = W \Ai

has at least three components. Hence W ∪ A is a triod with core K
and x is contained in the core of the triod.

Case 2. G has at least two ramification points.
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In this case we can consider an arc L in G, containing exactly two
ramification points, r, s of G in such a way that these are the endpoints
of L. Thus, r and s are the core of a simple m-od M and of a simple n-od
N , respectively. We can suppose that M ∩N = ∅. Thus M = ∪ {Mi :
i ∈ {1, 2, . . . , m}} and N = ∪ {Nj : j ∈ {1, 2, . . . , n}}, where each
Mi and Nj is an arc. Besides Mk ∩ Ml = {r}, Nk ∩ Nl = {s} and
Mv ∩Nw = ∅ whenever k �= l, v ∈ {1, 2, . . . , m} and w ∈ {1, 2, . . . , n}.

On the other hand, it is easy to see that L intersects M and N
in some Mα \ {r} and in some Nβ \ {s} and only in one for each of
them. Take an arc A in G (it may be degenerate) such that x ∈ A and
A ∩ (M ∪ N ∪ L) = {a} where a ∈ Mi for some i ∈ {1, 2, . . . , m} or
a ∈ Nj for some j ∈ {1, 2, . . . , n}. We will suppose that a ∈ Mi for
some i ∈ {1, 2, . . . , m}.

Now let K = A∪Mi ∪L and T = M ∪N ∪L∪A. We shall see that
T is a triod, with core K, and x ∈ K. We have

T \ K = (M ∪ N ∪ L ∪ A) \ (A ∪ Mi ∪ L)
= (M ∪ N) \ (Mi ∪ L)

=
( ⋃

{Mj ∪ Nk : j /∈ {i, α}, k �= β}
)
\ {r, s}.

Since r and s are ramification points, m ≥ 3 and n ≥ 3. Then T \ K
has at least three components, which means that T is a triod with core
K. Finally it is clear that x is contained in the core of the triod.

Theorem 6.12. Let Y be a compactification of the ray with re-
mainder X, x ∈ X and a sequence {xn}∞n=1 ⊂ Y \ X which con-
verges to x. If x is contained in the core of a triod T in X, then
lim inf C(xn, Y ) � C(x, Y ).

Proof. Take K ∈ C(x, T ) such that T \ K = A1 ∪ A2 ∪ A3 where
Ai �= ∅ for every i ∈ {1, 2, 3} and Ai and Aj are separated whenever
i �= j. For every i ∈ {1, 2, 3} take ai ∈ Ai and δ > 0 such that
δ < d(ai, K ∪ Aj ∪ Ak) whenever {i, j, k} = {1, 2, 3}.

If we suppose that the conclusion of the theorem does not hold, using
Lemma 4.5 it follows that lim inf C(xn, Y ) = C(x, Y ). Therefore, there
exist n ∈ N and Ci ∈ C(xn, Y ) such that H(Ai ∪ K, Ci) < δ/2 for
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every i ∈ {1, 2, 3}. Letting T ′ = C1 ∪ C2 ∪ C3, then it is easy to see
that T ′ is a weak triod in Y \ X. However, according to Theorem 3.3,
the ray contains a triod, which is absurd.

We present the following consequences of the previous results.

Corollary 6.13. Let X be a continuum such that each point of X is
contained in the core of a triod. If Y is a compactification of the ray
R, with remainder X, then K(Y ) is not connected.

Proof. Let {C(yn, Y )}∞n=1 ⊂ K(R, Y ) be a sequence converging
to C(y, Y ) for some y ∈ Y . Then by Theorem 6.12, y /∈ X and
C(y, Y ) ∈ K(R, Y ). Therefore K(R, Y ) is closed in K(Y ). According
to this and Proposition 6.3, we can write K(Y ) as the union of the two
nonempty and disjoint closed sets K(X, Y ) and K(R, Y ).

The following results follow from Proposition 6.11 and Corollary 6.13.

Corollary 6.14. Let G be a finite graph which is neither an arc
nor a simple closed curve, nor a simple triod, nor a noose. If Y is
a compactification of the ray R with remainder G, then K(Y ) is not
connected.

Corollary 6.15. Let n ∈ N \ {1} and X be an n-cell. If Y is
a compactification of the ray R with remainder X, then K(Y ) is not
connected.

Lemma 6.16. Let Y be a compactification of the ray with remainder
X. Suppose that K(X, Y ) is connected and that X contains a point p
such that Y has the property of Kelley at p. Then K(Y ) is connected.

Proof. Let {pn}∞n=1 ⊂ Y \ X be a sequence which converges to
p. According to Lemma 4.5 and the fact that Y has the property
of Kelley at p, we have that C(pn, Y ) → C(p, Y ). Whence C(p, Y ) ∈



THE HYPERSPACES K(X) 669

cl (K(Y \ X, Y )) ∩ K(X, Y ). Moreover, by Corollary 5.2, K(Y \ X, Y )
is connected. Therefore K(Y ) = K(X, Y ) ∪K(Y \X, Y ) is connected.

Lemma 6.17. Let Y be a compactification of the ray with remainder
X. If X has the property of Kelley, then X ≈ K(X, Y ).

Proof. According to Observation 4.3 and Lemma 4.4, it suffices to
show that τX is continuous. Let x ∈ X and {xn}∞n=1 ⊂ X be a sequence
which converges to x. Take A ∈ C(x, Y ). Since X is terminal in Y ,
either A ⊂ X or X ⊂ A. By hypothesis X has the property of Kelley,
so in either case it is easy to see that A ∈ lim inf C(xn, Y ). Hence,
C(x, Y ) ⊂ lim inf C(xn, Y ). The result follows from Lemma 4.5.

Corollary 6.18. Let Y be a compactification of the ray with remain-
der X. Suppose that X has the property of Kelley and X has a point
x such that for any A, B ∈ C(x, X), A and B are comparable. Then
K(Y ) is connected.

Proof. By Lemma 6.17 we have that X ≈ K(X, Y ) and by Lemma 3.5
we know that C(x, X) is an arc. Let {xn}∞n=1 ⊂ Y \ X be a sequence
which converges to x. From Lemma 6.1, we deduce that C(x, Y ) ∈
cl (K(Y \ X, Y )) ∩ K(X, Y ). Thus K(Y ) = K(X, Y ) ∪ K(Y \ X, Y ) is
connected.

As applications of the corollary above, we present some examples.

Example 6.19. Let X be one of the following continua: sin 1
x

curve, the continuum X presented in Example 6.5, the Buckethandle
continuum, see [6, p. 193] or a pseudoarc, see [1, p. 44]. If Y is a
compactification of the ray with remainder X, then K(Y ) is connected.

It is easy to see that in every continuum X that is mentioned above,
there exists a point w such that any two subcontinua of X containing
w are comparable. On the other hand, all of them have the property
of Kelley. Therefore, by Corollary 6.18, we get that K(Y ) is connected
in all the cases.



670 P. PELLICER-COVARRUBIAS

Theorem 6.20. Let Y be a compactification of the ray with remain-
der X. If X is a hereditarily indecomposable continuum, then Y has
the property of Kelley.

Proof. Note that Y has the property of Kelley at y for every y ∈ Y \X.
The result follows from Lemma 3.6 and Lemma 6.1.

The following theorem follows directly from Theorem 6.20 and
Lemma 4.7.

Theorem 6.21. If Y is a compactification of the ray with remainder
X and X is a hereditarily indecomposable continuum, then K(Y ) is
connected.

7. A characterization. Finally, as an application, we develop a
result in order to give a characterization of hereditarily indecomposable
continua. In what follows, the symbol Im (f) will represent the image
of a mapping f .

Theorem 7.1. Let X be a continuum. If for any compactification
Y of the ray, with remainder X, Y has the property of Kelley, then X
is hereditarily indecomposable.

Proof. Suppose that X is not hereditarily indecomposable. Then
there exist A, B ∈ C(X) such that A \B �= ∅ �= B \A and A∩B �= ∅.
We may assume that X ⊂ I∞. Take a point a ∈ A \ B and, for
each n ∈ N, consider two finite sets Kn ⊂ A and Fn ⊂ X such that
A ⊂ Nd1(

1
n , Kn) and X ⊂ Nd1(

1
n , Fn), where d1 represents the metric

in the Hilbert cube I∞. Since Nd1(
1
n , Kn) and Nd1(

1
n , Fn) are arcwise

connected subsets of I∞, we can take two mappings αn : [ 1
2n+1 , 1

2n ] →
Nd1(

1
n , Kn) and βn : [ 1

2n , 1
2n−1 ] → Nd1(

1
n , Fn) such that

i) αn

( 1
2n + 1

)
= a = αn

( 1
2n

)
, Kn ⊂ Im (αn),

ii) βn

( 1
2n

)
= a = βn

( 1
2n − 1

)
and Fn ⊂ Im (βn).
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Moreover, we define

P =
⋃{

(αn(t), t) ∈ I∞ × I : t ∈
[ 1
2n + 1

,
1
2n

]
, n ∈ N

}

Q =
⋃{

(βn(t), t) ∈ I∞ × I : t ∈
[ 1
2n

,
1

2n − 1

]
, n ∈ N

}

and Y = (X × {0}) ∪ P ∪Q.

We shall prove in a series of steps that Y is a compactification of
the ray with remainder X × {0}, which does not have the property of
Kelley at some point y ∈ Y .

Step 1. P ∪Q is a ray.

Let f : (0, 1] → P ∪Q be given by

f(t) =
{

(αn(t), t) if t ∈ [1/(2n + 1), 1/(2n)],
(βn(t), t) if t ∈ [1/(2n), 1/(2n − 1)].

Note that αm( 1
2m ) = a = βm( 1

2m ); thus f is well defined and clearly
f is continuous and one-to-one. Furthermore, let (x, t) ∈ P ∪Q. Then
t ∈ [ 1

m+1 , 1
m ] for some m ∈ N. Thus if m = 2k for some k ∈ N,

then (x, t) = (αk(t), t) = f(t). If m = 2k − 1 for some k ∈ N,
then t ∈ [ 1

2k , 1
2k−1 ], whence (x, t) = (βk(t), t) = f(t). Therefore, f

is surjective. Hence, f has an inverse f−1.

Moreover, let {(xn, tn)}∞n=1 ⊂ P ∪ Q be a sequence which converges
to (x, t) ∈ P ∪Q. Thus f−1(xn, tn) = tn → t = f−1(x, t) which means
that f−1 is continuous. Therefore, f is a homeomorphism and P ∪ Q
is a ray.

Step 2. P ∪Q is dense in Y .

It is enough to prove that X×{0} ⊂ cl (P∪Q). Let (x, 0) ∈ X×{0}.
For each n ∈ N, take xn ∈ Fn such that d1(xn, x) < 1

n . Further,
since xn ∈ Fn ⊂ Im (βn), there exists tn ∈ [ 1

2n , 1
2n−1 ] such that

xn = βn(tn). In particular, (xn, tn) ∈ Q. Notice that tn → 0. Hence
(xn, tn) → (x, 0). Therefore, we can conclude that (x, 0) ∈ cl (P ∪Q).
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Step 3. Y is compact.

It suffices to show that Y is closed in I∞ × I. Let {(xn, tn)}∞n=1 ⊂ Y
be a sequence converging to a point (x, t) ∈ I∞ × I. If tn = 0 for
infinitely many n’s, then clearly (x, t) ∈ X × {0} ⊂ Y . However,
if there exists ε > 0 such that tn > ε for every n ∈ N, then
{(xn, tn)}∞n=1 ⊂ f([ε, 1]) where f is the function defined in Step 1.
Hence (x, t) ∈ f([ε, 1]) ⊂ P ∪ Q ⊂ Y . Thus we only need to consider
the case in which the sequence {tn}∞n=1 converges to zero. Let n ∈ N;
then either xn = αrn

(tn) or xn = βrn
(tn) for some rn ∈ N. Thus

tn ∈ [ 1
2rn+1 , 1

2rn
] or tn ∈ [ 1

2rn
, 1

2rn−1 ]. Since tn → 0, then rn → ∞. On
the other hand, we know that xn ∈ Nd1(

1
rn

, Frn
∪ Krn

) ⊂ Nd1(
1
rn

, X).
Therefore, x = limxn ∈ X. Hence (x, t) ∈ X × {0} ⊂ Y .

Step 4. If {(xn, tn)}∞n=1 ⊂ P is a sequence which converges to (x, 0),
then x ∈ A.

Let n ∈ N. Since (xn, tn) ∈ P, there exists rn ∈ N such that
tn ∈ [ 1

2rn+1 , 1
2rn

] and xn = αrn
(tn). Note that tn → 0 and so rn → ∞.

Now we have that αrn
(tn) ∈ Nd1(

1
rn

, Krn
) ⊂ Nd1(

1
rn

, A). Therefore,
since αrn

(tn) = xn → x, we conclude that x ∈ A.

Step 5. If y ∈ A∩B, then Y does not have the property of Kelley at
(y, 0).

For each n ∈ N we can take yn ∈ Kn such that d1(yn, y) < 1
n .

Besides, by construction we have that Kn ⊂ Im (αn). Thence yn =
αn(tn) for some tn ∈ [ 1

2n+1 , 1
2n ]. Thus, it is easy to see that tn → 0.

Hence (yn, tn) → (y, 0) and, moreover, {(yn, tn)}∞n=1 ⊂ P.

Consider the element B × {0} of C((y, 0), Y ) and suppose that
{Bn}∞n=1 ⊂ C(Y ) is a sequence which converges to B × {0} and is
such that for each n ∈ N, Bn ∈ C((yn, tn), Y ). We will analyze two
cases to see that this is not possible.

Case 1. There exists N ∈ N such that if n > N , then Bn ⊂ P.

By Step 4, in this case lim sup Bn ⊂ A, whence B ⊂ A, a contradic-
tion. Therefore, this case is impossible.
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Case 2. There exists a subsequence {Bni
}∞i=1 of {Bn}∞n=1 such that

for every i ∈ N, we have that Bni
∩Q �= ∅.

Let i ∈ N. We know that yni
= αni

(tni
) for some tni

∈ [ 1
2ni+1 , 1

2ni
],

and that (yni
, tni

) ∈ Bni
. Further, in this case we can take a point

(xi, ti) ∈ Bni
∩Q. In particular, ti ∈ [ 1

2i ,
1

2i−1 ] for some i ∈ N. We will
suppose that tni

≤ ti. Thus ni ≥ i.

Since Bni
is connected and contains (xi, ti) and (yni

, tni
), it follows

that Bni
contains (zi,

1
2i ) for some zi ∈ I∞. However, by construction

we know that zi = αi( 1
2i ) and that zi = a. Hence, (a, 1

2i ) ⊂ Bni

for every i ∈ N. Thus (a, 0) ∈ lim inf Bni
which means that (a, 0) ∈

B × {0}, a contradiction. Therefore, this case is impossible too.

In any case we obtained a contradiction so we can conclude that Y
does not have the property of Kelley at (y, 0).

As a result of Steps 1 5 we get the conclusion of the theorem.

By Theorem 6.20 and Theorem 7.1, we get the following characteri-
zation.

Corollary 7.2. Let X be a continuum. Then X is hereditarily
indecomposable if and only if for any compactification Y of the ray,
with remainder X, Y has the property of Kelley.

Questions. 1. Give necessary and sufficient conditions under which
K(Y ) is connected, when Y is a compactification of the ray.

2. For a continuum X, give necessary and sufficient conditions under
which K(X) is connected.
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